
The value of acceleration due to gravity at height h from Earth’s surface will become half it’s value on the surface if ( $R{\text{ }} = {\text{ Radius of Earth}}$ )
A) $h = R$
B) $h = 2R$
C) $h = (\sqrt 2 - 1)R$
D) $h = (\sqrt 2 + 1)R$
Answer
232.8k+ views
Hint: We have to find the height at which the gravity will be half of that on the surface of Earth. So we will use the formula of Force of interaction between two bodies having mass. Then, we will find the value of gravity at Earth’s surface then we will use the given height in the formula we will obtain.
Complete step by step solution:
We know that the force of attraction $F$ between two bodies having masses ${m_1}$ and ${m_2}$ separated by a distance $r$ is given by
$F = \dfrac{{G{m_1}{m_2}}}{{{r^2}}}$
Where $G$ is universal gravitational constant.
Let the mass of Earth be $M$ a point object of mass $m$ at surface of Earth of radius $R$ ,
Their force of attraction $F$ will be given by,
$F = \dfrac{{GMm}}{{{R^2}}}$
This force of attraction will be $F = mg$ , where $g$ is gravity so we get,
$mg = \dfrac{{GMm}}{{{R^2}}}$
On further simplification, we get,
$g = \dfrac{{GM}}{{{R^2}}}$
So we get equation as,
$g{R^2} = GM$ -------(1)
Let at height $h$ , distance from centre from Earth will be $R + h$ , gravity will be halved than that of surface, so we get,
$\dfrac{g}{2}{(R + h)^2} = GM$ ----------(2)
From equation $1\& 2$ we get,
$\dfrac{g}{2}{(R + h)^2} = g{R^2}$
On simplifying we get,
${(R + h)^2} = 2{R^2}$
Doing squareroot on both sides we get,
$R + h = \sqrt 2 R$
On simplifying this, we get,
$h = (\sqrt 2 - 1)R$
So the correct answer is option (C).
Note: Since the gravity at obtained height becomes half, it means any person will feel his weight half of his weight at the surface. When this height is enough to get out of the atmosphere, the weight decreases to zero, that’s why we feel zero weight in space.
Complete step by step solution:
We know that the force of attraction $F$ between two bodies having masses ${m_1}$ and ${m_2}$ separated by a distance $r$ is given by
$F = \dfrac{{G{m_1}{m_2}}}{{{r^2}}}$
Where $G$ is universal gravitational constant.
Let the mass of Earth be $M$ a point object of mass $m$ at surface of Earth of radius $R$ ,
Their force of attraction $F$ will be given by,
$F = \dfrac{{GMm}}{{{R^2}}}$
This force of attraction will be $F = mg$ , where $g$ is gravity so we get,
$mg = \dfrac{{GMm}}{{{R^2}}}$
On further simplification, we get,
$g = \dfrac{{GM}}{{{R^2}}}$
So we get equation as,
$g{R^2} = GM$ -------(1)
Let at height $h$ , distance from centre from Earth will be $R + h$ , gravity will be halved than that of surface, so we get,
$\dfrac{g}{2}{(R + h)^2} = GM$ ----------(2)
From equation $1\& 2$ we get,
$\dfrac{g}{2}{(R + h)^2} = g{R^2}$
On simplifying we get,
${(R + h)^2} = 2{R^2}$
Doing squareroot on both sides we get,
$R + h = \sqrt 2 R$
On simplifying this, we get,
$h = (\sqrt 2 - 1)R$
So the correct answer is option (C).
Note: Since the gravity at obtained height becomes half, it means any person will feel his weight half of his weight at the surface. When this height is enough to get out of the atmosphere, the weight decreases to zero, that’s why we feel zero weight in space.
Recently Updated Pages
Dimensions of Charge: Dimensional Formula, Derivation, SI Units & Examples

How to Calculate Moment of Inertia: Step-by-Step Guide & Formulas

Circuit Switching vs Packet Switching: Key Differences Explained

Dimensions of Pressure in Physics: Formula, Derivation & SI Unit

JEE General Topics in Chemistry Important Concepts and Tips

JEE Extractive Metallurgy Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Laws of Motion Class 11 Physics Chapter 4 CBSE Notes - 2025-26

Waves Class 11 Physics Chapter 14 CBSE Notes - 2025-26

Mechanical Properties of Fluids Class 11 Physics Chapter 9 CBSE Notes - 2025-26

Thermodynamics Class 11 Physics Chapter 11 CBSE Notes - 2025-26

Units And Measurements Class 11 Physics Chapter 1 CBSE Notes - 2025-26

