What will be the value of F for which the given block of mass $m$ remains stationary with respect to the wedge?
(A) $F = \dfrac{{\left( {M + m} \right)}}{{\operatorname{Tan} \theta }} \times g$
(B) $F = \left( {m + M} \right)g\operatorname{Tan} \theta $
(C) $F = \dfrac{{\operatorname{Tan} \theta }}{{\left( {M + m} \right)g}}$
(D) None of these
Answer
Verified
116.4k+ views
Hint: The block moves with acceleration with respect to ground. If a force F is applied to the system as shown in figure such that stationary with respect to block of mass M, then the magnitude of the body could be measured.
Complete step by step solution:
Acceleration is where force is and so this becomes a non inertial frame and the concept of pseudo force is used (ma) (refer to diagram) whose direction is always opposite to the acceleration.
Total mass here will be $M + m$
Force we know, $Force = mass \times acceleration$
Force in the case of inclination has two components in the direction of x-axis and y-axis.
So the x-component of force is ${F_x} = N\sin \theta = ma$
And the y-component is ${F_y} = N\cos \theta = mg$
Dividing the x and y components :
$\dfrac{{{F_x}}}{{{F_y}}} = \dfrac{{\sin \theta }}{{\cos \theta }} = \dfrac{a}{g}$
From the above steps we get the expression for a:
$a = g\tan \theta $
So, from F=ma. We get,
$F = a\left( {M + m} \right)$
$F = g\tan \theta \left( {M + m} \right)$
Hence the correct option is (b).
Note: Use your free body diagram to identify which forces are acting in the direction of interest. Sometimes a force is completely aligned in the parallel or perpendicular direction like normal force and friction. Some forces have components in both the parallel and perpendicular direction, such as the force of gravity. In that case, the force should be broken down into the parallel and perpendicular components for substitution in the net force equations.
Complete step by step solution:
Acceleration is where force is and so this becomes a non inertial frame and the concept of pseudo force is used (ma) (refer to diagram) whose direction is always opposite to the acceleration.
Total mass here will be $M + m$
Force we know, $Force = mass \times acceleration$
Force in the case of inclination has two components in the direction of x-axis and y-axis.
So the x-component of force is ${F_x} = N\sin \theta = ma$
And the y-component is ${F_y} = N\cos \theta = mg$
Dividing the x and y components :
$\dfrac{{{F_x}}}{{{F_y}}} = \dfrac{{\sin \theta }}{{\cos \theta }} = \dfrac{a}{g}$
From the above steps we get the expression for a:
$a = g\tan \theta $
So, from F=ma. We get,
$F = a\left( {M + m} \right)$
$F = g\tan \theta \left( {M + m} \right)$
Hence the correct option is (b).
Note: Use your free body diagram to identify which forces are acting in the direction of interest. Sometimes a force is completely aligned in the parallel or perpendicular direction like normal force and friction. Some forces have components in both the parallel and perpendicular direction, such as the force of gravity. In that case, the force should be broken down into the parallel and perpendicular components for substitution in the net force equations.
Recently Updated Pages
Uniform Acceleration - Definition, Equation, Examples, and FAQs
How to find Oxidation Number - Important Concepts for JEE
How Electromagnetic Waves are Formed - Important Concepts for JEE
Electrical Resistance - Important Concepts and Tips for JEE
Average Atomic Mass - Important Concepts and Tips for JEE
Chemical Equation - Important Concepts and Tips for JEE
Trending doubts
JEE Main 2025: Application Form (Out), Exam Dates (Released), Eligibility & More
Class 11 JEE Main Physics Mock Test 2025
JEE Main Chemistry Question Paper with Answer Keys and Solutions
Learn About Angle Of Deviation In Prism: JEE Main Physics 2025
JEE Main Login 2045: Step-by-Step Instructions and Details
JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics
Other Pages
NCERT Solutions for Class 11 Physics Chapter 7 Gravitation
NCERT Solutions for Class 11 Physics Chapter 1 Units and Measurements
NCERT Solutions for Class 11 Physics Chapter 9 Mechanical Properties of Fluids
Units and Measurements Class 11 Notes - CBSE Physics Chapter 1
NCERT Solutions for Class 11 Physics Chapter 2 Motion In A Straight Line
NCERT Solutions for Class 11 Physics Chapter 8 Mechanical Properties of Solids