
The value of $\mathop {\lim }\limits_{x \to 1} \dfrac{{x + {x^2} + ...... + {x^n} - n}}{{x - 1}}$ is
$
{\text{a}}{\text{. n}} \\
{\text{b}}{\text{. }}\dfrac{{n + 1}}{2} \\
{\text{c}}{\text{. }}\dfrac{{n\left( {n + 1} \right)}}{2} \\
{\text{d}}{\text{. }}\dfrac{{n\left( {n - 1} \right)}}{2} \\
$
Answer
132.9k+ views
Hint: - Apply L’ Hospital’s Rule.
Given limit is
$\mathop {\lim }\limits_{x \to 1} \dfrac{{x + {x^2} + ...... + {x^n} - n}}{{x - 1}}$
Put$\left( {x = 1} \right)$, in this limit
$ \Rightarrow \dfrac{{1 + 1 + 1 + .................. + 1 - n}}{{1 - 1}}$
As we know sum of 1 up to n terms is equal to n.
$ \Rightarrow \dfrac{{n - n}}{{1 - 1}} = \dfrac{0}{0}$
So, at\[x = 1\], the limit is in form of \[\dfrac{0}{0}\]
So, apply L’ Hospital’s rule
So, differentiate numerator and denominator separately w.r.t.$x$
As we know differentiation of\[{{\text{x}}^n} = n{x^{n - 1}}\], and differentiation of constant term is zero.
\[ \Rightarrow \mathop {\lim }\limits_{x \to 1} \dfrac{{\dfrac{d}{{dx}}\left( {x + {x^2} + ...... + {x^n} - n} \right)}}{{\dfrac{d}{{dx}}\left( {x - 1} \right)}} \Rightarrow \mathop {\lim }\limits_{x \to 1} \dfrac{{1 + 2x + 3{x^2} + ........ + n{x^{n - 1}} - 0}}{{1 - 0}}\]
Now, put\[x = 1\],\[ \Rightarrow \dfrac{{1 + 2 + 3 + ...................... + n}}{1}\]
\[ \Rightarrow 1 + 2 + 3 + ...................... + n = \sum\limits_{r = 1}^n r \]
Now as we know sum of first natural numbers is \[\left( {{\text{i}}{\text{.e}}{\text{.}}\sum\limits_{r = 1}^n r = \dfrac{{n\left( {n + 1} \right)}}{2}} \right)\]
\[\mathop {\lim }\limits_{x \to 1} \dfrac{{x + {x^2} + ...... + {x^n} - n}}{{x - 1}} = \sum\limits_{r = 1}^n r = \dfrac{{n\left( {n + 1} \right)}}{2}\]
Hence option (c) is the correct answer .
Note: - In such types of questions the key concept we have to remember is that, whenever the limit comes in the form of \[\dfrac{0}{0}\] always apply L’ hospital’s rule, (i.e. differentiate numerator and denominator separately), and always remember the sum of first natural numbers then we will get the required answer.
Given limit is
$\mathop {\lim }\limits_{x \to 1} \dfrac{{x + {x^2} + ...... + {x^n} - n}}{{x - 1}}$
Put$\left( {x = 1} \right)$, in this limit
$ \Rightarrow \dfrac{{1 + 1 + 1 + .................. + 1 - n}}{{1 - 1}}$
As we know sum of 1 up to n terms is equal to n.
$ \Rightarrow \dfrac{{n - n}}{{1 - 1}} = \dfrac{0}{0}$
So, at\[x = 1\], the limit is in form of \[\dfrac{0}{0}\]
So, apply L’ Hospital’s rule
So, differentiate numerator and denominator separately w.r.t.$x$
As we know differentiation of\[{{\text{x}}^n} = n{x^{n - 1}}\], and differentiation of constant term is zero.
\[ \Rightarrow \mathop {\lim }\limits_{x \to 1} \dfrac{{\dfrac{d}{{dx}}\left( {x + {x^2} + ...... + {x^n} - n} \right)}}{{\dfrac{d}{{dx}}\left( {x - 1} \right)}} \Rightarrow \mathop {\lim }\limits_{x \to 1} \dfrac{{1 + 2x + 3{x^2} + ........ + n{x^{n - 1}} - 0}}{{1 - 0}}\]
Now, put\[x = 1\],\[ \Rightarrow \dfrac{{1 + 2 + 3 + ...................... + n}}{1}\]
\[ \Rightarrow 1 + 2 + 3 + ...................... + n = \sum\limits_{r = 1}^n r \]
Now as we know sum of first natural numbers is \[\left( {{\text{i}}{\text{.e}}{\text{.}}\sum\limits_{r = 1}^n r = \dfrac{{n\left( {n + 1} \right)}}{2}} \right)\]
\[\mathop {\lim }\limits_{x \to 1} \dfrac{{x + {x^2} + ...... + {x^n} - n}}{{x - 1}} = \sum\limits_{r = 1}^n r = \dfrac{{n\left( {n + 1} \right)}}{2}\]
Hence option (c) is the correct answer .
Note: - In such types of questions the key concept we have to remember is that, whenever the limit comes in the form of \[\dfrac{0}{0}\] always apply L’ hospital’s rule, (i.e. differentiate numerator and denominator separately), and always remember the sum of first natural numbers then we will get the required answer.
Recently Updated Pages
Difference Between Mutually Exclusive and Independent Events

Difference Between Area and Volume

JEE Main Participating Colleges 2024 - A Complete List of Top Colleges

JEE Main Maths Paper Pattern 2025 – Marking, Sections & Tips

Sign up for JEE Main 2025 Live Classes - Vedantu

JEE Main 2025 Helpline Numbers - Center Contact, Phone Number, Address

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility & More

Degree of Dissociation and Its Formula With Solved Example for JEE

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Clemmenson and Wolff Kishner Reductions for JEE

Current Loop as Magnetic Dipole and Its Derivation for JEE

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced 2024 Syllabus Weightage

Inertial and Non-Inertial Frame of Reference - JEE Important Topic

Displacement-Time Graph and Velocity-Time Graph for JEE

CBSE Date Sheet 2025 Released for Class 12 Board Exams, Download PDF

CBSE Class 10 Hindi Sample Papers 2024-25
