
The vector sum of two forces is perpendicular to their vector differences. In that case, the forces
(A) Cannot be predicted
(B) Are equal to each other
(C) Are equal to each other in magnitude
(D) Are not equal to each other in magnitude
Answer
141.3k+ views
Hint: When two vectors are perpendicular to each other, their scalar product (dot product) vanishes. Use this to find a relation between the two forces.
Complete step by step solution
Let the two forces be $\overrightarrow {{F_1}} $ and $\overrightarrow {{F_2}} $.
The vector sum of the two forces will be${\overrightarrow F _{sum}} = \overrightarrow {{F_1}} + \overrightarrow {{F_2}} $.
The vector difference of the two forces will be${\overrightarrow F _{difference}} = \overrightarrow {{F_1}} - \overrightarrow {{F_2}} $.
In the question, we are given that the vector sum of the two forces and their vector difference are perpendicular to each other. This implies that their scalar product or their dot product, must vanish.
$ \Rightarrow \left( {{{\overrightarrow F }_{sum}}} \right) \cdot \left( {{{\overrightarrow F }_{difference}}} \right) = 0$
Substituting the values of ${\overrightarrow F _{sum}}$and ${\overrightarrow F _{difference}}$in the above equation yields,
$ \Rightarrow \left( {{{\overrightarrow F }_1} + {{\overrightarrow F }_2}} \right) \cdot \left( {{{\overrightarrow F }_1} - {{\overrightarrow F }_2}} \right) = 0$
Now, we will use distributive law of dot product and open the brackets in the above equation,
\[
\Rightarrow {\overrightarrow F _1} \cdot \left( {{{\overrightarrow F }_1} - {{\overrightarrow F }_2}} \right) + {\overrightarrow F _2} \cdot \left( {{{\overrightarrow F }_1} - {{\overrightarrow F }_2}} \right) = 0 \\
\Rightarrow {\overrightarrow F _{1.}} \cdot {\overrightarrow F _1} - {\overrightarrow F _1} \cdot {\overrightarrow F _2} + {\overrightarrow F _2} \cdot {\overrightarrow F _1} - {\overrightarrow F _2} \cdot {\overrightarrow F _2} = 0 \\
\]
We know that the order of multiplication does not matter in a dot product, i.e.\[{\overrightarrow F _2}.{\overrightarrow F _1} = {\overrightarrow F _1}.{\overrightarrow F _2}\], substituting this in above equation,
\[
\Rightarrow {\overrightarrow F _{1.}} \cdot {\overrightarrow F _1} - {\overrightarrow F _1} \cdot {\overrightarrow F _2} + {\overrightarrow F _1} \cdot {\overrightarrow F _2} - {\overrightarrow F _2} \cdot {\overrightarrow F _2} = 0 \\
\Rightarrow {\overrightarrow F _{1.}} \cdot {\overrightarrow F _1} + ( - {\overrightarrow F _1} \cdot {\overrightarrow F _2} + {\overrightarrow F _1} \cdot {\overrightarrow F _2}) - {\overrightarrow F _2} \cdot {\overrightarrow F _2} = 0 \\
\Rightarrow {\overrightarrow F _{1.}} \cdot {\overrightarrow F _1} + (0) - {\overrightarrow F _2} \cdot {\overrightarrow F _2} = 0 \\
\Rightarrow {\overrightarrow F _{1.}} \cdot {\overrightarrow F _1} = {\overrightarrow F _2} \cdot {\overrightarrow F _2} \\
\]
Now we can substitute \[{\overrightarrow F _1} \cdot {\overrightarrow F _1}\]as \[{\left| {{{\overrightarrow F }_1}} \right|^2}\]and \[{\overrightarrow F _2} \cdot {\overrightarrow F _2}\]as \[{\left| {{{\overrightarrow F }_2}} \right|^2}\]in the above equation,
\[
\Rightarrow {\left| {{{\overrightarrow F }_1}} \right|^2} = {\left| {{{\overrightarrow F }_2}} \right|^2} \\
\Rightarrow \left| {{{\overrightarrow F }_1}} \right| = \left| {{{\overrightarrow F }_2}} \right| \\
\]
Therefore, the magnitude of the two forces, \[{\overrightarrow F _1}\]and \[{\overrightarrow F _2}\]are coming out to be equal.
Option (C) is correct.
Note: We have used that the scalar product of two mutually perpendicular vectors is zero. This can be understood from the definition of scalar product. The scalar product (also called as dot product) of two vectors $\overrightarrow A $ and $\overrightarrow B $ is given by: $\left| {\overrightarrow A \cdot \overrightarrow B } \right| = \left| {\overrightarrow A } \right|\left| {\overrightarrow B } \right|\cos \theta $ where, $\theta $ is the angle between vectors $\overrightarrow A $ and $\overrightarrow B $. If the vectors $\overrightarrow A $ and $\overrightarrow B $ are mutually perpendicular, the angle $\theta$ between them will be $90^\circ $.
$
\Rightarrow \left| {\overrightarrow A \cdot \overrightarrow B } \right| = \left| {\overrightarrow A } \right|\left| {\overrightarrow B } \right|\cos 90^\circ \\
\Rightarrow \left| {\overrightarrow A \cdot \overrightarrow B } \right| = \left| {\overrightarrow A } \right|\left| {\overrightarrow B } \right|(0) \\
\Rightarrow \left| {\overrightarrow A \cdot \overrightarrow B } \right| = 0 \\
$
Therefore, the dot product of two mutually perpendicular vectors is always zero.
Complete step by step solution
Let the two forces be $\overrightarrow {{F_1}} $ and $\overrightarrow {{F_2}} $.
The vector sum of the two forces will be${\overrightarrow F _{sum}} = \overrightarrow {{F_1}} + \overrightarrow {{F_2}} $.
The vector difference of the two forces will be${\overrightarrow F _{difference}} = \overrightarrow {{F_1}} - \overrightarrow {{F_2}} $.
In the question, we are given that the vector sum of the two forces and their vector difference are perpendicular to each other. This implies that their scalar product or their dot product, must vanish.
$ \Rightarrow \left( {{{\overrightarrow F }_{sum}}} \right) \cdot \left( {{{\overrightarrow F }_{difference}}} \right) = 0$
Substituting the values of ${\overrightarrow F _{sum}}$and ${\overrightarrow F _{difference}}$in the above equation yields,
$ \Rightarrow \left( {{{\overrightarrow F }_1} + {{\overrightarrow F }_2}} \right) \cdot \left( {{{\overrightarrow F }_1} - {{\overrightarrow F }_2}} \right) = 0$
Now, we will use distributive law of dot product and open the brackets in the above equation,
\[
\Rightarrow {\overrightarrow F _1} \cdot \left( {{{\overrightarrow F }_1} - {{\overrightarrow F }_2}} \right) + {\overrightarrow F _2} \cdot \left( {{{\overrightarrow F }_1} - {{\overrightarrow F }_2}} \right) = 0 \\
\Rightarrow {\overrightarrow F _{1.}} \cdot {\overrightarrow F _1} - {\overrightarrow F _1} \cdot {\overrightarrow F _2} + {\overrightarrow F _2} \cdot {\overrightarrow F _1} - {\overrightarrow F _2} \cdot {\overrightarrow F _2} = 0 \\
\]
We know that the order of multiplication does not matter in a dot product, i.e.\[{\overrightarrow F _2}.{\overrightarrow F _1} = {\overrightarrow F _1}.{\overrightarrow F _2}\], substituting this in above equation,
\[
\Rightarrow {\overrightarrow F _{1.}} \cdot {\overrightarrow F _1} - {\overrightarrow F _1} \cdot {\overrightarrow F _2} + {\overrightarrow F _1} \cdot {\overrightarrow F _2} - {\overrightarrow F _2} \cdot {\overrightarrow F _2} = 0 \\
\Rightarrow {\overrightarrow F _{1.}} \cdot {\overrightarrow F _1} + ( - {\overrightarrow F _1} \cdot {\overrightarrow F _2} + {\overrightarrow F _1} \cdot {\overrightarrow F _2}) - {\overrightarrow F _2} \cdot {\overrightarrow F _2} = 0 \\
\Rightarrow {\overrightarrow F _{1.}} \cdot {\overrightarrow F _1} + (0) - {\overrightarrow F _2} \cdot {\overrightarrow F _2} = 0 \\
\Rightarrow {\overrightarrow F _{1.}} \cdot {\overrightarrow F _1} = {\overrightarrow F _2} \cdot {\overrightarrow F _2} \\
\]
Now we can substitute \[{\overrightarrow F _1} \cdot {\overrightarrow F _1}\]as \[{\left| {{{\overrightarrow F }_1}} \right|^2}\]and \[{\overrightarrow F _2} \cdot {\overrightarrow F _2}\]as \[{\left| {{{\overrightarrow F }_2}} \right|^2}\]in the above equation,
\[
\Rightarrow {\left| {{{\overrightarrow F }_1}} \right|^2} = {\left| {{{\overrightarrow F }_2}} \right|^2} \\
\Rightarrow \left| {{{\overrightarrow F }_1}} \right| = \left| {{{\overrightarrow F }_2}} \right| \\
\]
Therefore, the magnitude of the two forces, \[{\overrightarrow F _1}\]and \[{\overrightarrow F _2}\]are coming out to be equal.
Option (C) is correct.
Note: We have used that the scalar product of two mutually perpendicular vectors is zero. This can be understood from the definition of scalar product. The scalar product (also called as dot product) of two vectors $\overrightarrow A $ and $\overrightarrow B $ is given by: $\left| {\overrightarrow A \cdot \overrightarrow B } \right| = \left| {\overrightarrow A } \right|\left| {\overrightarrow B } \right|\cos \theta $ where, $\theta $ is the angle between vectors $\overrightarrow A $ and $\overrightarrow B $. If the vectors $\overrightarrow A $ and $\overrightarrow B $ are mutually perpendicular, the angle $\theta$ between them will be $90^\circ $.
$
\Rightarrow \left| {\overrightarrow A \cdot \overrightarrow B } \right| = \left| {\overrightarrow A } \right|\left| {\overrightarrow B } \right|\cos 90^\circ \\
\Rightarrow \left| {\overrightarrow A \cdot \overrightarrow B } \right| = \left| {\overrightarrow A } \right|\left| {\overrightarrow B } \right|(0) \\
\Rightarrow \left| {\overrightarrow A \cdot \overrightarrow B } \right| = 0 \\
$
Therefore, the dot product of two mutually perpendicular vectors is always zero.
Recently Updated Pages
Difference Between Circuit Switching and Packet Switching

Difference Between Mass and Weight

JEE Main Participating Colleges 2024 - A Complete List of Top Colleges

JEE Main Maths Paper Pattern 2025 – Marking, Sections & Tips

Sign up for JEE Main 2025 Live Classes - Vedantu

JEE Main 2025 Helpline Numbers - Center Contact, Phone Number, Address

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

Degree of Dissociation and Its Formula With Solved Example for JEE

Other Pages
Units and Measurements Class 11 Notes: CBSE Physics Chapter 1

JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions for Class 11 Physics Chapter 1 Units and Measurements

Motion in a Straight Line Class 11 Notes: CBSE Physics Chapter 2

Important Questions for CBSE Class 11 Physics Chapter 1 - Units and Measurement

NCERT Solutions for Class 11 Physics Chapter 2 Motion In A Straight Line
