The velocity vector $v$ and displacement vector $x$of a particle executing SHM are related as \[V\dfrac{{dv}}{{dx}} = - {w^2}x\] with the initial condition \[v = {v_0}\]at \[x = 0\] the velocity \[{v_s}\] when displacement is$x$, is
(A) \[v = \sqrt {v{}_0^2 + {w^2}{x^2}} \]
(B) \[v = \sqrt {v{}_0^2 - {w^2}{x^2}} \]
(c) \[v = \sqrt {v{}_0^3 + {w^3} + {x^3}} \]
(D) \[v = {v_0} - {({w^3}{x^3}{e^x}^{^3})^{\dfrac{1}{3}}}\]
Answer
Verified
120.9k+ views
Hint In mechanics and physics, simple harmonic motion is a special type of periodic motion where the restoring force on the moving object is directly proportional to the object's displacement magnitude and acts towards the object's equilibrium position. It is vibratory motion in a system in which the restoring force is proportional to the displacement from equilibrium
Step by step solution
As it is Simple harmonic motion so the equation of motion will be
\[F = - kx\]
Or the equation can be written as
\[\dfrac{{vdv}}{{dx}} = - {\omega ^2}x\]
Now integrating the expression with boundary condition,
\[\int\limits_{{v_0}}^v {vdv} = - {\omega ^2}\int\limits_0^x {xdx} \]
After integrating the above equation we get
$\left[ {\dfrac{{{v^2}}}{2}} \right]_{{v_0}}^v = - {\omega ^2}\left[ {\dfrac{{{x^2}}}{2}} \right]_0^x$
Now we have to apply the limit in the above equation so we get
$\left[ {\dfrac{{{v^2}}}{2} - \dfrac{{v_0^2}}{2}} \right] = - {\omega ^2}\left[ {\dfrac{{{x^2}}}{2}} \right]$
Now we have to do further calculation then we get
$\dfrac{1}{2}\left[ {{v^2} - v_0^2} \right] = \dfrac{{ - {\omega ^2}{x^2}}}{2}$
Now after simplifying the above equation we get
$v = \sqrt {v{}_0^2 - {\omega ^2}{x^2}} $
Hence the correct answer is option is (B)
Note
A speed vector speaks to the pace of progress of the situation of an object.The greatness of a speed vector gives the speed of an article while the vector course gives its direction.Velocity vectors can be added or deducted by the standards of vector addition.In math and mechanics, a relocation is a vector whose length is the most limited good ways from the underlying to the last situation of a point P going through movement. It quantifies both the distance and direction of the net or total motion along a straight line from the initial position to the final position of the point trajectory. A displacement may be identified with the translation that maps the initial position to the final position.
Step by step solution
As it is Simple harmonic motion so the equation of motion will be
\[F = - kx\]
Or the equation can be written as
\[\dfrac{{vdv}}{{dx}} = - {\omega ^2}x\]
Now integrating the expression with boundary condition,
\[\int\limits_{{v_0}}^v {vdv} = - {\omega ^2}\int\limits_0^x {xdx} \]
After integrating the above equation we get
$\left[ {\dfrac{{{v^2}}}{2}} \right]_{{v_0}}^v = - {\omega ^2}\left[ {\dfrac{{{x^2}}}{2}} \right]_0^x$
Now we have to apply the limit in the above equation so we get
$\left[ {\dfrac{{{v^2}}}{2} - \dfrac{{v_0^2}}{2}} \right] = - {\omega ^2}\left[ {\dfrac{{{x^2}}}{2}} \right]$
Now we have to do further calculation then we get
$\dfrac{1}{2}\left[ {{v^2} - v_0^2} \right] = \dfrac{{ - {\omega ^2}{x^2}}}{2}$
Now after simplifying the above equation we get
$v = \sqrt {v{}_0^2 - {\omega ^2}{x^2}} $
Hence the correct answer is option is (B)
Note
A speed vector speaks to the pace of progress of the situation of an object.The greatness of a speed vector gives the speed of an article while the vector course gives its direction.Velocity vectors can be added or deducted by the standards of vector addition.In math and mechanics, a relocation is a vector whose length is the most limited good ways from the underlying to the last situation of a point P going through movement. It quantifies both the distance and direction of the net or total motion along a straight line from the initial position to the final position of the point trajectory. A displacement may be identified with the translation that maps the initial position to the final position.
Recently Updated Pages
What is Hybridisation? Types, Examples, and Importance
Difference Between Circuit Switching and Packet Switching
Difference Between Mass and Weight
JEE Main Participating Colleges 2024 - A Complete List of Top Colleges
Sign up for JEE Main 2025 Live Classes - Vedantu
JEE Main 2025 Helpline Numbers - Center Contact, Phone Number, Address
Trending doubts
JEE Main Chemistry Exam Pattern 2025
Collision - Important Concepts and Tips for JEE
JEE Mains 2025 Correction Window Date (Out) – Check Procedure and Fees Here!
Clemmenson and Wolff Kishner Reductions for JEE
JEE Main Course 2025: Get All the Relevant Details
JEE Main 2022 June 25 Shift 2 Question Paper with Answer Keys & Solutions
Other Pages
JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More
NCERT Solutions for Class 11 Physics Chapter 4 Laws of Motion
JEE Advanced 2025 Revision Notes for Physics on Modern Physics
NCERT Solutions for Class 11 Physics Chapter 3 Motion In A Plane
JEE Main Maths Paper Pattern 2025
Electromagnetic Waves Chapter - Physics JEE Main