
The vertical extension in a light spring by a weight of 1 kg suspended from the wire is 9.8 cm. The period of oscillation
A. \[20\pi \]sec
B. \[2\pi \]sec
C. \[\dfrac{{2\pi }}{{10}}\]sec
D. \[200\pi \]sec
Answer
232.8k+ views
Hint: When the mass is suspended from the spring, then because of force of gravity acting on the mass, the spring elongates to balance the weight of the suspended mass. The elongation is proportional to the weight of the suspended mass.
Formula used:
\[F = kx\], here F is the spring force, k is the spring constant and x is change in length of the spring.
\[T = 2\pi \sqrt {\dfrac{m}{k}} \], here T is the period of oscillation of the vertical spring-block system.
Complete step by step solution:
Let the spring constant of the given spring is k
It is given that the extension in the spring on suspending the weight of 1 kg is 9.8 cm
\[x = 9.8cm\]
\[x = 9.8 \times {10^{ - 2}}m\]
The force of gravity acting on the suspended body is equal to the weight of the body,
So the spring force will be equal to the weight of the suspended body.
\[F = mg\]
\[kx = mg\]
\[k = \dfrac{{mg}}{x}\]
Putting the values, we get
\[k = \dfrac{{1 \times 9.8}}{{9.8 \times {{10}^{ - 2}}}}N/m\]
\[k = 100N/m\]
So, the spring constant of the given spring is \[100N/m\]
Using the formula of period of oscillation,
\[T = 2\pi \sqrt {\dfrac{1}{{100}}} \sec \]
\[T = \dfrac{{2\pi }}{{10}}\sec \]
So, the period of oscillation of the given vertical spring-block system is \[\dfrac{{2\pi }}{{10}}\sec \]
Therefore, the correct option is (C).
Note: We should be careful while plugin the given data in the required formula. We need to change the unit to the standard unit before plugin into the formula. As the expression for the spring constant in this case contains the weight, so we should be careful about the value of the acceleration due to gravity.
Formula used:
\[F = kx\], here F is the spring force, k is the spring constant and x is change in length of the spring.
\[T = 2\pi \sqrt {\dfrac{m}{k}} \], here T is the period of oscillation of the vertical spring-block system.
Complete step by step solution:
Let the spring constant of the given spring is k
It is given that the extension in the spring on suspending the weight of 1 kg is 9.8 cm
\[x = 9.8cm\]
\[x = 9.8 \times {10^{ - 2}}m\]
The force of gravity acting on the suspended body is equal to the weight of the body,
So the spring force will be equal to the weight of the suspended body.
\[F = mg\]
\[kx = mg\]
\[k = \dfrac{{mg}}{x}\]
Putting the values, we get
\[k = \dfrac{{1 \times 9.8}}{{9.8 \times {{10}^{ - 2}}}}N/m\]
\[k = 100N/m\]
So, the spring constant of the given spring is \[100N/m\]
Using the formula of period of oscillation,
\[T = 2\pi \sqrt {\dfrac{1}{{100}}} \sec \]
\[T = \dfrac{{2\pi }}{{10}}\sec \]
So, the period of oscillation of the given vertical spring-block system is \[\dfrac{{2\pi }}{{10}}\sec \]
Therefore, the correct option is (C).
Note: We should be careful while plugin the given data in the required formula. We need to change the unit to the standard unit before plugin into the formula. As the expression for the spring constant in this case contains the weight, so we should be careful about the value of the acceleration due to gravity.
Recently Updated Pages
Dimensions of Charge: Dimensional Formula, Derivation, SI Units & Examples

How to Calculate Moment of Inertia: Step-by-Step Guide & Formulas

Circuit Switching vs Packet Switching: Key Differences Explained

Dimensions of Pressure in Physics: Formula, Derivation & SI Unit

JEE General Topics in Chemistry Important Concepts and Tips

JEE Extractive Metallurgy Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Laws of Motion Class 11 Physics Chapter 4 CBSE Notes - 2025-26

Waves Class 11 Physics Chapter 14 CBSE Notes - 2025-26

Mechanical Properties of Fluids Class 11 Physics Chapter 9 CBSE Notes - 2025-26

Thermodynamics Class 11 Physics Chapter 11 CBSE Notes - 2025-26

Units And Measurements Class 11 Physics Chapter 1 CBSE Notes - 2025-26

