The voltage of an $AC$ supply varies with time (t) as $V = 60\sin 50\pi t.\cos 50\pi t$ . The maximum voltage and frequency are respectively (where $V$ is in volt and $t$ is in second)
(A) $30\,Volt,\,100\,Hz$
(B) $60\,Volt,\,50\,Hz$
(C) $60\,Volt,\,100\,Hz$
(D) $30\,Volt,\,50\,Hz$
Answer
Verified
116.4k+ views
Hint Compare the given voltage of the alternating current with the trigonometric formula, the change in the voltage provides the answer for the maximum voltage of the alternating current. Use the formula of the angular velocity of the wave to find the maximum frequency of the alternating current.
Useful formula:
(1) The trigonometric formula is given by
$\sin 2\theta = 2\sin \theta \cos \theta $
(2) The formula of the angular velocity is given by
$\omega = 2\pi f$
Where $\omega $ is the angular velocity and $f$ is the frequency of the alternating current.
Complete step by step answer
It is given that the
Voltage of the alternating current supply, $V = 60\sin 50\pi t.\cos 50\pi t$
Let us apply the formula of the $\sin 2\theta $ in the above voltage,
$\sin 2\left( {50\pi t} \right) = 2\sin 50\pi t.\cos 50\pi t$ ---------(1)
But the given voltage is $V = 60\sin 50\pi t.\cos 50\pi t$ ------(2)
Comparing (1) and (2), all are the same except the constant before the trigonometric parameters. Hence the maximum voltage is obtained by dividing them as $\dfrac{{60}}{2} = 30\,V$ .
Hence the maximum voltage of the given voltage of the alternating current is obtained as $30\,V$ .
Let us use the formula of the angular velocity,
$\omega = 2\pi f$
Rearranging the above formula in order to find the frequency.
$f = \dfrac{\omega }{{2\pi }}$
Substituting the $\omega = 100\pi $ in the above formula, we get
$f = \dfrac{{100\pi }}{{2\pi }}$
By simplifying the above step, we get
$f = 50\pi $
Hence the maximum frequency of the alternating current of the given voltage is $50\pi $ .
Thus the option (D) is correct.
Note: The frequency will be maximum only when the angular velocity of the given wave will be maximum. The angular velocity will be maximum at twice the theta of the voltage. Hence the angular velocity is obtained by $2 \times 50\pi $ , which is equal to $100\pi $ .
Useful formula:
(1) The trigonometric formula is given by
$\sin 2\theta = 2\sin \theta \cos \theta $
(2) The formula of the angular velocity is given by
$\omega = 2\pi f$
Where $\omega $ is the angular velocity and $f$ is the frequency of the alternating current.
Complete step by step answer
It is given that the
Voltage of the alternating current supply, $V = 60\sin 50\pi t.\cos 50\pi t$
Let us apply the formula of the $\sin 2\theta $ in the above voltage,
$\sin 2\left( {50\pi t} \right) = 2\sin 50\pi t.\cos 50\pi t$ ---------(1)
But the given voltage is $V = 60\sin 50\pi t.\cos 50\pi t$ ------(2)
Comparing (1) and (2), all are the same except the constant before the trigonometric parameters. Hence the maximum voltage is obtained by dividing them as $\dfrac{{60}}{2} = 30\,V$ .
Hence the maximum voltage of the given voltage of the alternating current is obtained as $30\,V$ .
Let us use the formula of the angular velocity,
$\omega = 2\pi f$
Rearranging the above formula in order to find the frequency.
$f = \dfrac{\omega }{{2\pi }}$
Substituting the $\omega = 100\pi $ in the above formula, we get
$f = \dfrac{{100\pi }}{{2\pi }}$
By simplifying the above step, we get
$f = 50\pi $
Hence the maximum frequency of the alternating current of the given voltage is $50\pi $ .
Thus the option (D) is correct.
Note: The frequency will be maximum only when the angular velocity of the given wave will be maximum. The angular velocity will be maximum at twice the theta of the voltage. Hence the angular velocity is obtained by $2 \times 50\pi $ , which is equal to $100\pi $ .
Recently Updated Pages
Uniform Acceleration - Definition, Equation, Examples, and FAQs
Young's Double Slit Experiment Step by Step Derivation
How to find Oxidation Number - Important Concepts for JEE
How Electromagnetic Waves are Formed - Important Concepts for JEE
Electrical Resistance - Important Concepts and Tips for JEE
Average Atomic Mass - Important Concepts and Tips for JEE
Trending doubts
JEE Main 2025: Application Form (Out), Exam Dates (Released), Eligibility & More
JEE Main Login 2045: Step-by-Step Instructions and Details
JEE Main Chemistry Question Paper with Answer Keys and Solutions
Learn About Angle Of Deviation In Prism: JEE Main Physics 2025
JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics
Electric field due to uniformly charged sphere class 12 physics JEE_Main
Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs
Dual Nature of Radiation and Matter Class 12 Notes CBSE Physics Chapter 11 (Free PDF Download)
Charging and Discharging of Capacitor
JEE Mains 2025 Correction Window Date (Out) – Check Procedure and Fees Here!
JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking
Physics Average Value and RMS Value JEE Main 2025