The wavelength of a photon needed to remove a proton from a nucleus which is bound to the nucleus with 1 MeV energy is nearly:
A. $1.2nm$
B. $1.2 \times {10^{ - 3}}nm$
C. $1.2 \times {10^{ - 6}}nm$
D. $1.2 \times {10^1}nm$
Answer
Verified
116.4k+ views
Hint: Equate the energy given to remove the proton from its nucleus with the energy of the photon. Energy of a photon is inversely proportional to its wavelength.
Complete answer:
Energy required to remove proton from its nucleus $ = 1MeV = {10^6}eV$
If $\lambda $ is the wavelength of the photon needed to remove the proton, then its energy (in Joules) is given by following relation,
$ \Rightarrow E = \dfrac{{hc}}{\lambda }$, where $h = 6.63 \times {10^{ - 34}}Js$ is Planck’s constant and $c = 3 \times {10^8}m/s$ is the speed of electromagnetic radiation in vacuum.
But, $1eV = 1.66 \times {10^{ - 19}}J$.
To remove the nucleus from its proton, the photon should carry energy equal to one required as mentioned before. Therefore, substituting the values of the constants, we get,
$
\Rightarrow E = \dfrac{{hc}}{\lambda } = {10^6} \times (1.66 \times {10^{ - 19}}) \\
\Rightarrow \lambda = \dfrac{{hc}}{{1.66 \times {{10}^{ - 13}}}} = \dfrac{{6.63 \times {{10}^{ - 34}} \times 3 \times {{10}^8}}}{{1.66 \times {{10}^{ - 13}}}} \\
\Rightarrow \lambda = 1.2 \times {10^{ - 12}}m \\
$
Now, if we check the options then we find that the units are in $nm = {10^{ - 9}}m$.
So, $\lambda = 1.2 \times {10^{ - 9}} \times {10^{ - 3}}m = 1.2 \times {10^{ - 3}}nm$.
Comparing the options with the final result, we can conclude that option B is correct.
Note: Generally, the value of constants are provided in most of the examinations you will come across in future, but it is still advisable to remember some constants, like the ones used above along with the units. Be careful with powers of 10 while multiplication and division.
Complete answer:
Energy required to remove proton from its nucleus $ = 1MeV = {10^6}eV$
If $\lambda $ is the wavelength of the photon needed to remove the proton, then its energy (in Joules) is given by following relation,
$ \Rightarrow E = \dfrac{{hc}}{\lambda }$, where $h = 6.63 \times {10^{ - 34}}Js$ is Planck’s constant and $c = 3 \times {10^8}m/s$ is the speed of electromagnetic radiation in vacuum.
But, $1eV = 1.66 \times {10^{ - 19}}J$.
To remove the nucleus from its proton, the photon should carry energy equal to one required as mentioned before. Therefore, substituting the values of the constants, we get,
$
\Rightarrow E = \dfrac{{hc}}{\lambda } = {10^6} \times (1.66 \times {10^{ - 19}}) \\
\Rightarrow \lambda = \dfrac{{hc}}{{1.66 \times {{10}^{ - 13}}}} = \dfrac{{6.63 \times {{10}^{ - 34}} \times 3 \times {{10}^8}}}{{1.66 \times {{10}^{ - 13}}}} \\
\Rightarrow \lambda = 1.2 \times {10^{ - 12}}m \\
$
Now, if we check the options then we find that the units are in $nm = {10^{ - 9}}m$.
So, $\lambda = 1.2 \times {10^{ - 9}} \times {10^{ - 3}}m = 1.2 \times {10^{ - 3}}nm$.
Comparing the options with the final result, we can conclude that option B is correct.
Note: Generally, the value of constants are provided in most of the examinations you will come across in future, but it is still advisable to remember some constants, like the ones used above along with the units. Be careful with powers of 10 while multiplication and division.
Recently Updated Pages
Uniform Acceleration - Definition, Equation, Examples, and FAQs
Young's Double Slit Experiment Step by Step Derivation
How to find Oxidation Number - Important Concepts for JEE
How Electromagnetic Waves are Formed - Important Concepts for JEE
Electrical Resistance - Important Concepts and Tips for JEE
Average Atomic Mass - Important Concepts and Tips for JEE
Trending doubts
JEE Main 2025: Application Form (Out), Exam Dates (Released), Eligibility & More
JEE Main Login 2045: Step-by-Step Instructions and Details
JEE Main Chemistry Question Paper with Answer Keys and Solutions
Learn About Angle Of Deviation In Prism: JEE Main Physics 2025
JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics
Electric field due to uniformly charged sphere class 12 physics JEE_Main
Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs
Dual Nature of Radiation and Matter Class 12 Notes CBSE Physics Chapter 11 (Free PDF Download)
Charging and Discharging of Capacitor
JEE Mains 2025 Correction Window Date (Out) – Check Procedure and Fees Here!
JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking
Physics Average Value and RMS Value JEE Main 2025