Answer
Verified
100.2k+ views
Hint: The threshold wavelength corresponds to the work function of a photoelectric material and is inversely proportional to it. The stopping corresponds to the potential required to stop electrons ejected from the photoelectric material.
Formula used: In this solution, we will use the following formula:
$\phi = \dfrac{{hc}}{{{\lambda _{thresh}}}}$ where $h$ is the Planck’s constant, $c$ is the speed of light, and ${\lambda _{thresh}}$ is the wavelength of the photon
Complete step by step answer:
We’ve been given the work function of a photoelectric material as 4 eV. The threshold wavelength of the material corresponds to the energy that the incoming photon must have to cause the photoelectric effect. Since the incoming photon must have energy equal to the work function of the material, we can calculate the threshold wavelength as
\[{\lambda _{thesh}} = \dfrac{{hc}}{\phi }\]
Substituting the value of $h = 6.63 \times {10^{ - 34}}$, $c = 3 \times {10^8}$ and $\phi = 4\, \times 1.6 \times {10^{ - 19}}V$$(\because e = 1.6 \times {10^{ - 19}})$, we get
\[{\lambda _{thesh}} = 3.1 \times {10^{ - 7}}\,m\] or equivalently \[{\lambda _{thesh}} = 310\,nm\]
Hence the threshold wavelength of the material is 310 nm. The incoming photon must have a wavelength less than or equal to this value.
b) Now we know that the stopping potential is \[2.5{\text{ }}V.\] and we want to find the corresponding threshold wavelength. So again, using the formula
\[{\lambda _{thesh}} = \dfrac{{hc}}{\phi }\]
Substituting the value of $h = 6.63 \times {10^{ - 34}}$, $c = 3 \times {10^8}$ and $\phi = 2.5 \times 1.6 \times {10^{ - 19}}V$$(\because e = 1.6 \times {10^{ - 19}})$, we get
\[{\lambda _{thesh}} = 1.91 \times {10^{ - 7}}\,m\] or equivalently \[{\lambda _{thesh}} = 190\,nm\]
Note: The threshold wavelength corresponds to the work function of the material and if a photon corresponding to the threshold wavelength is incident on the material, the ejected electron will have no kinetic energy and will eventually recombine with the metal. To have a non-zero ejected electron velocity, the wavelength of the photon must be less than the threshold wavelength.
Formula used: In this solution, we will use the following formula:
$\phi = \dfrac{{hc}}{{{\lambda _{thresh}}}}$ where $h$ is the Planck’s constant, $c$ is the speed of light, and ${\lambda _{thresh}}$ is the wavelength of the photon
Complete step by step answer:
We’ve been given the work function of a photoelectric material as 4 eV. The threshold wavelength of the material corresponds to the energy that the incoming photon must have to cause the photoelectric effect. Since the incoming photon must have energy equal to the work function of the material, we can calculate the threshold wavelength as
\[{\lambda _{thesh}} = \dfrac{{hc}}{\phi }\]
Substituting the value of $h = 6.63 \times {10^{ - 34}}$, $c = 3 \times {10^8}$ and $\phi = 4\, \times 1.6 \times {10^{ - 19}}V$$(\because e = 1.6 \times {10^{ - 19}})$, we get
\[{\lambda _{thesh}} = 3.1 \times {10^{ - 7}}\,m\] or equivalently \[{\lambda _{thesh}} = 310\,nm\]
Hence the threshold wavelength of the material is 310 nm. The incoming photon must have a wavelength less than or equal to this value.
b) Now we know that the stopping potential is \[2.5{\text{ }}V.\] and we want to find the corresponding threshold wavelength. So again, using the formula
\[{\lambda _{thesh}} = \dfrac{{hc}}{\phi }\]
Substituting the value of $h = 6.63 \times {10^{ - 34}}$, $c = 3 \times {10^8}$ and $\phi = 2.5 \times 1.6 \times {10^{ - 19}}V$$(\because e = 1.6 \times {10^{ - 19}})$, we get
\[{\lambda _{thesh}} = 1.91 \times {10^{ - 7}}\,m\] or equivalently \[{\lambda _{thesh}} = 190\,nm\]
Note: The threshold wavelength corresponds to the work function of the material and if a photon corresponding to the threshold wavelength is incident on the material, the ejected electron will have no kinetic energy and will eventually recombine with the metal. To have a non-zero ejected electron velocity, the wavelength of the photon must be less than the threshold wavelength.
Recently Updated Pages
Write a composition in approximately 450 500 words class 10 english JEE_Main
Arrange the sentences P Q R between S1 and S5 such class 10 english JEE_Main
Write an article on the need and importance of sports class 10 english JEE_Main
Name the scale on which the destructive energy of an class 11 physics JEE_Main
Choose the exact meaning of the given idiomphrase The class 9 english JEE_Main
Choose the one which best expresses the meaning of class 9 english JEE_Main
Other Pages
The values of kinetic energy K and potential energy class 11 physics JEE_Main
Electric field due to uniformly charged sphere class 12 physics JEE_Main
BF3 reacts with NaH at 450 K to form NaF and X When class 11 chemistry JEE_Main
Dependence of intensity of gravitational field E of class 11 physics JEE_Main
In the reaction of KMnO4 with H2C204 20 mL of 02 M class 12 chemistry JEE_Main
What torque will increase the angular velocity of a class 11 physics JEE_Main