![SearchIcon](https://vmkt.vedantu.com/vmkt/PROD/png/bdcdbbd8-08a7-4688-98e6-4aa54e5e0800-1733305962725-4102606384256179.png)
There are four different letters and four addressed envelopes, in how many ways can the letter be put in the envelopes so at least one letter goes into the correct envelope.
(A). 15
(B). 24
(C). 9
(D). None of these
Answer
125.1k+ views
Hint: In this question it is given that there are four different letters and four addressed envelopes, so we have to find that in how many ways can the letter be put in the envelopes so at least one letter goes into the correct envelope. So since it is given that at least one of it goes to the correct address i.e, there is a possibility that either 2 letters or 3 letters or 4 letters goes to the correct addressed envelopes. So we have to find the ways for each of the cases.
So find the way we need to know the combination formula, that is, if we want to select r number of quantity from n number of quantity then we can select in $${}^{n}C_{r}$$,
Where, $${}^{n}C_{r}=\dfrac{n!}{r!\cdot \left( n-r\right) !}$$ and
$$n!=n\cdot \left( n-1\right) \cdot \left( n-2\right) \cdots 2\cdot 1$$
Complete step-by-step solution:
Case-1:(1 letter goes to the correct addressed envelope),
So 1 letter can be put in the right envelope from the available 4 envelopes or we can say that among the 4 envelops 1 correct addressed envelope for a letter, can be chosen in $${}^{4}C_{1}$$ ways.
Where,
$${}^{4}C_{1}$$
$$=\dfrac{4!}{1!\cdot \left( 4-1\right) !}$$
$$=\dfrac{4!}{3!} =\dfrac{4\times 3!}{3!} =4$$ ways
Case-2:(2 letters goes to the correct envelopes)
So similarly we can say that 2 letters can be put in the correct envelopes from the available 4 envelopes in $${}^{4}C_{2}$$ ways
Where,
$${}^{4}C_{2}$$
$$=\dfrac{4!}{2!\cdot \left( 4-2\right) !} $$
$$=\dfrac{4!}{2!\cdot 2!} =\dfrac{4\times 3\times 2!}{2\times 1\times 2!} =6$$ ways.
Case-3:(3 letters goes to the correct envelopes)
So we can say that 3 letters can be put in the correct envelopes from the available 4 envelopes in $${}^{4}C_{3}$$ ways.
Where,
$${}^{4}C_{3}$$
$$=\dfrac{4!}{3!\cdot \left( 4-3\right) !} $$
$$=\dfrac{4!}{3!\cdot 1!} =\dfrac{4\times 3!}{3!} =4$$ ways.
Case-4:(3 letters goes to the correct envelopes)
In this case also we can say that 4 letters can be put in the correct envelopes from the available 4 envelopes in $${}^{4}C_{4}$$ ways = 1 ways,
[Since we know that $${}^{n}C_{n}$$ = 1]
Now since each of the cases are independent upon each other then by fundamental principle of addition we can say that the total number of ways that at least one letter goes into the correct envelope = (4+6+4+1) = 15 ways.
Hence the correct option is option A.
Note: In the solution part we have used a principle, which is called fundamental principle of addition or the rule of sum, so in combinatorics, the rule of sum or addition principle is a basic counting principle. Stated simply, it is the idea that if we have A ways of doing something and B ways of doing another thing and we can not do both at the same time(independent actions), then there are A + B ways to choose one of the actions.
So find the way we need to know the combination formula, that is, if we want to select r number of quantity from n number of quantity then we can select in $${}^{n}C_{r}$$,
Where, $${}^{n}C_{r}=\dfrac{n!}{r!\cdot \left( n-r\right) !}$$ and
$$n!=n\cdot \left( n-1\right) \cdot \left( n-2\right) \cdots 2\cdot 1$$
Complete step-by-step solution:
Case-1:(1 letter goes to the correct addressed envelope),
So 1 letter can be put in the right envelope from the available 4 envelopes or we can say that among the 4 envelops 1 correct addressed envelope for a letter, can be chosen in $${}^{4}C_{1}$$ ways.
Where,
$${}^{4}C_{1}$$
$$=\dfrac{4!}{1!\cdot \left( 4-1\right) !}$$
$$=\dfrac{4!}{3!} =\dfrac{4\times 3!}{3!} =4$$ ways
Case-2:(2 letters goes to the correct envelopes)
So similarly we can say that 2 letters can be put in the correct envelopes from the available 4 envelopes in $${}^{4}C_{2}$$ ways
Where,
$${}^{4}C_{2}$$
$$=\dfrac{4!}{2!\cdot \left( 4-2\right) !} $$
$$=\dfrac{4!}{2!\cdot 2!} =\dfrac{4\times 3\times 2!}{2\times 1\times 2!} =6$$ ways.
Case-3:(3 letters goes to the correct envelopes)
So we can say that 3 letters can be put in the correct envelopes from the available 4 envelopes in $${}^{4}C_{3}$$ ways.
Where,
$${}^{4}C_{3}$$
$$=\dfrac{4!}{3!\cdot \left( 4-3\right) !} $$
$$=\dfrac{4!}{3!\cdot 1!} =\dfrac{4\times 3!}{3!} =4$$ ways.
Case-4:(3 letters goes to the correct envelopes)
In this case also we can say that 4 letters can be put in the correct envelopes from the available 4 envelopes in $${}^{4}C_{4}$$ ways = 1 ways,
[Since we know that $${}^{n}C_{n}$$ = 1]
Now since each of the cases are independent upon each other then by fundamental principle of addition we can say that the total number of ways that at least one letter goes into the correct envelope = (4+6+4+1) = 15 ways.
Hence the correct option is option A.
Note: In the solution part we have used a principle, which is called fundamental principle of addition or the rule of sum, so in combinatorics, the rule of sum or addition principle is a basic counting principle. Stated simply, it is the idea that if we have A ways of doing something and B ways of doing another thing and we can not do both at the same time(independent actions), then there are A + B ways to choose one of the actions.
Recently Updated Pages
JEE Extractive Metallurgy Important Concepts and Tips for Exam Preparation
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
JEE Algebra Important Concepts and Tips for Exam Preparation
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
States of Matter Chapter For JEE Main Chemistry
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Difference Between Area and Volume
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Difference Between Mutually Exclusive and Independent Events
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
JEE Main 2021 July 20 Shift 2 Question Paper with Answer Key
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility & More
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
JEE Main 2023 January 24 Shift 2 Question Paper with Answer Keys & Solutions
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Learn About Angle Of Deviation In Prism: JEE Main Physics 2025
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
JEE Main Login 2045: Step-by-Step Instructions and Details
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Ideal and Non-Ideal Solutions Raoult's Law - JEE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
JEE Mains 2025 Correction Window Date (Out) – Check Procedure and Fees Here!
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Degree of Dissociation and Its Formula With Solved Example for JEE
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
JEE Main 2025: Derivation of Equation of Trajectory in Physics
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation
![arrow-right](/cdn/images/seo-templates/arrow-right.png)