
There are ten steps in a staircase and a person has to take those steps. At every step, the person has got the choice of taking one step or two steps or three steps. The number of ways in which a person can take those steps is
A. ${{3}^{10}}$
B. ${{3}^{9}}$
C. ${{3}^{8}}$
D. None of those
Answer
232.8k+ views
Hint: To solve this question, we have to take every combination of steps that the person can take and we have to write the number of ways he can do that combination and sum them up. We have to assume the number of one steps taken by the person as x, the number of 2 steps taken by the person as y, and the number of 3 steps taken by the person as z. As the total number of steps is 10 we can write that $x+2y+3z=10$. We have to substitute different values of z and write corresponding x and y to get the answer. For example, if z = 1 , we get $x+2y=7$, one way is x = 1, y= 3, z= 1 . The number of ways of arranging x number of a’s, y number of b’s, and z number of c’s….. is given by $N=\dfrac{\left( a+b+c... \right)!}{a!\times b!\times c!...}$. Use this formula for every combination to get the total number of possible ways.
Complete step-by-step solution:
To do the problem, we have to assume the number of one steps taken by the person as x, the number of 2 steps taken by the person as y, and the number of 3 steps taken by the person as z. As the total number of steps is 10 we can write that
$x+2y+3z=10\to \left( 1 \right)$
We have to use different values of z to get a set of (x, y, z) and apply the combinations formula to get the number of combinations for a particular set of (x, y, z).
Number of ways of arranging x number of a’s, y number of b’s and z number of c’s….. is given by $N=\dfrac{\left( a+b+c... \right)!}{a!\times b!\times c!...}\to \left( 2 \right)$
Case-1 z=1
Then we get $x+2y=7$
We can write the different possible combinations of x and y are
$\left( x,y \right)=\left( 1,3 \right),\left( 3,2 \right),\left( 5,1 \right)$
We can write the different possible ordered pairs of (x, y, z) as
$\left( x,y,z \right)=\left( 1,3,1 \right),\left( 3,2,1 \right),\left( 5,1,1 \right)$
For example consider $\left( x,y,z \right)=\left( 1,3,1 \right)$, there are 1-1 steps, 3-2 steps and 1-3 steps. Let us consider N(x, y, z) as the number of combinations for (x, y, z). Using the analogy in equation-2, we get
$N\left( 1,3,1 \right)=\dfrac{\left( 1+3+1 \right)!}{1!\times 3!\times 1!}=\dfrac{5!}{3!}=\dfrac{5\times 4\times 3!}{3!}=20$.
Similarly, applying it to other cases, we get
$N\left( 3,2,1 \right)=\dfrac{\left( 3+2+1 \right)!}{3!\times 2!\times 1!}=\dfrac{6!}{3!\times 2!}=\dfrac{6\times 5\times 4\times 3!}{3!\times 2}=60$
$N\left( 5,1,1 \right)=\dfrac{\left( 5+1+1 \right)!}{5!\times 1!\times 1!}=\dfrac{7!}{5!}=\dfrac{7\times 6\times 5!}{5!}=42$
Totally, $N(z=1)=N\left( 1,3,1 \right)+N\left( 3,2,1 \right)+N\left( 5,1,1 \right)=20+60+42=122$
Case-2 z=2
Then we get $x+2y=4$
We can write the different possible combinations of x and y are
$\left( x,y \right)=\left( 2,1 \right),\left( 0,2 \right),\left( 4,0 \right)$
We can write the different possible ordered pairs of (x, y, z) as
$\left( x,y,z \right)=\left( 2,1,2 \right),\left( 0,2,2 \right),\left( 4,0,2 \right)$
Using the analogy in equation-2, we get
$N\left( 2,1,2 \right)=\dfrac{\left( 2+1+2 \right)!}{2!\times 1!\times 2!}=\dfrac{5!}{2!\times 2!}=\dfrac{120}{4}=30$.
$N\left( 0,2,2 \right)=\dfrac{\left( 0+2+2 \right)!}{0!\times 2!\times 2!}=\dfrac{4!}{2!\times 2!}=\dfrac{24}{2\times 2}=6$
$N\left( 4,0,2 \right)=\dfrac{\left( 4+0+2 \right)!}{4!\times 0!\times 2!}=\dfrac{6!}{4!\times 2!}=\dfrac{6\times 5\times 4!}{4!\times 2}=15$
Totally, $N(z=2)=N\left( 2,1,2 \right)+N\left( 0,2,2 \right)+N\left( 4,0,2 \right)=30+6+15=51$
Case-3 z=3
Then we get $x+2y=1$
We can write the different possible combinations of x and y are
$\left( x,y \right)=\left( 1,0 \right)$
We can write the different possible ordered pairs of (x, y, z) as
$\left( x,y,z \right)=\left( 1,0,3 \right)$
Using the analogy in equation-2, we get .
$N\left( 1,0,3 \right)=\dfrac{\left( 1+0+3 \right)!}{1!\times 0!\times 3!}=\dfrac{4!}{1\times 3!}=\dfrac{4\times 3!}{3!}=4$
Totally, $N(z=3)=N\left( 1,0,3 \right)=4$
Case-4 z=0
Then we get $x+2y=10$
We can write the different possible combinations of x and y are
$\left( x,y \right)=\left( 10,0 \right),\left( 8,1 \right),\left( 6,2 \right),\left( 4,3 \right),\left( 2,4 \right),\left( 0,5 \right)$
We can write the different possible ordered pairs of (x, y, z) as
$\left( x,y,z \right)=\left( 10,0,0 \right),\left( 8,1,0 \right),\left( 6,2,0 \right),\left( 4,3,0 \right),\left( 2,4,0 \right),\left( 0,5,0 \right)$
Using the analogy in equation-2, we get
$N\left( 10,0,0 \right)=\dfrac{\left( 10+0+0 \right)!}{10!\times 0!\times 0!}=1$.
$N\left( 8,1,0 \right)=\dfrac{\left( 8+1+0 \right)!}{8!\times 1!\times 0!}=\dfrac{9!}{8!\times 1!}=9$
$\begin{align}
& N\left( 6,2,0 \right)=\dfrac{\left( 6+2+0 \right)!}{6!\times 2!\times 0!}=\dfrac{8!}{6!\times 2!}=28 \\
& N\left( 4,3,0 \right)=\dfrac{\left( 4+3+0 \right)!}{4!\times 3!\times 0!}=\dfrac{7!}{4!\times 3!}=\dfrac{7\times 6\times 5}{6}=35 \\
& N\left( 2,4,0 \right)=\dfrac{\left( 2+4+0 \right)!}{2!\times 4!\times 0!}=\dfrac{6!}{2!\times 4!}=15 \\
\end{align}$
$N\left( 0,5,0 \right)=\dfrac{\left( 0+5+0 \right)!}{0!\times 5!\times 0!}=1$
Finally, we get
$\begin{align}
& N\left( z=0 \right)=N\left( 10,0,0 \right)+N\left( 8,1,0 \right)N+\left( 6,2,0 \right)N+\left( 4,3,0 \right)N+\left( 2,4,0 \right)N+\left( 0,5,0 \right) \\
& N\left( z=0 \right)=1+9+28+35+15+1=89 \\
\end{align}$
Total number of ways is given by
$\begin{align}
& N=N\left( z=1 \right)+N\left( z=2 \right)+N\left( z=3 \right)+N\left( z=0 \right) \\
& N=122+51+4+89=266 \\
\end{align}$
$\therefore $ Total number of possible ways= 266 ways. Answer is option(D).
Note: Students can make a mistake by considering that there are 3 ways for each step and the total will be ${{3}^{10}}$ but that is not the case because, if we choose to take 2 steps at a step, we cannot land on the immediate step but we are also counting them. So, ${{3}^{10}}$ leads to a large over the count of the total ways.
Complete step-by-step solution:
To do the problem, we have to assume the number of one steps taken by the person as x, the number of 2 steps taken by the person as y, and the number of 3 steps taken by the person as z. As the total number of steps is 10 we can write that
$x+2y+3z=10\to \left( 1 \right)$
We have to use different values of z to get a set of (x, y, z) and apply the combinations formula to get the number of combinations for a particular set of (x, y, z).
Number of ways of arranging x number of a’s, y number of b’s and z number of c’s….. is given by $N=\dfrac{\left( a+b+c... \right)!}{a!\times b!\times c!...}\to \left( 2 \right)$
Case-1 z=1
Then we get $x+2y=7$
We can write the different possible combinations of x and y are
$\left( x,y \right)=\left( 1,3 \right),\left( 3,2 \right),\left( 5,1 \right)$
We can write the different possible ordered pairs of (x, y, z) as
$\left( x,y,z \right)=\left( 1,3,1 \right),\left( 3,2,1 \right),\left( 5,1,1 \right)$
For example consider $\left( x,y,z \right)=\left( 1,3,1 \right)$, there are 1-1 steps, 3-2 steps and 1-3 steps. Let us consider N(x, y, z) as the number of combinations for (x, y, z). Using the analogy in equation-2, we get
$N\left( 1,3,1 \right)=\dfrac{\left( 1+3+1 \right)!}{1!\times 3!\times 1!}=\dfrac{5!}{3!}=\dfrac{5\times 4\times 3!}{3!}=20$.
Similarly, applying it to other cases, we get
$N\left( 3,2,1 \right)=\dfrac{\left( 3+2+1 \right)!}{3!\times 2!\times 1!}=\dfrac{6!}{3!\times 2!}=\dfrac{6\times 5\times 4\times 3!}{3!\times 2}=60$
$N\left( 5,1,1 \right)=\dfrac{\left( 5+1+1 \right)!}{5!\times 1!\times 1!}=\dfrac{7!}{5!}=\dfrac{7\times 6\times 5!}{5!}=42$
Totally, $N(z=1)=N\left( 1,3,1 \right)+N\left( 3,2,1 \right)+N\left( 5,1,1 \right)=20+60+42=122$
Case-2 z=2
Then we get $x+2y=4$
We can write the different possible combinations of x and y are
$\left( x,y \right)=\left( 2,1 \right),\left( 0,2 \right),\left( 4,0 \right)$
We can write the different possible ordered pairs of (x, y, z) as
$\left( x,y,z \right)=\left( 2,1,2 \right),\left( 0,2,2 \right),\left( 4,0,2 \right)$
Using the analogy in equation-2, we get
$N\left( 2,1,2 \right)=\dfrac{\left( 2+1+2 \right)!}{2!\times 1!\times 2!}=\dfrac{5!}{2!\times 2!}=\dfrac{120}{4}=30$.
$N\left( 0,2,2 \right)=\dfrac{\left( 0+2+2 \right)!}{0!\times 2!\times 2!}=\dfrac{4!}{2!\times 2!}=\dfrac{24}{2\times 2}=6$
$N\left( 4,0,2 \right)=\dfrac{\left( 4+0+2 \right)!}{4!\times 0!\times 2!}=\dfrac{6!}{4!\times 2!}=\dfrac{6\times 5\times 4!}{4!\times 2}=15$
Totally, $N(z=2)=N\left( 2,1,2 \right)+N\left( 0,2,2 \right)+N\left( 4,0,2 \right)=30+6+15=51$
Case-3 z=3
Then we get $x+2y=1$
We can write the different possible combinations of x and y are
$\left( x,y \right)=\left( 1,0 \right)$
We can write the different possible ordered pairs of (x, y, z) as
$\left( x,y,z \right)=\left( 1,0,3 \right)$
Using the analogy in equation-2, we get .
$N\left( 1,0,3 \right)=\dfrac{\left( 1+0+3 \right)!}{1!\times 0!\times 3!}=\dfrac{4!}{1\times 3!}=\dfrac{4\times 3!}{3!}=4$
Totally, $N(z=3)=N\left( 1,0,3 \right)=4$
Case-4 z=0
Then we get $x+2y=10$
We can write the different possible combinations of x and y are
$\left( x,y \right)=\left( 10,0 \right),\left( 8,1 \right),\left( 6,2 \right),\left( 4,3 \right),\left( 2,4 \right),\left( 0,5 \right)$
We can write the different possible ordered pairs of (x, y, z) as
$\left( x,y,z \right)=\left( 10,0,0 \right),\left( 8,1,0 \right),\left( 6,2,0 \right),\left( 4,3,0 \right),\left( 2,4,0 \right),\left( 0,5,0 \right)$
Using the analogy in equation-2, we get
$N\left( 10,0,0 \right)=\dfrac{\left( 10+0+0 \right)!}{10!\times 0!\times 0!}=1$.
$N\left( 8,1,0 \right)=\dfrac{\left( 8+1+0 \right)!}{8!\times 1!\times 0!}=\dfrac{9!}{8!\times 1!}=9$
$\begin{align}
& N\left( 6,2,0 \right)=\dfrac{\left( 6+2+0 \right)!}{6!\times 2!\times 0!}=\dfrac{8!}{6!\times 2!}=28 \\
& N\left( 4,3,0 \right)=\dfrac{\left( 4+3+0 \right)!}{4!\times 3!\times 0!}=\dfrac{7!}{4!\times 3!}=\dfrac{7\times 6\times 5}{6}=35 \\
& N\left( 2,4,0 \right)=\dfrac{\left( 2+4+0 \right)!}{2!\times 4!\times 0!}=\dfrac{6!}{2!\times 4!}=15 \\
\end{align}$
$N\left( 0,5,0 \right)=\dfrac{\left( 0+5+0 \right)!}{0!\times 5!\times 0!}=1$
Finally, we get
$\begin{align}
& N\left( z=0 \right)=N\left( 10,0,0 \right)+N\left( 8,1,0 \right)N+\left( 6,2,0 \right)N+\left( 4,3,0 \right)N+\left( 2,4,0 \right)N+\left( 0,5,0 \right) \\
& N\left( z=0 \right)=1+9+28+35+15+1=89 \\
\end{align}$
Total number of ways is given by
$\begin{align}
& N=N\left( z=1 \right)+N\left( z=2 \right)+N\left( z=3 \right)+N\left( z=0 \right) \\
& N=122+51+4+89=266 \\
\end{align}$
$\therefore $ Total number of possible ways= 266 ways. Answer is option(D).
Note: Students can make a mistake by considering that there are 3 ways for each step and the total will be ${{3}^{10}}$ but that is not the case because, if we choose to take 2 steps at a step, we cannot land on the immediate step but we are also counting them. So, ${{3}^{10}}$ leads to a large over the count of the total ways.
Recently Updated Pages
Geometry of Complex Numbers Explained

JEE General Topics in Chemistry Important Concepts and Tips

JEE Extractive Metallurgy Important Concepts and Tips for Exam Preparation

JEE Amino Acids and Peptides Important Concepts and Tips for Exam Preparation

JEE Atomic Structure and Chemical Bonding important Concepts and Tips

Electricity and Magnetism Explained: Key Concepts & Applications

Trending doubts
JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding How a Current Loop Acts as a Magnetic Dipole

Understanding Average and RMS Value in Electrical Circuits

Understanding Collisions: Types and Examples for Students

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

Other Pages
JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

JEE Main Participating Colleges 2026 - A Complete List of Top Colleges

Understanding Atomic Structure for Beginners

NCERT Solutions For Class 11 Maths Chapter 11 Introduction to Three Dimensional Geometry (2025-26)

Introduction to Three Dimensional Geometry Class 11 Maths Chapter 11 CBSE Notes - 2025-26

Inductive Effect and Its Role in Acidic Strength

