
To determine the Young's modulus of a wire, the formula is \[Y = \dfrac{{FL}}{{A\Delta L}}\] ; where L=length, A= area of cross-section of the wire, \[\Delta L\]= Change in length of the wire when stretched with a force F. The conversion factor to change it from CGS to MKS system is
(A) 1
(B) 10
(C) 0.1
(D) 0.01
Answer
232.8k+ views
Hint: Young’s modulus is dependent on factors such as force, length and are inversely dependent on factors such as area. Now, we know the SI units of the same which are in the MKS system. To find the factor, equate the units in CGS system and MKS system and find the factor by which it varies.
Complete Step by Step Solution:
Young’s modulus, also called as modulus of elasticity, is the measure of the tensile stiffness of the given material. It also measures the stiffness of the material when there is a force applied on it which causes the change in length due to compression or expansion. Young’s modulus directly depends upon the force applied on the body and inversely varies upon the area of the surface where the force is applied. This can be represented mathematically as,
\[Y = \dfrac{{FL}}{{A\Delta L}}\]
Where, F is the force applied and A is the area of the surface.
Force in the CGS unit is measured in dyne and area is measured in centimeters. In the MKS system, the force is measured as Newton’s and area and change in length are measured in meters. Using this the units for young’s modulus is given as,
\[ \Rightarrow Y = dyne/c{m^2}\] in CGS unit and
\[ \Rightarrow Y = N/{m^2}\] in MKS units
Now, taking the CGS equation, we know that \[1dyne = {10^{ - 5}}N\]. Substituting this in the equation we get,
\[ \Rightarrow Y = \dfrac{{{{10}^{ - 5}}N}}{{c{m^2}}}\]
We know that \[1cm = {10^{ - 2}}m\]. Substituting this , we get
\[ \Rightarrow Y = \dfrac{{{{10}^{ - 5}}N}}{{{{({{10}^{ - 2}}m)}^2}}}\]
On further simplification, we get,
\[ \Rightarrow Y = \dfrac{{{{10}^{ - 5}}N}}{{{{10}^{ - 4}}{m^2}}}\]
Taking the common term to the numerator ,we get
\[ \Rightarrow Y = \dfrac{{{{10}^{ - 5 + 4}}N}}{{{m^2}}}\]
\[ \Rightarrow Y = \dfrac{{{{10}^{ - 5 + 4}}N}}{{{m^2}}} = \dfrac{{{{10}^{ - 1}}N}}{{{m^2}}}\]
Hence, \[\dfrac{{1dyne}}{{c{m^2}}} = 0.1\dfrac{N}{{{m^2}}}\]
Therefore, option (c) is the right answer for the given question.
Note: The CGS system is abbreviated as Centimeter-Gram-Second system, which is a type of Standard Unit system that is quite useful in measuring small quantities in chemical fields. MKS system abbreviated as Meter-Kilogram-Second is used for standard measurements globally across various fields.
Complete Step by Step Solution:
Young’s modulus, also called as modulus of elasticity, is the measure of the tensile stiffness of the given material. It also measures the stiffness of the material when there is a force applied on it which causes the change in length due to compression or expansion. Young’s modulus directly depends upon the force applied on the body and inversely varies upon the area of the surface where the force is applied. This can be represented mathematically as,
\[Y = \dfrac{{FL}}{{A\Delta L}}\]
Where, F is the force applied and A is the area of the surface.
Force in the CGS unit is measured in dyne and area is measured in centimeters. In the MKS system, the force is measured as Newton’s and area and change in length are measured in meters. Using this the units for young’s modulus is given as,
\[ \Rightarrow Y = dyne/c{m^2}\] in CGS unit and
\[ \Rightarrow Y = N/{m^2}\] in MKS units
Now, taking the CGS equation, we know that \[1dyne = {10^{ - 5}}N\]. Substituting this in the equation we get,
\[ \Rightarrow Y = \dfrac{{{{10}^{ - 5}}N}}{{c{m^2}}}\]
We know that \[1cm = {10^{ - 2}}m\]. Substituting this , we get
\[ \Rightarrow Y = \dfrac{{{{10}^{ - 5}}N}}{{{{({{10}^{ - 2}}m)}^2}}}\]
On further simplification, we get,
\[ \Rightarrow Y = \dfrac{{{{10}^{ - 5}}N}}{{{{10}^{ - 4}}{m^2}}}\]
Taking the common term to the numerator ,we get
\[ \Rightarrow Y = \dfrac{{{{10}^{ - 5 + 4}}N}}{{{m^2}}}\]
\[ \Rightarrow Y = \dfrac{{{{10}^{ - 5 + 4}}N}}{{{m^2}}} = \dfrac{{{{10}^{ - 1}}N}}{{{m^2}}}\]
Hence, \[\dfrac{{1dyne}}{{c{m^2}}} = 0.1\dfrac{N}{{{m^2}}}\]
Therefore, option (c) is the right answer for the given question.
Note: The CGS system is abbreviated as Centimeter-Gram-Second system, which is a type of Standard Unit system that is quite useful in measuring small quantities in chemical fields. MKS system abbreviated as Meter-Kilogram-Second is used for standard measurements globally across various fields.
Recently Updated Pages
JEE Main 2026 Session 2 Registration Open, Exam Dates, Syllabus & Eligibility

JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 6 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

Trending doubts
JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding Average and RMS Value in Electrical Circuits

Understanding Collisions: Types and Examples for Students

Ideal and Non-Ideal Solutions Explained for Class 12 Chemistry

Understanding Atomic Structure for Beginners

Derive an expression for maximum speed of a car on class 11 physics JEE_Main

Other Pages
JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

NCERT Solutions For Class 11 Physics Chapter 9 Mechanical Properties of Fluids (2025-26)

NCERT Solutions For Class 11 Physics Chapter 12 Kinetic Theory (2025-26)

NCERT Solutions For Class 11 Physics Chapter 4 Law of Motion (2025-26)

Class 11 JEE Main Physics Mock Test 2025

Inductive Effect and Its Role in Acidic Strength

