
Two cells of e.m.f. ${E_1}$ and ${E_2}$ are joined in series and the balancing length of the potential wire is $625$ cm. If the terminals of ${E_1}$ are reversed, the balancing length obtained is $125$ cm. Given ${E_2} > {E_1}$ , the ratio ${E_1}:{E_2}$ will be
(A) $2:3$
(B) $5:1$
(C) $3:2$
(D) $1:5$
Answer
219k+ views
Hint: The balancing length of the potentiometer when the two cells are connected in series is given. When the cell ${E_1}$ is connected in reverse manner the balancing length is given. The balancing length in the potentiometer is directly proportional to the sum of the emf of the cells. Using this, we can find the required relation.
Complete step by step solution: The working principle of the potentiometer depends on the potential across any portion of the wire which is directly proportional to the length of the wire. Potentiometer can be used to find the emf of an unknown cell. Potentiometer is also used to determine the internal resistance of the cell.
The balancing length of the potentiometer is proportional to the net emf of the cells.
When the cells are connected in series, the net emf is \[{E_2} + {E_1}\] and the balancing length is \[652\] cm.
When the cell ${E_1}$ is reversed, the net emf of the cell will be \[{E_2} - {E_1}\] and this balancing length is given as $125$ cm. As balancing length is proportional to net emf thus, we have:
\[{E_2} + {E_1}\,\alpha \,625\] --equation \[1\]
And \[{E_2} - {E_1}\,\alpha \,125\] --equation \[2\]
Dividing equation \[1\] by equation \[2\] , we get
\[\dfrac{{{E_2} + {E_1}}}{{{E_2} - {E_1}}}\, = \dfrac{{625\,}}{{125}}\]
\[ \Rightarrow \dfrac{{{E_2} + {E_1}}}{{{E_2} - {E_1}}}\, = \dfrac{5}{1}\]
We need to find the ratio ${E_1}:{E_2}$ , solving the above equation we get.
\[ \Rightarrow {E_2} + {E_1}\, = 5\left( {{E_2} - {E_1}} \right)\]
\[ \Rightarrow {E_2} + {E_1}\, = 5{E_2} - 5{E_1}\]
\[ \Rightarrow 6{E_1}\, = 4{E_2}\]
\[ \Rightarrow \dfrac{{{E_1}}}{{{E_2}}} = \dfrac{4}{6} = \dfrac{2}{3}\]
\[ \Rightarrow {E_1}:{E_2} = 2:3\]
The required ratio ${E_1}:{E_2}$ is \[2:3\]
Therefore, \[1\] is the correct option.
Note: The net emf of the potentiometer is proportional to the balancing length of the potentiometer. It is given that ${E_2} > {E_1}$ thus, we must take the difference as $\left( {{E_2} - {E_1}} \right)$ . When the cell is reversed the balancing length decreases as the net emf of the cell decreases.
Complete step by step solution: The working principle of the potentiometer depends on the potential across any portion of the wire which is directly proportional to the length of the wire. Potentiometer can be used to find the emf of an unknown cell. Potentiometer is also used to determine the internal resistance of the cell.
The balancing length of the potentiometer is proportional to the net emf of the cells.
When the cells are connected in series, the net emf is \[{E_2} + {E_1}\] and the balancing length is \[652\] cm.
When the cell ${E_1}$ is reversed, the net emf of the cell will be \[{E_2} - {E_1}\] and this balancing length is given as $125$ cm. As balancing length is proportional to net emf thus, we have:
\[{E_2} + {E_1}\,\alpha \,625\] --equation \[1\]
And \[{E_2} - {E_1}\,\alpha \,125\] --equation \[2\]
Dividing equation \[1\] by equation \[2\] , we get
\[\dfrac{{{E_2} + {E_1}}}{{{E_2} - {E_1}}}\, = \dfrac{{625\,}}{{125}}\]
\[ \Rightarrow \dfrac{{{E_2} + {E_1}}}{{{E_2} - {E_1}}}\, = \dfrac{5}{1}\]
We need to find the ratio ${E_1}:{E_2}$ , solving the above equation we get.
\[ \Rightarrow {E_2} + {E_1}\, = 5\left( {{E_2} - {E_1}} \right)\]
\[ \Rightarrow {E_2} + {E_1}\, = 5{E_2} - 5{E_1}\]
\[ \Rightarrow 6{E_1}\, = 4{E_2}\]
\[ \Rightarrow \dfrac{{{E_1}}}{{{E_2}}} = \dfrac{4}{6} = \dfrac{2}{3}\]
\[ \Rightarrow {E_1}:{E_2} = 2:3\]
The required ratio ${E_1}:{E_2}$ is \[2:3\]
Therefore, \[1\] is the correct option.
Note: The net emf of the potentiometer is proportional to the balancing length of the potentiometer. It is given that ${E_2} > {E_1}$ thus, we must take the difference as $\left( {{E_2} - {E_1}} \right)$ . When the cell is reversed the balancing length decreases as the net emf of the cell decreases.
Recently Updated Pages
Two discs which are rotating about their respective class 11 physics JEE_Main

A ladder rests against a frictionless vertical wall class 11 physics JEE_Main

Two simple pendulums of lengths 1 m and 16 m respectively class 11 physics JEE_Main

The slopes of isothermal and adiabatic curves are related class 11 physics JEE_Main

A trolly falling freely on an inclined plane as shown class 11 physics JEE_Main

The masses M1 and M2M2 M1 are released from rest Using class 11 physics JEE_Main

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Understanding Uniform Acceleration in Physics

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Units And Measurements Class 11 Physics Chapter 1 CBSE Notes - 2025-26

NCERT Solutions For Class 11 Physics Chapter 8 Mechanical Properties Of Solids

Motion in a Straight Line Class 11 Physics Chapter 2 CBSE Notes - 2025-26

NCERT Solutions for Class 11 Physics Chapter 7 Gravitation 2025-26

Understanding Atomic Structure for Beginners

