Answer
Verified
112.8k+ views
HINT Intensity of the light beam depends on the amplitude of light. When two coherent light beams merge it can have different types of superpositions. The maximum intensity occurs when they are in phase and minimum superposition occurs when they are completely out of phase.
Complete step by step solution
Superposition of two light beams occurs when two light beams converge at a position. The resultant light beam has an amplitude which depends on the amplitude of the constituent waves and the phase of these waves. The intensity of light waves depends on the amplitude of the wave in this manner.
\[\mathop {I \propto A}\nolimits^2 \]
When two light waves converge, we cannot add the intensity of the light waves. we need to find the amplitude of the waves and then calculate the resultant amplitude of the new superimposed wave.
Let’s assume the amplitude of the wave that has intensity I, is A.
As intensity depends on the square of the amplitude, we can write
$\mathop {I = KA}\nolimits^2 $
Hence, for the other light wave amplitude can be given by,
$\mathop {9I = K\left( {3A} \right)}\nolimits^2 $
If the two light waves converge in phase, the amplitude can be added.
Hence, the resultant amplitude will be $ = \left( {A + 3A} \right) = 4A$
When the two light waves converge out of phase, the amplitude will be$\left( {3A - A} \right) = 2A$
Hence, the intensity of the resultant light will be,
\[\mathop I\nolimits^{''} = \mathop {K(2A)}\nolimits^2 = \mathop {4KA}\nolimits^2 = \mathop {4I}\nolimits^{} \]
So, the maximum intensity will be $16I$and the minimum value will be $4I$
The correct answer is option D.
NOTE: there is another formula to calculate the maximum and minimum intensity of the light wave.
The maximum intensity can be given by,
$I = \mathop {\left( {\sqrt {\mathop I\nolimits_1 } + \sqrt {\mathop I\nolimits_2 } } \right)}\nolimits^2 $
The minimum intensity can be given by,
$I = \mathop {\left( {\sqrt {\mathop I\nolimits_1 } - \sqrt {\mathop I\nolimits_2 } } \right)}\nolimits^2 $
The intensity of the superposition can be given by$I = \mathop {\left( {\mathop I\nolimits_1 + \mathop I\nolimits_2 + 2\sqrt {\mathop I\nolimits_1 \mathop I\nolimits_2 } \cos \theta } \right)}\nolimits^2 $
$\mathop I\nolimits_1 $= intensity of one light beam
$\mathop I\nolimits_2 $= intensity of second light beam
$\theta $= phase difference between two light beams.
Complete step by step solution
Superposition of two light beams occurs when two light beams converge at a position. The resultant light beam has an amplitude which depends on the amplitude of the constituent waves and the phase of these waves. The intensity of light waves depends on the amplitude of the wave in this manner.
\[\mathop {I \propto A}\nolimits^2 \]
When two light waves converge, we cannot add the intensity of the light waves. we need to find the amplitude of the waves and then calculate the resultant amplitude of the new superimposed wave.
Let’s assume the amplitude of the wave that has intensity I, is A.
As intensity depends on the square of the amplitude, we can write
$\mathop {I = KA}\nolimits^2 $
Hence, for the other light wave amplitude can be given by,
$\mathop {9I = K\left( {3A} \right)}\nolimits^2 $
If the two light waves converge in phase, the amplitude can be added.
Hence, the resultant amplitude will be $ = \left( {A + 3A} \right) = 4A$
When the two light waves converge out of phase, the amplitude will be$\left( {3A - A} \right) = 2A$
Hence, the intensity of the resultant light will be,
\[\mathop I\nolimits^{''} = \mathop {K(2A)}\nolimits^2 = \mathop {4KA}\nolimits^2 = \mathop {4I}\nolimits^{} \]
So, the maximum intensity will be $16I$and the minimum value will be $4I$
The correct answer is option D.
NOTE: there is another formula to calculate the maximum and minimum intensity of the light wave.
The maximum intensity can be given by,
$I = \mathop {\left( {\sqrt {\mathop I\nolimits_1 } + \sqrt {\mathop I\nolimits_2 } } \right)}\nolimits^2 $
The minimum intensity can be given by,
$I = \mathop {\left( {\sqrt {\mathop I\nolimits_1 } - \sqrt {\mathop I\nolimits_2 } } \right)}\nolimits^2 $
The intensity of the superposition can be given by$I = \mathop {\left( {\mathop I\nolimits_1 + \mathop I\nolimits_2 + 2\sqrt {\mathop I\nolimits_1 \mathop I\nolimits_2 } \cos \theta } \right)}\nolimits^2 $
$\mathop I\nolimits_1 $= intensity of one light beam
$\mathop I\nolimits_2 $= intensity of second light beam
$\theta $= phase difference between two light beams.
Recently Updated Pages
Uniform Acceleration - Definition, Equation, Examples, and FAQs
IIT JEE Main Maths 2025: Syllabus, Important Chapters, Weightage
Ammonium Hydroxide Formula - Chemical, Molecular Formula and Uses
Difference Between Distance and Displacement: JEE Main 2024
Difference Between CNG and LPG: JEE Main 2024
Difference between soap and detergent
Trending doubts
JEE Main 2025: Application Form (Out), Exam Dates (Released), Eligibility & More
JEE Main Chemistry Question Paper with Answer Keys and Solutions
Class 11 JEE Main Physics Mock Test 2025
Angle of Deviation in Prism - Important Formula with Solved Problems for JEE
Average and RMS Value for JEE Main
JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics
Other Pages
NCERT Solutions for Class 11 Physics Chapter 7 Gravitation
NCERT Solutions for Class 11 Physics Chapter 9 Mechanical Properties of Fluids
Units and Measurements Class 11 Notes - CBSE Physics Chapter 1
NCERT Solutions for Class 11 Physics Chapter 5 Work Energy and Power
NCERT Solutions for Class 11 Physics Chapter 1 Units and Measurements
NCERT Solutions for Class 11 Physics Chapter 2 Motion In A Straight Line