Answer
Verified
112.5k+ views
Hint: For plate ${{X}}$, the net charge given to the plate will be equally distributed on both the sides and the charge developed on the each side will be ${{{q}}_{{1}}}{{ = }}{{{q}}_{{2}}}{{ = }}\dfrac{{{Q}}}{{{2}}}$. Charge density on the left side and the right side of the plate is ${{\sigma = }}\dfrac{{{Q}}}{{{{2A}}}}$. Use these relations to find out the electric field at a point to the left, right and in between the plates.
Complete step by step solution:
Given: The surface area of conducting plates ${{X}}$ and ${{Y}}$ is A
Plate ${{X}}$ is charged while plate ${{Y}}$ is uncharged.
(a) Finding the surface charge density at inner surface of the plate ${{X}}$
Let us consider that the surface charge densities on both sides of the plate be ${{{\sigma }}_{{1}}}{{ and }}{{{\sigma }}_{{2}}}$.
Electric field due to plate is given by
${{E = }}\dfrac{{{\sigma }}}{{{{2}}{{{\varepsilon }}_{{0}}}}}$
Thus, the magnitudes of electric fields due to plate on each side is given by
$\Rightarrow \dfrac{{{{{\sigma }}_1}}}{{{{2}}{{{\varepsilon }}_{{0}}}}}$ and $\dfrac{{{{{\sigma }}_2}}}{{{{2}}{{{\varepsilon }}_{{0}}}}}$
The plate has two sides and the area of both the sides is ${{A}}$.
Hence, the net charge given to the plate will be equally distributed on both the sides.
The charge developed on the each side will be ${{{q}}_{{1}}}{{ = }}{{{q}}_{{2}}}{{ = }}\dfrac{{{Q}}}{{{2}}}$
Therefore, the net surface charge density on each side will be $\dfrac{{{Q}}}{{{{2A}}}}$.
(b) Finding the electric field at a point to the left of the plates
Charge density on the left side of the plate is given by
${{\sigma = }}\dfrac{{{Q}}}{{{{2A}}}}$
Hence, the electric field is $\dfrac{{{Q}}}{{{{2A}}{{{\varepsilon }}_{{0}}}}}$
(c) Finding the electric field at a point in between the plates
The charge developed on the each side of the plate is ${{{q}}_{{1}}}{{ = }}{{{q}}_{{2}}}{{ = }}\dfrac{{{Q}}}{{{2}}}$
Electric field due to plate is given by
$\Rightarrow {{E = }}\dfrac{{{\sigma }}}{{{{{\varepsilon }}_{{0}}}}}$
$\Rightarrow {{E = }}\dfrac{{{\sigma }}}{{{{{\varepsilon }}_{{0}}}}}{{ = }}\dfrac{{{{(Q/2)/A}}}}{{{{{\varepsilon }}_{{0}}}}}$
On further solving, we get
$\Rightarrow {{E = }}\dfrac{{{Q}}}{{{{2A}}{{{\varepsilon }}_{{0}}}}}$
Thus, the electric field at a point in between the plates is $\dfrac{{{Q}}}{{{{2A}}{{{\varepsilon }}_{{0}}}}}$.
(d) Finding the electric field at a point to the right of the plates
Charge density on the left side of the plate is given by
${{\sigma = }}\dfrac{{{Q}}}{{{{2A}}}}$
Hence, the electric field is $\dfrac{{{Q}}}{{{{2A}}{{{\varepsilon }}_{{0}}}}}$
Note: Electric field is defined as the electric force per unit charge. The plate ${{X}}$ is positively charged and plate ${{Y}}$ is neutral. Here, the charged plate acts as a source of electric field with positive in the inner side and a negative charge is induced on the inner side of plate ${{Y}}$.
Complete step by step solution:
Given: The surface area of conducting plates ${{X}}$ and ${{Y}}$ is A
Plate ${{X}}$ is charged while plate ${{Y}}$ is uncharged.
(a) Finding the surface charge density at inner surface of the plate ${{X}}$
Let us consider that the surface charge densities on both sides of the plate be ${{{\sigma }}_{{1}}}{{ and }}{{{\sigma }}_{{2}}}$.
Electric field due to plate is given by
${{E = }}\dfrac{{{\sigma }}}{{{{2}}{{{\varepsilon }}_{{0}}}}}$
Thus, the magnitudes of electric fields due to plate on each side is given by
$\Rightarrow \dfrac{{{{{\sigma }}_1}}}{{{{2}}{{{\varepsilon }}_{{0}}}}}$ and $\dfrac{{{{{\sigma }}_2}}}{{{{2}}{{{\varepsilon }}_{{0}}}}}$
The plate has two sides and the area of both the sides is ${{A}}$.
Hence, the net charge given to the plate will be equally distributed on both the sides.
The charge developed on the each side will be ${{{q}}_{{1}}}{{ = }}{{{q}}_{{2}}}{{ = }}\dfrac{{{Q}}}{{{2}}}$
Therefore, the net surface charge density on each side will be $\dfrac{{{Q}}}{{{{2A}}}}$.
(b) Finding the electric field at a point to the left of the plates
Charge density on the left side of the plate is given by
${{\sigma = }}\dfrac{{{Q}}}{{{{2A}}}}$
Hence, the electric field is $\dfrac{{{Q}}}{{{{2A}}{{{\varepsilon }}_{{0}}}}}$
(c) Finding the electric field at a point in between the plates
The charge developed on the each side of the plate is ${{{q}}_{{1}}}{{ = }}{{{q}}_{{2}}}{{ = }}\dfrac{{{Q}}}{{{2}}}$
Electric field due to plate is given by
$\Rightarrow {{E = }}\dfrac{{{\sigma }}}{{{{{\varepsilon }}_{{0}}}}}$
$\Rightarrow {{E = }}\dfrac{{{\sigma }}}{{{{{\varepsilon }}_{{0}}}}}{{ = }}\dfrac{{{{(Q/2)/A}}}}{{{{{\varepsilon }}_{{0}}}}}$
On further solving, we get
$\Rightarrow {{E = }}\dfrac{{{Q}}}{{{{2A}}{{{\varepsilon }}_{{0}}}}}$
Thus, the electric field at a point in between the plates is $\dfrac{{{Q}}}{{{{2A}}{{{\varepsilon }}_{{0}}}}}$.
(d) Finding the electric field at a point to the right of the plates
Charge density on the left side of the plate is given by
${{\sigma = }}\dfrac{{{Q}}}{{{{2A}}}}$
Hence, the electric field is $\dfrac{{{Q}}}{{{{2A}}{{{\varepsilon }}_{{0}}}}}$
Note: Electric field is defined as the electric force per unit charge. The plate ${{X}}$ is positively charged and plate ${{Y}}$ is neutral. Here, the charged plate acts as a source of electric field with positive in the inner side and a negative charge is induced on the inner side of plate ${{Y}}$.
Recently Updated Pages
Uniform Acceleration - Definition, Equation, Examples, and FAQs
JEE Main 2021 July 25 Shift 2 Question Paper with Answer Key
JEE Main 2021 July 20 Shift 2 Question Paper with Answer Key
JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key
JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key
JEE Main 2023 (January 30th Shift 1) Physics Question Paper with Answer Key
Trending doubts
JEE Main 2025: Application Form (Out), Exam Dates (Released), Eligibility & More
JEE Main Chemistry Question Paper with Answer Keys and Solutions
Angle of Deviation in Prism - Important Formula with Solved Problems for JEE
Average and RMS Value for JEE Main
JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics
Degree of Dissociation and Its Formula With Solved Example for JEE
Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs
Dual Nature of Radiation and Matter Class 12 Notes CBSE Physics Chapter 11 (Free PDF Download)
Diffraction of Light - Young’s Single Slit Experiment
JEE Main 2025: Derivation of Equation of Trajectory in Physics
Inductive Effect and Acidic Strength - Types, Relation and Applications for JEE
JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking