Answer
Verified
114.9k+ views
Hint: Note the direction of current for each of the loops and then find the highest and lowest potential points for each of the rings. Find the potential difference between the highest and lowest points for each of the rings from the given magnetic field and radius. The potential of the point on the surface is equal for both of the rings since they are in the same plane.
Find the potential difference between the highest points of the rings from each potential difference of these two rings.
Formula used:
If $A$ is the highest potential point and \[E\] is the lowest potential point of the ring of radius \[r\] moving with a speed $2v$,
The potential difference between two points, ${V_{AE}} = B(2r)(2v)$
and, if $C$ is the highest potential point and $D$ is the lowest potential point, of the ring of radius $3r$ moving with a speed $v$,
The potential difference between two points, ${V_{CD}} = B(2 \times 3r)(v)$
Where, $B$ is the magnetic field acting perpendicular to the plane of the rings.
The potential difference, $V = {V_{CD}} - ( - {V_{AE}}) = {V_{CD}} + {V_{AE}}$
Complete step by step solution:
For the first ring, the direction of velocity is towards the left side. So if we apply Fleming’s right hand rule, the current is flowing from point $A$ to \[E\]. Hence, $A$ is the highest potential point and \[E\] is the lowest potential point of the ring.
Given, \[r\]is the radius of the ring and it is moving with a speed $2v$
$B$ is the magnetic field acting perpendicular to the plane of the rings.
$\therefore $ The potential difference between two points, ${V_{AE}} = B(2r)(2v)$
$ \Rightarrow {V_{AE}} = 4Brv$
For the second ring, the direction of velocity is towards the right side. So if we apply Fleming’s right-hand rule, the current is flowing from point $C$ to \[D\]. Hence, $C$ is the highest potential point and $D$ is the lowest potential point Given, \[3r\] is the radius of the ring and it is moving with a speed $v$
$\therefore $ The potential difference between two points, ${V_{CD}} = B(2 \times 3r)(v)$
$ \Rightarrow {V_{CD}} = 6Brv$
The potential difference ,$V = {V_{CD}} - ( - {V_{AE}}) = {V_{CD}} + {V_{AE}}$
$\therefore V = 6Brv + 4Brv = 10Brv$ .
Hence, the right answer is in option \[{\text{D}}{\text{. }}10{\text{ Brv}}\].
Note: The formula used for calculating the potential difference is coming from the equation of induced current in a straight conductor in motion, where the induced current $I = \dfrac{{Blv}}{R}$, $B$ is the magnetic field, $v$ is the motion, $l$ is the length of the straight conductor and $R$ is the resistance.
$ \Rightarrow IR = Blv$
$ \Rightarrow e = Blv$
$e$ is the electromotive force of the circuit, $e = IR$ [Ohm’s law]
In the above problem, the length of the straight conductor $l = 2r$ i.e the length is equal to the diameter of the ring.
Find the potential difference between the highest points of the rings from each potential difference of these two rings.
Formula used:
If $A$ is the highest potential point and \[E\] is the lowest potential point of the ring of radius \[r\] moving with a speed $2v$,
The potential difference between two points, ${V_{AE}} = B(2r)(2v)$
and, if $C$ is the highest potential point and $D$ is the lowest potential point, of the ring of radius $3r$ moving with a speed $v$,
The potential difference between two points, ${V_{CD}} = B(2 \times 3r)(v)$
Where, $B$ is the magnetic field acting perpendicular to the plane of the rings.
The potential difference, $V = {V_{CD}} - ( - {V_{AE}}) = {V_{CD}} + {V_{AE}}$
Complete step by step solution:
For the first ring, the direction of velocity is towards the left side. So if we apply Fleming’s right hand rule, the current is flowing from point $A$ to \[E\]. Hence, $A$ is the highest potential point and \[E\] is the lowest potential point of the ring.
Given, \[r\]is the radius of the ring and it is moving with a speed $2v$
$B$ is the magnetic field acting perpendicular to the plane of the rings.
$\therefore $ The potential difference between two points, ${V_{AE}} = B(2r)(2v)$
$ \Rightarrow {V_{AE}} = 4Brv$
For the second ring, the direction of velocity is towards the right side. So if we apply Fleming’s right-hand rule, the current is flowing from point $C$ to \[D\]. Hence, $C$ is the highest potential point and $D$ is the lowest potential point Given, \[3r\] is the radius of the ring and it is moving with a speed $v$
$\therefore $ The potential difference between two points, ${V_{CD}} = B(2 \times 3r)(v)$
$ \Rightarrow {V_{CD}} = 6Brv$
The potential difference ,$V = {V_{CD}} - ( - {V_{AE}}) = {V_{CD}} + {V_{AE}}$
$\therefore V = 6Brv + 4Brv = 10Brv$ .
Hence, the right answer is in option \[{\text{D}}{\text{. }}10{\text{ Brv}}\].
Note: The formula used for calculating the potential difference is coming from the equation of induced current in a straight conductor in motion, where the induced current $I = \dfrac{{Blv}}{R}$, $B$ is the magnetic field, $v$ is the motion, $l$ is the length of the straight conductor and $R$ is the resistance.
$ \Rightarrow IR = Blv$
$ \Rightarrow e = Blv$
$e$ is the electromotive force of the circuit, $e = IR$ [Ohm’s law]
In the above problem, the length of the straight conductor $l = 2r$ i.e the length is equal to the diameter of the ring.
Recently Updated Pages
JEE Main 2021 July 25 Shift 2 Question Paper with Answer Key
JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key
JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key
JEE Main 2021 July 20 Shift 2 Question Paper with Answer Key
Hybridization of Atomic Orbitals Important Concepts and Tips for JEE
Atomic Structure: Complete Explanation for JEE Main 2025
Trending doubts
JEE Main 2025: Application Form (Out), Exam Dates (Released), Eligibility & More
Learn About Angle Of Deviation In Prism: JEE Main Physics 2025
JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics
JEE Main Login 2045: Step-by-Step Instructions and Details
Degree of Dissociation and Its Formula With Solved Example for JEE
JEE Main 2025: Derivation of Equation of Trajectory in Physics
Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs
Dual Nature of Radiation and Matter Class 12 Notes CBSE Physics Chapter 11 (Free PDF Download)
Diffraction of Light - Young’s Single Slit Experiment
JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking
Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation
Electric field due to uniformly charged sphere class 12 physics JEE_Main