
Two different wires having lengths and , and respective temperature coefficient of linear expansion and , are joined end-to-end. Then find the effective temperature coefficient of linear expansion.
A.
B.
C.
D.
Answer
141.3k+ views
Hint:Before we proceed with the given problem. Let us understand about the temperature coefficient of linear expansion. When a material is heated and expands, the extent to which it expands is called the temperature coefficient of linear expansion.
Formula Used:
The formula to find the temperature coefficient of linear expansion is,
Where, is change in length, is change in temperature and is temperature coefficient of linear expansion.
Complete step by step solution:
Here we have two different wires of length and , and respective coefficients linear expansions and are joined end to end, which means they have joined in series. Suppose the two wires are replaced by a single wire, then we need to find the effective temperature coefficient of linear expansion. Now let us see how this can be found.
In the case of the two wires, the total linear expansion is given by,
Therefore, the effective temperature coefficient of linear expansion is .
Hence, option A is the correct answer.
Note:The temperature coefficient of linear expansion depends on the original length of a material, change in temperature and the nature of the material. This coefficient of thermal expansion is used to predict the growth of materials in response to a known temperature change. If this coefficient of thermal expansion is larger for a material, the higher will be its expansion per degree temperature increase.
Formula Used:
The formula to find the temperature coefficient of linear expansion is,
Where,
Complete step by step solution:
Here we have two different wires of length
In the case of the two wires, the total linear expansion is given by,
Therefore, the effective temperature coefficient of linear expansion is
Hence, option A is the correct answer.
Note:The temperature coefficient of linear expansion depends on the original length of a material, change in temperature and the nature of the material. This coefficient of thermal expansion is used to predict the growth of materials in response to a known temperature change. If this coefficient of thermal expansion is larger for a material, the higher will be its expansion per degree temperature increase.
Recently Updated Pages
Difference Between Circuit Switching and Packet Switching

Difference Between Mass and Weight

JEE Main Participating Colleges 2024 - A Complete List of Top Colleges

JEE Main Maths Paper Pattern 2025 – Marking, Sections & Tips

Sign up for JEE Main 2025 Live Classes - Vedantu

JEE Main 2025 Helpline Numbers - Center Contact, Phone Number, Address

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

Degree of Dissociation and Its Formula With Solved Example for JEE

Other Pages
Units and Measurements Class 11 Notes: CBSE Physics Chapter 1

JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions for Class 11 Physics Chapter 1 Units and Measurements

Motion in a Straight Line Class 11 Notes: CBSE Physics Chapter 2

Important Questions for CBSE Class 11 Physics Chapter 1 - Units and Measurement

NCERT Solutions for Class 11 Physics Chapter 2 Motion In A Straight Line
