![SearchIcon](https://vmkt.vedantu.com/vmkt/PROD/png/bdcdbbd8-08a7-4688-98e6-4aa54e5e0800-1733305962725-4102606384256179.png)
Two electric bulbs A and B rated $200V \sim 100W$ and $200V \sim 60W$ are connected in series to a $200V$ line. Then the potential drop across
(A) Each bulb is $200V$
(B) $100W$ Bulb is greater than that across $60W$ bulb
(C) $100W$ Bulb is smaller than that across $60W$ bulb
(D) Each bulb is $100V$
Answer
125.7k+ views
Hint: First we construct a circuit diagram of the given two bulbs connected in series. By using the equation power $(P) = \dfrac{{{V^2}}}{R}$ we will find the resistance of the respective bulb and by using that resistance we will obtain the Current $(I)$ flowing through the circuit. Now by using the ohm's law $V = IR$we will find the potential difference $(V)$ across each bulb.
Formula used:
$ \Rightarrow {P_A} = \dfrac{{{V^2}}}{{{R_A}}}$
$ \Rightarrow I = \dfrac{V}{R}$
Complete step by step solution:
![](https://www.vedantu.com/question-sets/e6da2f87-cdf7-4727-9096-10311711fd0b707350566436459331.png)
Here we will first obtain the resistance of the respective bulb by using the formula of power $(P) = \dfrac{{{V^2}}}{R}$
For bulb A the resistance,
$ \Rightarrow {P_A} = \dfrac{{{V^2}}}{{{R_A}}}$
$ \Rightarrow {R_A} = \dfrac{{{V^2}}}{{{P_A}}}$ --------- Equation $(1)$
For Bulb a Power is $100W$ , Voltage is $200V$ , hence substituting the values of $P$ and $V$ in the equation $(1)$
$ \Rightarrow {R_A} = \dfrac{{{{(200)}^2}}}{{100}}$
$\therefore {R_A} = 400\Omega $
Similarly for Bulb B Power is 60 W, Voltage is 200 V, hence substituting the values of P and V in equation (1)
$ \Rightarrow {R_B} = \dfrac{{{{(200)}^2}}}{{60}}$
$\therefore {R_B} = 666.67\Omega $
Now as both the bulb are connected in series the total resistance ${R_{Total}}$of the circuit can be given as
$ \Rightarrow {R_{Total}} = {R_A} + {R_B}$
Putting the values in the above equation we get,
$ \Rightarrow {R_{Total}} = 400\Omega + 666.67\Omega $
$\therefore {R_{Total}} = 1066.67\Omega $
Now according to Ohm's law, the Voltage $(V)$ across any conductor is directly proportional to the current $(I)$ flowing through it at a constant temperature. Hence,
$ \Rightarrow V \propto I$
$ \Rightarrow V = RI$
Where R is constant of proportionality also known as resistance, Hence
$ \Rightarrow I = \dfrac{V}{R}$
$ \Rightarrow I = \dfrac{V}{{{R_{Total}}}}$ -----------equation $(2)$
Given $V = 200V$ across the circuit and ${R_{Total}} = 1066.67\Omega $ putting in the equation $(2)$
$ \Rightarrow I = \dfrac{{200V}}{{1066.67\Omega }}$
$ \Rightarrow I = 0.18799A \simeq 0.1875A$
Now the potential difference across each bulb A and B by using the formula $V = RI$
For bulb A the ${R_A} = 400\Omega $
$ \Rightarrow {V_A} = {R_A}I$
$ \Rightarrow {V_A} = 400 \times 0.1875 = 75\Omega $
For bulb B the ${R_B} = 667.67\Omega $
$ \Rightarrow {V_B} = {R_B}I$
$ \Rightarrow {V_B} = 666.67 \times 0.1875 = 125\Omega $
Here on comparing the potential difference of both bulb A and B
$\therefore {V_A} < {V_B}$
Hence, option (C) is the correct answer.
Note: Here we have to note that both the bulbs are connected in the circuits behaving as a source of resistance that’s why we used ohm's law. Similarly, if the bulbs are connected in parallel connection then we can find the total resistance ${R_{total}}$can be found by the formula$\dfrac{1}{{{R_{Total}}}} = \dfrac{1}{{{R_A}}} + \dfrac{1}{{{R_B}}}$.
Formula used:
$ \Rightarrow {P_A} = \dfrac{{{V^2}}}{{{R_A}}}$
$ \Rightarrow I = \dfrac{V}{R}$
Complete step by step solution:
![](https://www.vedantu.com/question-sets/e6da2f87-cdf7-4727-9096-10311711fd0b707350566436459331.png)
Here we will first obtain the resistance of the respective bulb by using the formula of power $(P) = \dfrac{{{V^2}}}{R}$
For bulb A the resistance,
$ \Rightarrow {P_A} = \dfrac{{{V^2}}}{{{R_A}}}$
$ \Rightarrow {R_A} = \dfrac{{{V^2}}}{{{P_A}}}$ --------- Equation $(1)$
For Bulb a Power is $100W$ , Voltage is $200V$ , hence substituting the values of $P$ and $V$ in the equation $(1)$
$ \Rightarrow {R_A} = \dfrac{{{{(200)}^2}}}{{100}}$
$\therefore {R_A} = 400\Omega $
Similarly for Bulb B Power is 60 W, Voltage is 200 V, hence substituting the values of P and V in equation (1)
$ \Rightarrow {R_B} = \dfrac{{{{(200)}^2}}}{{60}}$
$\therefore {R_B} = 666.67\Omega $
Now as both the bulb are connected in series the total resistance ${R_{Total}}$of the circuit can be given as
$ \Rightarrow {R_{Total}} = {R_A} + {R_B}$
Putting the values in the above equation we get,
$ \Rightarrow {R_{Total}} = 400\Omega + 666.67\Omega $
$\therefore {R_{Total}} = 1066.67\Omega $
Now according to Ohm's law, the Voltage $(V)$ across any conductor is directly proportional to the current $(I)$ flowing through it at a constant temperature. Hence,
$ \Rightarrow V \propto I$
$ \Rightarrow V = RI$
Where R is constant of proportionality also known as resistance, Hence
$ \Rightarrow I = \dfrac{V}{R}$
$ \Rightarrow I = \dfrac{V}{{{R_{Total}}}}$ -----------equation $(2)$
Given $V = 200V$ across the circuit and ${R_{Total}} = 1066.67\Omega $ putting in the equation $(2)$
$ \Rightarrow I = \dfrac{{200V}}{{1066.67\Omega }}$
$ \Rightarrow I = 0.18799A \simeq 0.1875A$
Now the potential difference across each bulb A and B by using the formula $V = RI$
For bulb A the ${R_A} = 400\Omega $
$ \Rightarrow {V_A} = {R_A}I$
$ \Rightarrow {V_A} = 400 \times 0.1875 = 75\Omega $
For bulb B the ${R_B} = 667.67\Omega $
$ \Rightarrow {V_B} = {R_B}I$
$ \Rightarrow {V_B} = 666.67 \times 0.1875 = 125\Omega $
Here on comparing the potential difference of both bulb A and B
$\therefore {V_A} < {V_B}$
Hence, option (C) is the correct answer.
Note: Here we have to note that both the bulbs are connected in the circuits behaving as a source of resistance that’s why we used ohm's law. Similarly, if the bulbs are connected in parallel connection then we can find the total resistance ${R_{total}}$can be found by the formula$\dfrac{1}{{{R_{Total}}}} = \dfrac{1}{{{R_A}}} + \dfrac{1}{{{R_B}}}$.
Recently Updated Pages
Wheatstone Bridge - Working Principle, Formula, Derivation, Application
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Young's Double Slit Experiment Step by Step Derivation
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
JEE Main 2023 (April 8th Shift 2) Physics Question Paper with Answer Key
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
JEE Main 2023 (January 30th Shift 2) Maths Question Paper with Answer Key
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
JEE Main 2022 (July 25th Shift 2) Physics Question Paper with Answer Key
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Classification of Elements and Periodicity in Properties Chapter For JEE Main Chemistry
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility & More
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
JEE Main Login 2045: Step-by-Step Instructions and Details
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
The formula of the kinetic mass of a photon is Where class 12 physics JEE_Main
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
JEE Main 2023 January 24 Shift 2 Question Paper with Answer Keys & Solutions
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
JEE Mains 2025 Correction Window Date (Out) – Check Procedure and Fees Here!
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
JEE Main Participating Colleges 2024 - A Complete List of Top Colleges
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Learn About Angle Of Deviation In Prism: JEE Main Physics 2025
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Dual Nature of Radiation and Matter Class 12 Notes: CBSE Physics Chapter 11
![arrow-right](/cdn/images/seo-templates/arrow-right.png)