
Two identical cylindrical vessels, with their bases at the same level, each contain a liquid of density $\rho $. The height in one vessel is ${h_1}$ and that in the other is ${h_2}$. The area of either base is A. What is the work done by gravity in equalising the levels when the vessels are interconnected:
A) $A\rho g{\left( {\dfrac{{{h_1} - {h_2}}}{2}} \right)^2}$.
B) $A\rho g{\left( {\dfrac{{{h_1} + {h_2}}}{2}} \right)^2}$.
C) $\dfrac{1}{2}A\rho g{\left( {{h_1} - {h_2}} \right)^2}$.
D) $\text{None of these.}$
Answer
133.5k+ views
Hint: The work done is defined as the energy required as to move an object for some distance. The product of applied force and distance is known as work done and it is represented in terms of joules. Density is defined as the ratio of mass and volume.
Formula used: The formula of work done is given by,
$ \Rightarrow W = mgh$
Where mass is m, the height is h and the acceleration due to gravity is g.
Complete step by step solution:
It is given in the problem that two identical cylindrical vessels, with their bases at the same level, each contain a liquid of density $\rho $ the height in one vessel in ${h_1}$ and that in the other is ${h_2}$ the area of either base is A we need to find the work done by gravity in equalising the levels when the vessels are interconnected and we need to select the correct answer for this problem.

Let the height h be equal to,
$ \Rightarrow h = \dfrac{{{h_1} + {h_2}}}{2}$
The decrease in height in the vessel of height${h_1}$.
$ \Rightarrow \Delta h = {h_1} - \left( {\dfrac{{{h_1} + {h_2}}}{2}} \right)$
$ \Rightarrow \Delta h = \left( {\dfrac{{{h_1} - {h_2}}}{2}} \right)$
Mass of the liquid is equal to,
$ \Rightarrow m = \left( {\dfrac{{{h_1} - {h_2}}}{2}} \right)\rho A$
The formula of work done is given by,
$ \Rightarrow W = mgh$
Where mass is m, the height is h and the acceleration due to gravity is g.
$ \Rightarrow W = mgh$
$ \Rightarrow W = \left( {\dfrac{{{h_1} - {h_2}}}{2}} \right) \times \rho A \times g \times \left( {\dfrac{{{h_1} - {h_2}}}{2}} \right)$
$ \Rightarrow W = {\left( {\dfrac{{{h_1} - {h_2}}}{2}} \right)^2}A\rho g$
The work done is equal to $W = {\left( {\dfrac{{{h_1} - {h_2}}}{2}} \right)^2}A\rho g$.
The correct answer for this problem is option A.
Note: The students are advised to understand and remember the formula of the work done as it is very useful in solving these kinds of problems. Whenever two columns are attached and they are having the same liquid with different levels then they come to the same level as the liquid flows from high pressure to low pressure and it stops when the liquid levels.
Formula used: The formula of work done is given by,
$ \Rightarrow W = mgh$
Where mass is m, the height is h and the acceleration due to gravity is g.
Complete step by step solution:
It is given in the problem that two identical cylindrical vessels, with their bases at the same level, each contain a liquid of density $\rho $ the height in one vessel in ${h_1}$ and that in the other is ${h_2}$ the area of either base is A we need to find the work done by gravity in equalising the levels when the vessels are interconnected and we need to select the correct answer for this problem.

Let the height h be equal to,
$ \Rightarrow h = \dfrac{{{h_1} + {h_2}}}{2}$
The decrease in height in the vessel of height${h_1}$.
$ \Rightarrow \Delta h = {h_1} - \left( {\dfrac{{{h_1} + {h_2}}}{2}} \right)$
$ \Rightarrow \Delta h = \left( {\dfrac{{{h_1} - {h_2}}}{2}} \right)$
Mass of the liquid is equal to,
$ \Rightarrow m = \left( {\dfrac{{{h_1} - {h_2}}}{2}} \right)\rho A$
The formula of work done is given by,
$ \Rightarrow W = mgh$
Where mass is m, the height is h and the acceleration due to gravity is g.
$ \Rightarrow W = mgh$
$ \Rightarrow W = \left( {\dfrac{{{h_1} - {h_2}}}{2}} \right) \times \rho A \times g \times \left( {\dfrac{{{h_1} - {h_2}}}{2}} \right)$
$ \Rightarrow W = {\left( {\dfrac{{{h_1} - {h_2}}}{2}} \right)^2}A\rho g$
The work done is equal to $W = {\left( {\dfrac{{{h_1} - {h_2}}}{2}} \right)^2}A\rho g$.
The correct answer for this problem is option A.
Note: The students are advised to understand and remember the formula of the work done as it is very useful in solving these kinds of problems. Whenever two columns are attached and they are having the same liquid with different levels then they come to the same level as the liquid flows from high pressure to low pressure and it stops when the liquid levels.
Recently Updated Pages
JEE Main 2025 Session 2 Form Correction (Closed) – What Can Be Edited

Sign up for JEE Main 2025 Live Classes - Vedantu

JEE Main Books 2023-24: Best JEE Main Books for Physics, Chemistry and Maths

JEE Main 2023 April 13 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 11 Shift 2 Question Paper with Answer Key

JEE Main 2023 April 10 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Class 11 JEE Main Physics Mock Test 2025

Current Loop as Magnetic Dipole and Its Derivation for JEE

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Units and Measurements Class 11 Notes: CBSE Physics Chapter 1

Important Questions for CBSE Class 11 Physics Chapter 1 - Units and Measurement

NCERT Solutions for Class 11 Physics Chapter 2 Motion In A Straight Line

Motion In A Plane: Line Class 11 Notes: CBSE Physics Chapter 3

Waves Class 11 Notes: CBSE Physics Chapter 14
