
Two non-mixing liquids of densities ρ and nρ (n>1) are put in a container. The height of each liquid is h. A solid cylinder of length L and density d is put in this container. The cylinder floats with its axis vertical and length pL (p<1) in the denser liquid. The density d is equal to:
$\eqalign{
& A) \left\{ {1 + \left( {n - 1} \right)p} \right\}\rho \cr
& B) \left\{ {1 + \left( {n + 1} \right)p} \right\}\rho \cr
& C) \left\{ {2 + \left( {n + 1} \right)p} \right\}\rho \cr
& D) \left\{ {2 + \left( {n - 1} \right)p} \right\}\rho \cr} $
Answer
233.1k+ views
Hint: According to the law of flotation, the cylinder floats in the liquid if the weight of the liquid displaced by it is equal to its weight.
Complete step by step solution:
Archimedes Principle states that a body is completely or partially immersed in a fluid (gas or liquid), the upward, or coercive, act is done by the force, the magnitude of which is equal to the weight of the fluid displaced by the body.
Using this principle we have
Weight of cylinder= $Up\,thrust_1$ + $Up\,thrust_2$
$\eqalign{
& \Rightarrow LAdg = {\text{ }}(\rho L)A(n\rho )g{\text{ }} + {\text{ }}(1 - p)LA\rho g \cr
& {\text{since volume}} = mass/density \cr
& \Rightarrow d = (1 - p)\rho + (pn)\rho \cr
& \therefore d = [1 + (n - 1)p)\rho \cr} $
Additional Information: Archimedes' theory is very useful for calculating the volume of an object that does not have a regular shape. An object of odd shape can be submerged, and the amount of fluid displaced is equal to the volume of the object. It can also be used to calculate the density or specific gravity of an object. When the object is submerged, it weighs less because of the buoyant force pushing upward. The object's specific gravity is then the object's weight in air divided by how much weight the object loses when placed in water. But most importantly, the principle describes the behaviour of any body in any fluid,
If the weight of an object is less than the displaced fluid, the object rises, such as in the case of a wooden block that is released below the surface of water or a helium-filled balloon that is loose in the air. An object heavier than the amount of the fluid it displaces, though it sinks when released, has an apparent weight loss equal to the weight of the fluid displaced. In fact, in some accurate weighings, a correction must be made in order to compensate for the buoyancy effect of the surrounding air.
Note: The buoyancy force, which always opposes gravity, is still due to gravity. The fluid pressure increases with depth due to the (gravity) load of the fluid above. This increased pressure applies a force to the submerged object that increases with depth. The result is buoyancy.
Complete step by step solution:
Archimedes Principle states that a body is completely or partially immersed in a fluid (gas or liquid), the upward, or coercive, act is done by the force, the magnitude of which is equal to the weight of the fluid displaced by the body.
Using this principle we have
Weight of cylinder= $Up\,thrust_1$ + $Up\,thrust_2$
$\eqalign{
& \Rightarrow LAdg = {\text{ }}(\rho L)A(n\rho )g{\text{ }} + {\text{ }}(1 - p)LA\rho g \cr
& {\text{since volume}} = mass/density \cr
& \Rightarrow d = (1 - p)\rho + (pn)\rho \cr
& \therefore d = [1 + (n - 1)p)\rho \cr} $
Additional Information: Archimedes' theory is very useful for calculating the volume of an object that does not have a regular shape. An object of odd shape can be submerged, and the amount of fluid displaced is equal to the volume of the object. It can also be used to calculate the density or specific gravity of an object. When the object is submerged, it weighs less because of the buoyant force pushing upward. The object's specific gravity is then the object's weight in air divided by how much weight the object loses when placed in water. But most importantly, the principle describes the behaviour of any body in any fluid,
If the weight of an object is less than the displaced fluid, the object rises, such as in the case of a wooden block that is released below the surface of water or a helium-filled balloon that is loose in the air. An object heavier than the amount of the fluid it displaces, though it sinks when released, has an apparent weight loss equal to the weight of the fluid displaced. In fact, in some accurate weighings, a correction must be made in order to compensate for the buoyancy effect of the surrounding air.
Note: The buoyancy force, which always opposes gravity, is still due to gravity. The fluid pressure increases with depth due to the (gravity) load of the fluid above. This increased pressure applies a force to the submerged object that increases with depth. The result is buoyancy.
Recently Updated Pages
Dimensions of Charge: Dimensional Formula, Derivation, SI Units & Examples

How to Calculate Moment of Inertia: Step-by-Step Guide & Formulas

Circuit Switching vs Packet Switching: Key Differences Explained

Dimensions of Pressure in Physics: Formula, Derivation & SI Unit

JEE General Topics in Chemistry Important Concepts and Tips

JEE Extractive Metallurgy Important Concepts and Tips for Exam Preparation

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Laws of Motion Class 11 Physics Chapter 4 CBSE Notes - 2025-26

Waves Class 11 Physics Chapter 14 CBSE Notes - 2025-26

Mechanical Properties of Fluids Class 11 Physics Chapter 9 CBSE Notes - 2025-26

Thermodynamics Class 11 Physics Chapter 11 CBSE Notes - 2025-26

Units And Measurements Class 11 Physics Chapter 1 CBSE Notes - 2025-26

