Two particles are projected simultaneously in a vertical plane from the same point. These particles have different velocities and different angles with the horizontal. The path seen by each other is:
(A) Parabola
(B) Hyperbola
(C) Elliptical
(D) Straight line
Answer
Verified
116.4k+ views
Hint: Resolve the velocities of the particles in x and y coordinates.
Evaluate the relative velocity. From the expression of relative velocity, predict the curve.
Complete step by step solution:
Let $\overrightarrow {{u_1}} \& \overrightarrow {{u_2}} $ be the initial velocities of particles and let the particles make angles of ${\theta _1}\& {\theta _2}$ with the horizontal respectively.
After time t, their velocities will be $\overrightarrow {{v_1}} = ({u_1}\cos {\theta _1})\widehat i + ({u_1}\cos {\theta _1} - gt)\widehat j$
And similarly $\,\overrightarrow {{v_2}} = ({u_2}\cos {\theta _2})\widehat i + ({u_2}\cos {\theta _2} - gt)\widehat j$
Relative velocity $\overrightarrow {{v_{12}}} = ({u_1}\cos {\theta _1} - {u_2}\cos {\theta _2})\widehat i + ({u_1}\sin {\theta _1} - gt - {u_2}\sin {\theta _2} + gt)\widehat j$
$ \Rightarrow \overrightarrow {{v_{12}}} = ({u_1}\cos {\theta _1} - {u_2}\cos {\theta _2})\widehat i + ({u_1}\sin {\theta _1} - {u_2}\sin {\theta _2})\widehat j$
It is clear that relative velocity is independent of time and any other possible variables, this means that relative velocity of a projectile is constant.
Therefore, the path seen by a particle is a straight line making an angle with the horizontal.
Therefore, option (D) is correct.
Note: Curves of common equations are as follows:
Linear – straight line
Quadratic – parabola
In questions like these, try to express the equation in terms of power of t. The power of t decides the shape of the curve.
Evaluate the relative velocity. From the expression of relative velocity, predict the curve.
Complete step by step solution:
Let $\overrightarrow {{u_1}} \& \overrightarrow {{u_2}} $ be the initial velocities of particles and let the particles make angles of ${\theta _1}\& {\theta _2}$ with the horizontal respectively.
After time t, their velocities will be $\overrightarrow {{v_1}} = ({u_1}\cos {\theta _1})\widehat i + ({u_1}\cos {\theta _1} - gt)\widehat j$
And similarly $\,\overrightarrow {{v_2}} = ({u_2}\cos {\theta _2})\widehat i + ({u_2}\cos {\theta _2} - gt)\widehat j$
Relative velocity $\overrightarrow {{v_{12}}} = ({u_1}\cos {\theta _1} - {u_2}\cos {\theta _2})\widehat i + ({u_1}\sin {\theta _1} - gt - {u_2}\sin {\theta _2} + gt)\widehat j$
$ \Rightarrow \overrightarrow {{v_{12}}} = ({u_1}\cos {\theta _1} - {u_2}\cos {\theta _2})\widehat i + ({u_1}\sin {\theta _1} - {u_2}\sin {\theta _2})\widehat j$
It is clear that relative velocity is independent of time and any other possible variables, this means that relative velocity of a projectile is constant.
Therefore, the path seen by a particle is a straight line making an angle with the horizontal.
Therefore, option (D) is correct.
Note: Curves of common equations are as follows:
Linear – straight line
Quadratic – parabola
In questions like these, try to express the equation in terms of power of t. The power of t decides the shape of the curve.
Recently Updated Pages
Uniform Acceleration - Definition, Equation, Examples, and FAQs
How to find Oxidation Number - Important Concepts for JEE
How Electromagnetic Waves are Formed - Important Concepts for JEE
Electrical Resistance - Important Concepts and Tips for JEE
Average Atomic Mass - Important Concepts and Tips for JEE
Chemical Equation - Important Concepts and Tips for JEE
Trending doubts
JEE Main 2025: Application Form (Out), Exam Dates (Released), Eligibility & More
JEE Main Login 2045: Step-by-Step Instructions and Details
Class 11 JEE Main Physics Mock Test 2025
JEE Main Chemistry Question Paper with Answer Keys and Solutions
Learn About Angle Of Deviation In Prism: JEE Main Physics 2025
JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics
Other Pages
NCERT Solutions for Class 11 Physics Chapter 7 Gravitation
NCERT Solutions for Class 11 Physics Chapter 1 Units and Measurements
NCERT Solutions for Class 11 Physics Chapter 9 Mechanical Properties of Fluids
Units and Measurements Class 11 Notes - CBSE Physics Chapter 1
NCERT Solutions for Class 11 Physics Chapter 2 Motion In A Straight Line
NCERT Solutions for Class 11 Physics Chapter 8 Mechanical Properties of Solids