
Two particles are projected simultaneously in a vertical plane from the same point. These particles have different velocities and different angles with the horizontal. The path seen by each other is:
(A) Parabola
(B) Hyperbola
(C) Elliptical
(D) Straight line
Answer
232.8k+ views
Hint: Resolve the velocities of the particles in x and y coordinates.
Evaluate the relative velocity. From the expression of relative velocity, predict the curve.
Complete step by step solution:
Let $\overrightarrow {{u_1}} \& \overrightarrow {{u_2}} $ be the initial velocities of particles and let the particles make angles of ${\theta _1}\& {\theta _2}$ with the horizontal respectively.
After time t, their velocities will be $\overrightarrow {{v_1}} = ({u_1}\cos {\theta _1})\widehat i + ({u_1}\cos {\theta _1} - gt)\widehat j$
And similarly $\,\overrightarrow {{v_2}} = ({u_2}\cos {\theta _2})\widehat i + ({u_2}\cos {\theta _2} - gt)\widehat j$
Relative velocity $\overrightarrow {{v_{12}}} = ({u_1}\cos {\theta _1} - {u_2}\cos {\theta _2})\widehat i + ({u_1}\sin {\theta _1} - gt - {u_2}\sin {\theta _2} + gt)\widehat j$
$ \Rightarrow \overrightarrow {{v_{12}}} = ({u_1}\cos {\theta _1} - {u_2}\cos {\theta _2})\widehat i + ({u_1}\sin {\theta _1} - {u_2}\sin {\theta _2})\widehat j$
It is clear that relative velocity is independent of time and any other possible variables, this means that relative velocity of a projectile is constant.
Therefore, the path seen by a particle is a straight line making an angle with the horizontal.
Therefore, option (D) is correct.
Note: Curves of common equations are as follows:
Linear – straight line
Quadratic – parabola
In questions like these, try to express the equation in terms of power of t. The power of t decides the shape of the curve.
Evaluate the relative velocity. From the expression of relative velocity, predict the curve.
Complete step by step solution:
Let $\overrightarrow {{u_1}} \& \overrightarrow {{u_2}} $ be the initial velocities of particles and let the particles make angles of ${\theta _1}\& {\theta _2}$ with the horizontal respectively.
After time t, their velocities will be $\overrightarrow {{v_1}} = ({u_1}\cos {\theta _1})\widehat i + ({u_1}\cos {\theta _1} - gt)\widehat j$
And similarly $\,\overrightarrow {{v_2}} = ({u_2}\cos {\theta _2})\widehat i + ({u_2}\cos {\theta _2} - gt)\widehat j$
Relative velocity $\overrightarrow {{v_{12}}} = ({u_1}\cos {\theta _1} - {u_2}\cos {\theta _2})\widehat i + ({u_1}\sin {\theta _1} - gt - {u_2}\sin {\theta _2} + gt)\widehat j$
$ \Rightarrow \overrightarrow {{v_{12}}} = ({u_1}\cos {\theta _1} - {u_2}\cos {\theta _2})\widehat i + ({u_1}\sin {\theta _1} - {u_2}\sin {\theta _2})\widehat j$
It is clear that relative velocity is independent of time and any other possible variables, this means that relative velocity of a projectile is constant.
Therefore, the path seen by a particle is a straight line making an angle with the horizontal.
Therefore, option (D) is correct.
Note: Curves of common equations are as follows:
Linear – straight line
Quadratic – parabola
In questions like these, try to express the equation in terms of power of t. The power of t decides the shape of the curve.
Recently Updated Pages
JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 6 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Understanding Uniform Acceleration in Physics

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Laws of Motion Class 11 Physics Chapter 4 CBSE Notes - 2025-26

Waves Class 11 Physics Chapter 14 CBSE Notes - 2025-26

Mechanical Properties of Fluids Class 11 Physics Chapter 9 CBSE Notes - 2025-26

Thermodynamics Class 11 Physics Chapter 11 CBSE Notes - 2025-26

Units And Measurements Class 11 Physics Chapter 1 CBSE Notes - 2025-26

