
Two projectiles of the same mass have their maximum kinetic energies in ratio \[4:1\] and the ratio of their maximum heights is also $4:1$ . Then what is the ratio of their ranges?
(A) $2:1$
(B) $4:1$
(C) $8:1$
(D) $16:1$
Answer
217.8k+ views
Hint We are given here with the kinetic energy ratio and the ratio of maximum height and we are asked to find out the ratio of their ranges. So we will find the ratio of their velocities and angles of the projectile and use the formula for range.
Formula used
\[{E_k} = \dfrac{1}{2}m{u^2}\]
Where, \[{E_k}\] is the kinetic energy of the projectile, $m$ is the mass of the projectile and $u$ is the initial velocity of the projectile.
\[H = \dfrac{{{u^2}si{n^2}\theta }}{{2g}}\]
Where, \[H\] is the maximum height of the projectile, $u$ is the initial velocity of the projectile, $\theta $ is the angle of the projectile with the horizontal and $g$ is the acceleration due to gravity.
\[R = \dfrac{{{u^2}sin2\theta }}{g}\]
Where, $R$ is the range of the projectile, $u$ is the initial velocity of the projectile, $\theta $ is the angle of the projectile with the horizontal and $g$ is the acceleration due to gravity.
Complete Step By Step Solution
We are given,
\[\dfrac{{Kinetic{\text{ }}Energy{\text{ }}of{\text{ }}the{\text{ }}first{\text{ }}projectile}}{{Kinetic{\text{ }}Energy{\text{ }}of{\text{ }}the{\text{ second }}projectile}} = \dfrac{{{E_{k1}}}}{{{E_{k2}}}} = \dfrac{4}{1}\]
Thus, putting in the formula for kinetic energy, we can say
\[\dfrac{{\dfrac{1}{2}m{u_1}^2}}{{\dfrac{1}{2}m{u_2}^2}} = \dfrac{4}{1}\]
Thus, after cancellation, we get
\[\dfrac{{{u_1}^2}}{{{u_2}^2}} = \dfrac{4}{1}\]
Thus, we get
\[\dfrac{{{u_1}}}{{{u_2}}} = \dfrac{2}{1} \Rightarrow {u_1}:{u_2} = 2:1\]
Now,
\[\dfrac{{Maximum{\text{ }}Height{\text{ }}Of{\text{ }}the{\text{ }}first{\text{ }}projectile}}{{Maximum{\text{ }}Height{\text{ }}Of{\text{ }}the{\text{ second }}projectile}} = \dfrac{{\dfrac{{{u_1}^2si{n^2}{\theta _1}}}{{2g}}}}{{\dfrac{{{u_2}^2si{n^2}{\theta _2}}}{{2g}}}} = \dfrac{4}{1}\]
After cancellation and Putting in \[\dfrac{{{u_1}^2}}{{{u_2}^2}} = \dfrac{4}{1}\] , we get
\[\dfrac{{si{n^2}{\theta _1}}}{{si{n^2}{\theta _2}}} = \dfrac{1}{1}\]
Thus, we can say
${\theta _1} = {\theta _2}$
Now,
$\dfrac{{Range{\text{ }}of{\text{ }}the{\text{ }}first{\text{ }}projectile\;}}{{Range{\text{ }}of{\text{ }}the{\text{ second }}projectile\;}} = \dfrac{{\dfrac{{{u_1}^2\sin 2{\theta _1}}}{g}}}{{\dfrac{{{u_2}^2\sin 2{\theta _2}}}{g}}}$
After cancellation and putting in $\dfrac{{{u_1}^2}}{{{u_2}^2}} = \dfrac{4}{1}$ and $\dfrac{{{\theta _1}}}{{{\theta _2}}} = \dfrac{1}{1}$, we get\[Range{\text{ }}of{\text{ }}the{\text{ }}first{\text{ }}projectile:{\text{ }}Range{\text{ }}of{\text{ }}the{\text{ }}second{\text{ }}projectile = 4:1\]
Hence, the correct option is (B).
Note We evaluated the value of \[\dfrac{{{u_1}}}{{{u_2}}}\] and $\dfrac{{{u_1}^2}}{{{u_2}^2}}$. This was for being more precise with the answer. Moreover, the value of \[\dfrac{{{u_1}}}{{{u_2}}}\] could$ \pm \dfrac{2}{1}$. But the value of velocity of a projectile cannot be negative. Thus, we took the value of \[\dfrac{{{u_1}}}{{{u_2}}}\] to be $\dfrac{2}{1}$.
Formula used
\[{E_k} = \dfrac{1}{2}m{u^2}\]
Where, \[{E_k}\] is the kinetic energy of the projectile, $m$ is the mass of the projectile and $u$ is the initial velocity of the projectile.
\[H = \dfrac{{{u^2}si{n^2}\theta }}{{2g}}\]
Where, \[H\] is the maximum height of the projectile, $u$ is the initial velocity of the projectile, $\theta $ is the angle of the projectile with the horizontal and $g$ is the acceleration due to gravity.
\[R = \dfrac{{{u^2}sin2\theta }}{g}\]
Where, $R$ is the range of the projectile, $u$ is the initial velocity of the projectile, $\theta $ is the angle of the projectile with the horizontal and $g$ is the acceleration due to gravity.
Complete Step By Step Solution
We are given,
\[\dfrac{{Kinetic{\text{ }}Energy{\text{ }}of{\text{ }}the{\text{ }}first{\text{ }}projectile}}{{Kinetic{\text{ }}Energy{\text{ }}of{\text{ }}the{\text{ second }}projectile}} = \dfrac{{{E_{k1}}}}{{{E_{k2}}}} = \dfrac{4}{1}\]
Thus, putting in the formula for kinetic energy, we can say
\[\dfrac{{\dfrac{1}{2}m{u_1}^2}}{{\dfrac{1}{2}m{u_2}^2}} = \dfrac{4}{1}\]
Thus, after cancellation, we get
\[\dfrac{{{u_1}^2}}{{{u_2}^2}} = \dfrac{4}{1}\]
Thus, we get
\[\dfrac{{{u_1}}}{{{u_2}}} = \dfrac{2}{1} \Rightarrow {u_1}:{u_2} = 2:1\]
Now,
\[\dfrac{{Maximum{\text{ }}Height{\text{ }}Of{\text{ }}the{\text{ }}first{\text{ }}projectile}}{{Maximum{\text{ }}Height{\text{ }}Of{\text{ }}the{\text{ second }}projectile}} = \dfrac{{\dfrac{{{u_1}^2si{n^2}{\theta _1}}}{{2g}}}}{{\dfrac{{{u_2}^2si{n^2}{\theta _2}}}{{2g}}}} = \dfrac{4}{1}\]
After cancellation and Putting in \[\dfrac{{{u_1}^2}}{{{u_2}^2}} = \dfrac{4}{1}\] , we get
\[\dfrac{{si{n^2}{\theta _1}}}{{si{n^2}{\theta _2}}} = \dfrac{1}{1}\]
Thus, we can say
${\theta _1} = {\theta _2}$
Now,
$\dfrac{{Range{\text{ }}of{\text{ }}the{\text{ }}first{\text{ }}projectile\;}}{{Range{\text{ }}of{\text{ }}the{\text{ second }}projectile\;}} = \dfrac{{\dfrac{{{u_1}^2\sin 2{\theta _1}}}{g}}}{{\dfrac{{{u_2}^2\sin 2{\theta _2}}}{g}}}$
After cancellation and putting in $\dfrac{{{u_1}^2}}{{{u_2}^2}} = \dfrac{4}{1}$ and $\dfrac{{{\theta _1}}}{{{\theta _2}}} = \dfrac{1}{1}$, we get\[Range{\text{ }}of{\text{ }}the{\text{ }}first{\text{ }}projectile:{\text{ }}Range{\text{ }}of{\text{ }}the{\text{ }}second{\text{ }}projectile = 4:1\]
Hence, the correct option is (B).
Note We evaluated the value of \[\dfrac{{{u_1}}}{{{u_2}}}\] and $\dfrac{{{u_1}^2}}{{{u_2}^2}}$. This was for being more precise with the answer. Moreover, the value of \[\dfrac{{{u_1}}}{{{u_2}}}\] could$ \pm \dfrac{2}{1}$. But the value of velocity of a projectile cannot be negative. Thus, we took the value of \[\dfrac{{{u_1}}}{{{u_2}}}\] to be $\dfrac{2}{1}$.
Recently Updated Pages
Elastic Collision in Two Dimensions Explained Simply

Elastic Collisions in One Dimension Explained

Electric Field Due to a Uniformly Charged Ring Explained

Electric Field of Infinite Line Charge and Cylinders Explained

Electric Flux and Area Vector Explained Simply

Electric Field of a Charged Spherical Shell Explained

Trending doubts
JEE Main 2026: Application Form Open, Exam Dates, Syllabus, Eligibility & Question Papers

Derivation of Equation of Trajectory Explained for Students

Hybridisation in Chemistry – Concept, Types & Applications

Understanding the Angle of Deviation in a Prism

Understanding Collisions: Types and Examples for Students

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Units And Measurements Class 11 Physics Chapter 1 CBSE Notes - 2025-26

NCERT Solutions For Class 11 Physics Chapter 8 Mechanical Properties Of Solids

Motion in a Straight Line Class 11 Physics Chapter 2 CBSE Notes - 2025-26

NCERT Solutions for Class 11 Physics Chapter 7 Gravitation 2025-26

Understanding Atomic Structure for Beginners

