Two projectiles of the same mass have their maximum kinetic energies in ratio \[4:1\] and the ratio of their maximum heights is also $4:1$ . Then what is the ratio of their ranges?
(A) $2:1$
(B) $4:1$
(C) $8:1$
(D) $16:1$
Answer
Verified
116.4k+ views
Hint We are given here with the kinetic energy ratio and the ratio of maximum height and we are asked to find out the ratio of their ranges. So we will find the ratio of their velocities and angles of the projectile and use the formula for range.
Formula used
\[{E_k} = \dfrac{1}{2}m{u^2}\]
Where, \[{E_k}\] is the kinetic energy of the projectile, $m$ is the mass of the projectile and $u$ is the initial velocity of the projectile.
\[H = \dfrac{{{u^2}si{n^2}\theta }}{{2g}}\]
Where, \[H\] is the maximum height of the projectile, $u$ is the initial velocity of the projectile, $\theta $ is the angle of the projectile with the horizontal and $g$ is the acceleration due to gravity.
\[R = \dfrac{{{u^2}sin2\theta }}{g}\]
Where, $R$ is the range of the projectile, $u$ is the initial velocity of the projectile, $\theta $ is the angle of the projectile with the horizontal and $g$ is the acceleration due to gravity.
Complete Step By Step Solution
We are given,
\[\dfrac{{Kinetic{\text{ }}Energy{\text{ }}of{\text{ }}the{\text{ }}first{\text{ }}projectile}}{{Kinetic{\text{ }}Energy{\text{ }}of{\text{ }}the{\text{ second }}projectile}} = \dfrac{{{E_{k1}}}}{{{E_{k2}}}} = \dfrac{4}{1}\]
Thus, putting in the formula for kinetic energy, we can say
\[\dfrac{{\dfrac{1}{2}m{u_1}^2}}{{\dfrac{1}{2}m{u_2}^2}} = \dfrac{4}{1}\]
Thus, after cancellation, we get
\[\dfrac{{{u_1}^2}}{{{u_2}^2}} = \dfrac{4}{1}\]
Thus, we get
\[\dfrac{{{u_1}}}{{{u_2}}} = \dfrac{2}{1} \Rightarrow {u_1}:{u_2} = 2:1\]
Now,
\[\dfrac{{Maximum{\text{ }}Height{\text{ }}Of{\text{ }}the{\text{ }}first{\text{ }}projectile}}{{Maximum{\text{ }}Height{\text{ }}Of{\text{ }}the{\text{ second }}projectile}} = \dfrac{{\dfrac{{{u_1}^2si{n^2}{\theta _1}}}{{2g}}}}{{\dfrac{{{u_2}^2si{n^2}{\theta _2}}}{{2g}}}} = \dfrac{4}{1}\]
After cancellation and Putting in \[\dfrac{{{u_1}^2}}{{{u_2}^2}} = \dfrac{4}{1}\] , we get
\[\dfrac{{si{n^2}{\theta _1}}}{{si{n^2}{\theta _2}}} = \dfrac{1}{1}\]
Thus, we can say
${\theta _1} = {\theta _2}$
Now,
$\dfrac{{Range{\text{ }}of{\text{ }}the{\text{ }}first{\text{ }}projectile\;}}{{Range{\text{ }}of{\text{ }}the{\text{ second }}projectile\;}} = \dfrac{{\dfrac{{{u_1}^2\sin 2{\theta _1}}}{g}}}{{\dfrac{{{u_2}^2\sin 2{\theta _2}}}{g}}}$
After cancellation and putting in $\dfrac{{{u_1}^2}}{{{u_2}^2}} = \dfrac{4}{1}$ and $\dfrac{{{\theta _1}}}{{{\theta _2}}} = \dfrac{1}{1}$, we get\[Range{\text{ }}of{\text{ }}the{\text{ }}first{\text{ }}projectile:{\text{ }}Range{\text{ }}of{\text{ }}the{\text{ }}second{\text{ }}projectile = 4:1\]
Hence, the correct option is (B).
Note We evaluated the value of \[\dfrac{{{u_1}}}{{{u_2}}}\] and $\dfrac{{{u_1}^2}}{{{u_2}^2}}$. This was for being more precise with the answer. Moreover, the value of \[\dfrac{{{u_1}}}{{{u_2}}}\] could$ \pm \dfrac{2}{1}$. But the value of velocity of a projectile cannot be negative. Thus, we took the value of \[\dfrac{{{u_1}}}{{{u_2}}}\] to be $\dfrac{2}{1}$.
Formula used
\[{E_k} = \dfrac{1}{2}m{u^2}\]
Where, \[{E_k}\] is the kinetic energy of the projectile, $m$ is the mass of the projectile and $u$ is the initial velocity of the projectile.
\[H = \dfrac{{{u^2}si{n^2}\theta }}{{2g}}\]
Where, \[H\] is the maximum height of the projectile, $u$ is the initial velocity of the projectile, $\theta $ is the angle of the projectile with the horizontal and $g$ is the acceleration due to gravity.
\[R = \dfrac{{{u^2}sin2\theta }}{g}\]
Where, $R$ is the range of the projectile, $u$ is the initial velocity of the projectile, $\theta $ is the angle of the projectile with the horizontal and $g$ is the acceleration due to gravity.
Complete Step By Step Solution
We are given,
\[\dfrac{{Kinetic{\text{ }}Energy{\text{ }}of{\text{ }}the{\text{ }}first{\text{ }}projectile}}{{Kinetic{\text{ }}Energy{\text{ }}of{\text{ }}the{\text{ second }}projectile}} = \dfrac{{{E_{k1}}}}{{{E_{k2}}}} = \dfrac{4}{1}\]
Thus, putting in the formula for kinetic energy, we can say
\[\dfrac{{\dfrac{1}{2}m{u_1}^2}}{{\dfrac{1}{2}m{u_2}^2}} = \dfrac{4}{1}\]
Thus, after cancellation, we get
\[\dfrac{{{u_1}^2}}{{{u_2}^2}} = \dfrac{4}{1}\]
Thus, we get
\[\dfrac{{{u_1}}}{{{u_2}}} = \dfrac{2}{1} \Rightarrow {u_1}:{u_2} = 2:1\]
Now,
\[\dfrac{{Maximum{\text{ }}Height{\text{ }}Of{\text{ }}the{\text{ }}first{\text{ }}projectile}}{{Maximum{\text{ }}Height{\text{ }}Of{\text{ }}the{\text{ second }}projectile}} = \dfrac{{\dfrac{{{u_1}^2si{n^2}{\theta _1}}}{{2g}}}}{{\dfrac{{{u_2}^2si{n^2}{\theta _2}}}{{2g}}}} = \dfrac{4}{1}\]
After cancellation and Putting in \[\dfrac{{{u_1}^2}}{{{u_2}^2}} = \dfrac{4}{1}\] , we get
\[\dfrac{{si{n^2}{\theta _1}}}{{si{n^2}{\theta _2}}} = \dfrac{1}{1}\]
Thus, we can say
${\theta _1} = {\theta _2}$
Now,
$\dfrac{{Range{\text{ }}of{\text{ }}the{\text{ }}first{\text{ }}projectile\;}}{{Range{\text{ }}of{\text{ }}the{\text{ second }}projectile\;}} = \dfrac{{\dfrac{{{u_1}^2\sin 2{\theta _1}}}{g}}}{{\dfrac{{{u_2}^2\sin 2{\theta _2}}}{g}}}$
After cancellation and putting in $\dfrac{{{u_1}^2}}{{{u_2}^2}} = \dfrac{4}{1}$ and $\dfrac{{{\theta _1}}}{{{\theta _2}}} = \dfrac{1}{1}$, we get\[Range{\text{ }}of{\text{ }}the{\text{ }}first{\text{ }}projectile:{\text{ }}Range{\text{ }}of{\text{ }}the{\text{ }}second{\text{ }}projectile = 4:1\]
Hence, the correct option is (B).
Note We evaluated the value of \[\dfrac{{{u_1}}}{{{u_2}}}\] and $\dfrac{{{u_1}^2}}{{{u_2}^2}}$. This was for being more precise with the answer. Moreover, the value of \[\dfrac{{{u_1}}}{{{u_2}}}\] could$ \pm \dfrac{2}{1}$. But the value of velocity of a projectile cannot be negative. Thus, we took the value of \[\dfrac{{{u_1}}}{{{u_2}}}\] to be $\dfrac{2}{1}$.
Recently Updated Pages
Uniform Acceleration - Definition, Equation, Examples, and FAQs
How to find Oxidation Number - Important Concepts for JEE
How Electromagnetic Waves are Formed - Important Concepts for JEE
Electrical Resistance - Important Concepts and Tips for JEE
Average Atomic Mass - Important Concepts and Tips for JEE
Chemical Equation - Important Concepts and Tips for JEE
Trending doubts
JEE Main 2025: Application Form (Out), Exam Dates (Released), Eligibility & More
JEE Main Login 2045: Step-by-Step Instructions and Details
Class 11 JEE Main Physics Mock Test 2025
JEE Main Chemistry Question Paper with Answer Keys and Solutions
Learn About Angle Of Deviation In Prism: JEE Main Physics 2025
JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics
Other Pages
NCERT Solutions for Class 11 Physics Chapter 7 Gravitation
NCERT Solutions for Class 11 Physics Chapter 1 Units and Measurements
NCERT Solutions for Class 11 Physics Chapter 9 Mechanical Properties of Fluids
Units and Measurements Class 11 Notes - CBSE Physics Chapter 1
NCERT Solutions for Class 11 Physics Chapter 2 Motion In A Straight Line
NCERT Solutions for Class 11 Physics Chapter 8 Mechanical Properties of Solids