
Two radiations of photons energies 1eV and \[2.5eV\] successively illuminate a photosensitive metallic surface of work function \[0.5eV\]. The ratio of the maximum speeds of the emitted electrons is:
(A) 1:2
(B) 1:1
(C) 1:5
(D) 1:4
Answer
139.8k+ views
Hint: The maximum kinetic energy of the electrons is equal to the energy of the radiations reduced by the work function (i.e. energy of photon minus work function of metal). Kinetic energy is proportional to the square of the speeds,
Formula used: In this solution we will be using the following formulae;
\[K{E_{\max }} = E - W\] where \[K{E_{\max }}\] is the maximum kinetic energy of the ejected electrons, \[E\] is the energy of the photons of the radiation, and \[W\] is the work function of the metal.
Complete Step-by-Step Solution:
Two different radiations are said to illuminate a metallic surface of a particular work function, we are to determine the ratio of the kinetic energy of the electrons ejected from the metal.
To do so, we must at first calculate the kinetic energy of the photons in the individual cases.
The formula for the kinetic energy is given by
\[K{E_{\max }} = E - W\] where \[K{E_{\max }}\]where \[E\] is the energy of the photons of the radiation, and \[W\] is the work function of the metal.
Hence, for the first radiation, we have
\[K{E_{\max 1}} = 1eV - 0.5eV\]
\[ \Rightarrow K{E_{\max 1}} = 0.5eV\]
For the second radiation, we have,
\[K{E_{\max 2}} = 2.5eV - 0.5eV\]
\[ \Rightarrow K{E_{\max 2}} = 2eV\]
Hence, the ratio will be given as
\[\dfrac{{K{E_{\max 1}}}}{{K{E_{\max 2}}}} = \dfrac{{0.5}}{2} = \dfrac{1}{4}\]
But Kinetic energy is proportional to the square of the speeds, then
\[\dfrac{{{v_1}^2}}{{{v_2}^2}} = \dfrac{1}{4}\]
\[ \Rightarrow \dfrac{{{v_1}}}{{{v_2}}} = \sqrt {\dfrac{1}{4}} = \dfrac{1}{2}\]
Hence, the ratio of one to the other is
\[{v_1}:{v_2} = 1:2\]
Thus, the correct option is A
Note: We need to observe that to find the ratio of the two kinetic energies, the unit does not have to be converted to SI to get the proper answer. This is because the conversion factor will end up cancelling out, and the values only will matter. Similarly, for replacing kinetic energy with just the square of the speeds, the constants will cancel out anyway.
Formula used: In this solution we will be using the following formulae;
\[K{E_{\max }} = E - W\] where \[K{E_{\max }}\] is the maximum kinetic energy of the ejected electrons, \[E\] is the energy of the photons of the radiation, and \[W\] is the work function of the metal.
Complete Step-by-Step Solution:
Two different radiations are said to illuminate a metallic surface of a particular work function, we are to determine the ratio of the kinetic energy of the electrons ejected from the metal.
To do so, we must at first calculate the kinetic energy of the photons in the individual cases.
The formula for the kinetic energy is given by
\[K{E_{\max }} = E - W\] where \[K{E_{\max }}\]where \[E\] is the energy of the photons of the radiation, and \[W\] is the work function of the metal.
Hence, for the first radiation, we have
\[K{E_{\max 1}} = 1eV - 0.5eV\]
\[ \Rightarrow K{E_{\max 1}} = 0.5eV\]
For the second radiation, we have,
\[K{E_{\max 2}} = 2.5eV - 0.5eV\]
\[ \Rightarrow K{E_{\max 2}} = 2eV\]
Hence, the ratio will be given as
\[\dfrac{{K{E_{\max 1}}}}{{K{E_{\max 2}}}} = \dfrac{{0.5}}{2} = \dfrac{1}{4}\]
But Kinetic energy is proportional to the square of the speeds, then
\[\dfrac{{{v_1}^2}}{{{v_2}^2}} = \dfrac{1}{4}\]
\[ \Rightarrow \dfrac{{{v_1}}}{{{v_2}}} = \sqrt {\dfrac{1}{4}} = \dfrac{1}{2}\]
Hence, the ratio of one to the other is
\[{v_1}:{v_2} = 1:2\]
Thus, the correct option is A
Note: We need to observe that to find the ratio of the two kinetic energies, the unit does not have to be converted to SI to get the proper answer. This is because the conversion factor will end up cancelling out, and the values only will matter. Similarly, for replacing kinetic energy with just the square of the speeds, the constants will cancel out anyway.
Recently Updated Pages
Average fee range for JEE coaching in India- Complete Details

Difference Between Rows and Columns: JEE Main 2024

Difference Between Length and Height: JEE Main 2024

Difference Between Natural and Whole Numbers: JEE Main 2024

Algebraic Formula

Difference Between Constants and Variables: JEE Main 2024

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

A point charge + 20mu C is at a distance 6cm directly class 12 physics JEE_Main

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Degree of Dissociation and Its Formula With Solved Example for JEE

Electric field due to uniformly charged sphere class 12 physics JEE_Main

Dual Nature of Radiation and Matter Class 12 Notes: CBSE Physics Chapter 11

Formula for number of images formed by two plane mirrors class 12 physics JEE_Main

A conducting loop carrying a current is placed in a class 12 physics JEE_Main
