
Two radiations of photons energies 1eV and \[2.5eV\] successively illuminate a photosensitive metallic surface of work function \[0.5eV\]. The ratio of the maximum speeds of the emitted electrons is:
(A) 1:2
(B) 1:1
(C) 1:5
(D) 1:4
Answer
128.1k+ views
Hint: The maximum kinetic energy of the electrons is equal to the energy of the radiations reduced by the work function (i.e. energy of photon minus work function of metal). Kinetic energy is proportional to the square of the speeds,
Formula used: In this solution we will be using the following formulae;
\[K{E_{\max }} = E - W\] where \[K{E_{\max }}\] is the maximum kinetic energy of the ejected electrons, \[E\] is the energy of the photons of the radiation, and \[W\] is the work function of the metal.
Complete Step-by-Step Solution:
Two different radiations are said to illuminate a metallic surface of a particular work function, we are to determine the ratio of the kinetic energy of the electrons ejected from the metal.
To do so, we must at first calculate the kinetic energy of the photons in the individual cases.
The formula for the kinetic energy is given by
\[K{E_{\max }} = E - W\] where \[K{E_{\max }}\]where \[E\] is the energy of the photons of the radiation, and \[W\] is the work function of the metal.
Hence, for the first radiation, we have
\[K{E_{\max 1}} = 1eV - 0.5eV\]
\[ \Rightarrow K{E_{\max 1}} = 0.5eV\]
For the second radiation, we have,
\[K{E_{\max 2}} = 2.5eV - 0.5eV\]
\[ \Rightarrow K{E_{\max 2}} = 2eV\]
Hence, the ratio will be given as
\[\dfrac{{K{E_{\max 1}}}}{{K{E_{\max 2}}}} = \dfrac{{0.5}}{2} = \dfrac{1}{4}\]
But Kinetic energy is proportional to the square of the speeds, then
\[\dfrac{{{v_1}^2}}{{{v_2}^2}} = \dfrac{1}{4}\]
\[ \Rightarrow \dfrac{{{v_1}}}{{{v_2}}} = \sqrt {\dfrac{1}{4}} = \dfrac{1}{2}\]
Hence, the ratio of one to the other is
\[{v_1}:{v_2} = 1:2\]
Thus, the correct option is A
Note: We need to observe that to find the ratio of the two kinetic energies, the unit does not have to be converted to SI to get the proper answer. This is because the conversion factor will end up cancelling out, and the values only will matter. Similarly, for replacing kinetic energy with just the square of the speeds, the constants will cancel out anyway.
Formula used: In this solution we will be using the following formulae;
\[K{E_{\max }} = E - W\] where \[K{E_{\max }}\] is the maximum kinetic energy of the ejected electrons, \[E\] is the energy of the photons of the radiation, and \[W\] is the work function of the metal.
Complete Step-by-Step Solution:
Two different radiations are said to illuminate a metallic surface of a particular work function, we are to determine the ratio of the kinetic energy of the electrons ejected from the metal.
To do so, we must at first calculate the kinetic energy of the photons in the individual cases.
The formula for the kinetic energy is given by
\[K{E_{\max }} = E - W\] where \[K{E_{\max }}\]where \[E\] is the energy of the photons of the radiation, and \[W\] is the work function of the metal.
Hence, for the first radiation, we have
\[K{E_{\max 1}} = 1eV - 0.5eV\]
\[ \Rightarrow K{E_{\max 1}} = 0.5eV\]
For the second radiation, we have,
\[K{E_{\max 2}} = 2.5eV - 0.5eV\]
\[ \Rightarrow K{E_{\max 2}} = 2eV\]
Hence, the ratio will be given as
\[\dfrac{{K{E_{\max 1}}}}{{K{E_{\max 2}}}} = \dfrac{{0.5}}{2} = \dfrac{1}{4}\]
But Kinetic energy is proportional to the square of the speeds, then
\[\dfrac{{{v_1}^2}}{{{v_2}^2}} = \dfrac{1}{4}\]
\[ \Rightarrow \dfrac{{{v_1}}}{{{v_2}}} = \sqrt {\dfrac{1}{4}} = \dfrac{1}{2}\]
Hence, the ratio of one to the other is
\[{v_1}:{v_2} = 1:2\]
Thus, the correct option is A
Note: We need to observe that to find the ratio of the two kinetic energies, the unit does not have to be converted to SI to get the proper answer. This is because the conversion factor will end up cancelling out, and the values only will matter. Similarly, for replacing kinetic energy with just the square of the speeds, the constants will cancel out anyway.
Recently Updated Pages
JEE Main 2025 - Session 2 Registration Open | Exam Dates, Answer Key, PDF

Difference Between Vapor and Gas: JEE Main 2024

Area of an Octagon Formula - Explanation, and FAQs

Difference Between Solute and Solvent: JEE Main 2024

Absolute Pressure Formula - Explanation, and FAQs

Carbon Dioxide Formula - Definition, Uses and FAQs

Trending doubts
JEE Main Login 2045: Step-by-Step Instructions and Details

JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Keys & Solutions

JEE Main Participating Colleges 2024 - A Complete List of Top Colleges

JEE Main Course 2025: Get All the Relevant Details

Common Ion Effect and Its Application for JEE

Other Pages
JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

JEE Main Chemistry Question Paper with Answer Keys and Solutions

Least distance of distant vision of a long sighted class 12 physics JEE_Main

Formula for number of images formed by two plane mirrors class 12 physics JEE_Main

JEE Main Marks Vs Percentile 2025: Calculate Percentile Based on Marks

Biography of Chhatrapati Shivaji Maharaj
