Two radioactive substances A and B have decay constants $5\lambda $ and $\lambda $ respectively. At $t = 0$ they have the same number of nuclei. The ratio of the number of nuclei of A to those of B will be ${\left( {\dfrac{1}{e}} \right)^2}$ after a time interval.
(A) $\dfrac{1}{{4\lambda }}$
(B) $4\lambda $
(C) $2\lambda $
(D) $\dfrac{1}{{2\lambda }}$
Answer
Verified
123k+ views
Hint: Radioactivity is the phenomenon of spontaneous disintegration of the atomic nucleus by the emission of highly penetrating radiations. The law of radioactive disintegration states that the rate of disintegration at any instant is directly proportional to the number of atoms of the element present at that instant.
Formula used
$N = {N_0}{e^{ - \lambda t}}$
Where, $N$ stands for the number of atoms at a given instant, ${N_0}$stands for the initial number of atoms, $\lambda $is called the decay constant or the disintegration constant and $t$ stands for the time
Complete step by step answer:
According to the law of radioactive disintegration, we can write the decay equation as
$N = {N_0}{e^{ - \lambda t}}$
Let the number of atoms of A be${N_A}$, its decay constant is given by $5\lambda $
Then we can write that the number of atoms of A is
${N_A} = {N_0}{e^{ - 5\lambda t}}$
Let the number of atoms of B be${N_B}$, its decay constant is given by $\lambda $
Then we can write the number of atoms of B as
${N_B} = {N_0}{e^{ - \lambda t}}$
Taking the ratio of ${N_A}$and${N_B}$, we get
$\dfrac{{{N_A}}}{{{N_B}}} = \dfrac{{{N_0}{e^{ - 5\lambda t}}}}{{{N_0}{e^{ - \lambda t}}}} = {e^{ - 4\lambda t}}$
In the question, it is given that $\dfrac{{{N_A}}}{{{N_B}}} = \dfrac{1}{{{e^2}}} = {e^{ - 2}}$
This means that, ${e^{ - 4\lambda t}} = {e^{ - 2}}$
$\Rightarrow 4\lambda t = 2$
$\Rightarrow t = \dfrac{2}{{4\lambda }} = \dfrac{1}{{2\lambda }} $
So, the ratio of number of nuclei of A to those of B will be ${\left( {\dfrac{1}{e}} \right)^2}$ after a time interval $\dfrac{1}{{2\lambda }}$
The answer is Option (D): $\dfrac{1}{{2\lambda }}$
Note
The disintegration constant represents the probability of an atom to disintegrate. The negative sign in the disintegration constant indicates that the number of atoms decreases with the increase in time. The number of un-disintegrated atoms of a radioactive substance decreases exponentially. $N$ and ${N_0}$ can be replaced by the mass of the material. The S.I. The unit of radioactivity is Becquerel (Bq).
Formula used
$N = {N_0}{e^{ - \lambda t}}$
Where, $N$ stands for the number of atoms at a given instant, ${N_0}$stands for the initial number of atoms, $\lambda $is called the decay constant or the disintegration constant and $t$ stands for the time
Complete step by step answer:
According to the law of radioactive disintegration, we can write the decay equation as
$N = {N_0}{e^{ - \lambda t}}$
Let the number of atoms of A be${N_A}$, its decay constant is given by $5\lambda $
Then we can write that the number of atoms of A is
${N_A} = {N_0}{e^{ - 5\lambda t}}$
Let the number of atoms of B be${N_B}$, its decay constant is given by $\lambda $
Then we can write the number of atoms of B as
${N_B} = {N_0}{e^{ - \lambda t}}$
Taking the ratio of ${N_A}$and${N_B}$, we get
$\dfrac{{{N_A}}}{{{N_B}}} = \dfrac{{{N_0}{e^{ - 5\lambda t}}}}{{{N_0}{e^{ - \lambda t}}}} = {e^{ - 4\lambda t}}$
In the question, it is given that $\dfrac{{{N_A}}}{{{N_B}}} = \dfrac{1}{{{e^2}}} = {e^{ - 2}}$
This means that, ${e^{ - 4\lambda t}} = {e^{ - 2}}$
$\Rightarrow 4\lambda t = 2$
$\Rightarrow t = \dfrac{2}{{4\lambda }} = \dfrac{1}{{2\lambda }} $
So, the ratio of number of nuclei of A to those of B will be ${\left( {\dfrac{1}{e}} \right)^2}$ after a time interval $\dfrac{1}{{2\lambda }}$
The answer is Option (D): $\dfrac{1}{{2\lambda }}$
Note
The disintegration constant represents the probability of an atom to disintegrate. The negative sign in the disintegration constant indicates that the number of atoms decreases with the increase in time. The number of un-disintegrated atoms of a radioactive substance decreases exponentially. $N$ and ${N_0}$ can be replaced by the mass of the material. The S.I. The unit of radioactivity is Becquerel (Bq).
Recently Updated Pages
How to find Oxidation Number - Important Concepts for JEE
How Electromagnetic Waves are Formed - Important Concepts for JEE
Electrical Resistance - Important Concepts and Tips for JEE
Average Atomic Mass - Important Concepts and Tips for JEE
Chemical Equation - Important Concepts and Tips for JEE
Concept of CP and CV of Gas - Important Concepts and Tips for JEE
Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility & More
JEE Main Login 2045: Step-by-Step Instructions and Details
JEE Main Chemistry Question Paper with Answer Keys and Solutions
JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking
JEE Main 2023 January 24 Shift 2 Question Paper with Answer Keys & Solutions
JEE Main Chemistry Exam Pattern 2025
Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs
JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More
Learn About Angle Of Deviation In Prism: JEE Main Physics 2025
JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics
Dual Nature of Radiation and Matter Class 12 Notes: CBSE Physics Chapter 11
Electric field due to uniformly charged sphere class 12 physics JEE_Main