Answer
Verified
99.9k+ views
Hint: Orbital Velocity is the velocity of the artificial Earth's satellite for revolving around the Earth.
Mathematically, Orbital Velocity is given by :
$\sqrt {\dfrac{{GM}}{r}} $
Using the above relation we find the ratio orbital velocities of the two given satellites.
Complete step by step solution:
Let's discuss satellites and orbital velocity first and then we will find the ratio of the orbital velocities.
A satellite is a body which is continuously revolving around the bigger body. Centripetal force is responsible for the revolution of the satellite along with the Gravitational attraction between the satellite and the body around which it is revolving.
Orbital Velocity: It is the velocity which is given to an artificial Earth's satellite a few hundred kilometers above the earth surface so that it may start revolving round the Earth. It is denoted by $v_0$.
Now, we will calculate the ratio of orbital velocities of the two satellites.
Orbital Velocity is given by:
$ \Rightarrow {v_0} = \sqrt {\dfrac{{GM}}{r}} $.................(1) (orbital velocity)
From the formula for gravitational force value of gravitational acceleration can be given as:
$ \Rightarrow g = \dfrac{{GM}}{{{r^2}}}$ (gravitational acceleration)
$ \Rightarrow gr = \dfrac{{GM}}{r}$...................(2)
Now orbital velocity can be given as:
$v = \sqrt {gr} $
From equation 1 and 2 we get
$ \Rightarrow \dfrac{{{v_1}}}{{{v_2}}} = \dfrac{{\sqrt {{g_1}{r_1}} }}{{\sqrt {{g_2}{r_2}} }}$
We are provided in the question that ratio of gravitational acceleration is $g:1$ and distance between the satellites is $d:1$, using this information we have
$ \Rightarrow \dfrac{{{v_1}}}{{{v_2}}} = \dfrac{{\sqrt {{g_1}{d_1}} }}{{\sqrt {{g_2}{d_2}} }}$(r is replaced by d)
$ \Rightarrow v = \sqrt {gd} $
Thus option (D) is correct.
Note: We have many satellites in our solar system some are artificial and some are natural satellites. In our solar system Sun is the biggest body among all other celestial bodies present in the solar system around which planets are revolving, so planets can be said to be satellites. Similarly, the moon revolves around the Earth, and the moon is also a natural satellite.
Mathematically, Orbital Velocity is given by :
$\sqrt {\dfrac{{GM}}{r}} $
Using the above relation we find the ratio orbital velocities of the two given satellites.
Complete step by step solution:
Let's discuss satellites and orbital velocity first and then we will find the ratio of the orbital velocities.
A satellite is a body which is continuously revolving around the bigger body. Centripetal force is responsible for the revolution of the satellite along with the Gravitational attraction between the satellite and the body around which it is revolving.
Orbital Velocity: It is the velocity which is given to an artificial Earth's satellite a few hundred kilometers above the earth surface so that it may start revolving round the Earth. It is denoted by $v_0$.
Now, we will calculate the ratio of orbital velocities of the two satellites.
Orbital Velocity is given by:
$ \Rightarrow {v_0} = \sqrt {\dfrac{{GM}}{r}} $.................(1) (orbital velocity)
From the formula for gravitational force value of gravitational acceleration can be given as:
$ \Rightarrow g = \dfrac{{GM}}{{{r^2}}}$ (gravitational acceleration)
$ \Rightarrow gr = \dfrac{{GM}}{r}$...................(2)
Now orbital velocity can be given as:
$v = \sqrt {gr} $
From equation 1 and 2 we get
$ \Rightarrow \dfrac{{{v_1}}}{{{v_2}}} = \dfrac{{\sqrt {{g_1}{r_1}} }}{{\sqrt {{g_2}{r_2}} }}$
We are provided in the question that ratio of gravitational acceleration is $g:1$ and distance between the satellites is $d:1$, using this information we have
$ \Rightarrow \dfrac{{{v_1}}}{{{v_2}}} = \dfrac{{\sqrt {{g_1}{d_1}} }}{{\sqrt {{g_2}{d_2}} }}$(r is replaced by d)
$ \Rightarrow v = \sqrt {gd} $
Thus option (D) is correct.
Note: We have many satellites in our solar system some are artificial and some are natural satellites. In our solar system Sun is the biggest body among all other celestial bodies present in the solar system around which planets are revolving, so planets can be said to be satellites. Similarly, the moon revolves around the Earth, and the moon is also a natural satellite.
Recently Updated Pages
Write a composition in approximately 450 500 words class 10 english JEE_Main
Arrange the sentences P Q R between S1 and S5 such class 10 english JEE_Main
Write an article on the need and importance of sports class 10 english JEE_Main
Name the scale on which the destructive energy of an class 11 physics JEE_Main
Choose the exact meaning of the given idiomphrase The class 9 english JEE_Main
Choose the one which best expresses the meaning of class 9 english JEE_Main
Other Pages
The values of kinetic energy K and potential energy class 11 physics JEE_Main
What torque will increase the angular velocity of a class 11 physics JEE_Main
BF3 reacts with NaH at 450 K to form NaF and X When class 11 chemistry JEE_Main
Electric field due to uniformly charged sphere class 12 physics JEE_Main
In the reaction of KMnO4 with H2C204 20 mL of 02 M class 12 chemistry JEE_Main
Dependence of intensity of gravitational field E of class 11 physics JEE_Main