
Two soap bubbles in a vacuum of radii $3cm$ and $4cm$ coalesces to form a single bubble under isothermal conditions. Then the radius of the bigger bubble is:
Answer
225k+ views
Hint: We must learn about the isothermal and adiabatic processes. Then we will be able to distinguish between these two processes and will be able to understand how the gas law changes with the change in the condition if it is isothermal or adiabatic.
Complete step by step solution:
In thermodynamics, an isothermal is a thermodynamic process where the temperature of the system remains constant, i.e., $\Delta {{T = 0}}$.
In thermodynamics, an adiabatic is a thermodynamic process where heat or mass is not transferred between the system and the surroundings. Unlike the isothermal process, the system can transfer energy to the surroundings only as work in an adiabatic process.
Now, Boyle's law holds good in an isothermal process-
${{{P}}_1}{{{V}}_1} + {{{P}}_2}{{{V}}_2} = {{PV}}$…………$(1)$
Here,
${{{P}}_1}$= Pressure inside the small bubble.
${{{P}}_2}$= Pressure inside the large bubble.
${{{V}}_1}$= Volume of the small bubble.
${{{V}}_2}$= Volume of the large bubble.
${{P}}$= Pressure inside the new bubble.
${{V}}$= Volume of the new bubble.
For soap bubbles, we know,
${{P = }}\dfrac{{{{4T}}}}{{{r}}}$…………$(2)$
Here, ${{P}}$= Pressure inside the bubble.
${{T}}$= Temperature gas inside the bubble.
${{r}}$= Radius of the soap bubble.
And for the volume of the soap bubble we have-
${{V = }}\dfrac{{{4}}}{{{3}}}{{\pi }}{{{r}}^{{3}}}$
where ${{r}}$= Radius of the soap bubble.
By substituting all the values in $(1)$, we have-
$\dfrac{{{{4T}}}}{{{{{r}}_{{1}}}}}{{ \times }}\dfrac{{{4}}}{{{3}}}{{\pi }}{{{r}}_{{1}}}^{{3}}{{ + }}\dfrac{{{{4T}}}}{{{{{r}}_{{2}}}}}{{ \times }}\dfrac{{{4}}}{{{3}}}{{\pi }}{{{r}}_{{2}}}^{{3}}{{ = }}\dfrac{{{{4T}}}}{{{R}}}{{ \times }}\dfrac{{{4}}}{{{3}}}{{\pi }}{{{R}}^{{3}}}$
Here ${{R}}$ is the radius of the new bubble.
By simplifying the above equation, we have-
$\Rightarrow \dfrac{{{{16\pi T}}}}{{{3}}}\left( {{{r}}_{{1}}^{{2}}{{ + r}}_{{2}}^{{2}}} \right){{ = }}\dfrac{{{{16\pi T}}}}{{{3}}}{{{R}}^{{2}}}$
We cancel $\dfrac{{{{16\pi T}}}}{{{3}}}$ from both sides-
$\Rightarrow {{{R}}^{{2}}}{{ = r}}_{{1}}^{{2}}{{ + r}}_{{2}}^{{2}}$
$ \Rightarrow {{R = }}\sqrt {{{{r}}_{{1}}}^{{2}}{{ + }}{{{r}}_{{2}}}^{{2}}} $
Now we put ${{{r}}_{{1}}}{{ = 3}}$ and ${{{r}}_{{2}}}{{ = 4}}$in the above equation and get-
${{R = }}\sqrt {{{{3}}^{{2}}}{{ + }}{{{4}}^{{2}}}} $
$ \Rightarrow {{R = }}\sqrt {{{25}}} {{ = 5}}$
Therefore, the radius of the new soap bubble formed under an isothermal process is ${{5cm}}$.
Note: In Thermodynamics, the systems are divided into three categories, which are an open system, closed system, and isolated system. Open system exchanges both energy and mass with its surroundings. Closed systems can exchange only energy with its surroundings. An isolated system can neither exchange energy nor mass with its surroundings.
Complete step by step solution:
In thermodynamics, an isothermal is a thermodynamic process where the temperature of the system remains constant, i.e., $\Delta {{T = 0}}$.
In thermodynamics, an adiabatic is a thermodynamic process where heat or mass is not transferred between the system and the surroundings. Unlike the isothermal process, the system can transfer energy to the surroundings only as work in an adiabatic process.
Now, Boyle's law holds good in an isothermal process-
${{{P}}_1}{{{V}}_1} + {{{P}}_2}{{{V}}_2} = {{PV}}$…………$(1)$
Here,
${{{P}}_1}$= Pressure inside the small bubble.
${{{P}}_2}$= Pressure inside the large bubble.
${{{V}}_1}$= Volume of the small bubble.
${{{V}}_2}$= Volume of the large bubble.
${{P}}$= Pressure inside the new bubble.
${{V}}$= Volume of the new bubble.
For soap bubbles, we know,
${{P = }}\dfrac{{{{4T}}}}{{{r}}}$…………$(2)$
Here, ${{P}}$= Pressure inside the bubble.
${{T}}$= Temperature gas inside the bubble.
${{r}}$= Radius of the soap bubble.
And for the volume of the soap bubble we have-
${{V = }}\dfrac{{{4}}}{{{3}}}{{\pi }}{{{r}}^{{3}}}$
where ${{r}}$= Radius of the soap bubble.
By substituting all the values in $(1)$, we have-
$\dfrac{{{{4T}}}}{{{{{r}}_{{1}}}}}{{ \times }}\dfrac{{{4}}}{{{3}}}{{\pi }}{{{r}}_{{1}}}^{{3}}{{ + }}\dfrac{{{{4T}}}}{{{{{r}}_{{2}}}}}{{ \times }}\dfrac{{{4}}}{{{3}}}{{\pi }}{{{r}}_{{2}}}^{{3}}{{ = }}\dfrac{{{{4T}}}}{{{R}}}{{ \times }}\dfrac{{{4}}}{{{3}}}{{\pi }}{{{R}}^{{3}}}$
Here ${{R}}$ is the radius of the new bubble.
By simplifying the above equation, we have-
$\Rightarrow \dfrac{{{{16\pi T}}}}{{{3}}}\left( {{{r}}_{{1}}^{{2}}{{ + r}}_{{2}}^{{2}}} \right){{ = }}\dfrac{{{{16\pi T}}}}{{{3}}}{{{R}}^{{2}}}$
We cancel $\dfrac{{{{16\pi T}}}}{{{3}}}$ from both sides-
$\Rightarrow {{{R}}^{{2}}}{{ = r}}_{{1}}^{{2}}{{ + r}}_{{2}}^{{2}}$
$ \Rightarrow {{R = }}\sqrt {{{{r}}_{{1}}}^{{2}}{{ + }}{{{r}}_{{2}}}^{{2}}} $
Now we put ${{{r}}_{{1}}}{{ = 3}}$ and ${{{r}}_{{2}}}{{ = 4}}$in the above equation and get-
${{R = }}\sqrt {{{{3}}^{{2}}}{{ + }}{{{4}}^{{2}}}} $
$ \Rightarrow {{R = }}\sqrt {{{25}}} {{ = 5}}$
Therefore, the radius of the new soap bubble formed under an isothermal process is ${{5cm}}$.
Note: In Thermodynamics, the systems are divided into three categories, which are an open system, closed system, and isolated system. Open system exchanges both energy and mass with its surroundings. Closed systems can exchange only energy with its surroundings. An isolated system can neither exchange energy nor mass with its surroundings.
Recently Updated Pages
Uniform Acceleration Explained: Formula, Examples & Graphs

JEE Mains 2026: Exam Dates and City Intimation slip OUT, Registration Open, Syllabus & Eligibility

JEE Main Candidate Login 2026 and Registration Portal | Form Access

JEE Main 2026 Session 1 Correction Window Started: Check Dates, Edit Link & Fees

JEE Isolation, Preparation and Properties of Non-metals Important Concepts and Tips for Exam Preparation

Isoelectronic Definition in Chemistry: Meaning, Examples & Trends

Trending doubts
Understanding Atomic Structure for Beginners

Understanding Electromagnetic Waves and Their Importance

Understanding Average and RMS Value in Electrical Circuits

Half Life of Zero Order Reaction for JEE

Efficiency of Carnot engine is 100 if A T2273K B T20K class 11 physics JEE_Main

Understanding Displacement and Velocity Time Graphs

Other Pages
JEE Advanced 2026 - Exam Date (Released), Syllabus, Registration, Eligibility, Preparation, and More

JEE Advanced 2026 - Exam Date (Released), Syllabus, Registration, Eligibility, Preparation, and More

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

NCERT Solutions For Class 11 Physics Chapter 4 Laws Of Motion

NCERT Solutions for Class 11 Physics Chapter 5 Work Energy And Power 2025-26

NCERT Solutions for Class 11 Physics Chapter 6 System Of Particles And Rotational Motion 2025-26

