![SearchIcon](https://vmkt.vedantu.com/vmkt/PROD/png/bdcdbbd8-08a7-4688-98e6-4aa54e5e0800-1733305962725-4102606384256179.png)
Two soap bubbles in a vacuum of radii $3cm$ and $4cm$ coalesces to form a single bubble under isothermal conditions. Then the radius of the bigger bubble is:
Answer
124.5k+ views
Hint: We must learn about the isothermal and adiabatic processes. Then we will be able to distinguish between these two processes and will be able to understand how the gas law changes with the change in the condition if it is isothermal or adiabatic.
Complete step by step solution:
In thermodynamics, an isothermal is a thermodynamic process where the temperature of the system remains constant, i.e., $\Delta {{T = 0}}$.
In thermodynamics, an adiabatic is a thermodynamic process where heat or mass is not transferred between the system and the surroundings. Unlike the isothermal process, the system can transfer energy to the surroundings only as work in an adiabatic process.
Now, Boyle's law holds good in an isothermal process-
${{{P}}_1}{{{V}}_1} + {{{P}}_2}{{{V}}_2} = {{PV}}$…………$(1)$
Here,
${{{P}}_1}$= Pressure inside the small bubble.
${{{P}}_2}$= Pressure inside the large bubble.
${{{V}}_1}$= Volume of the small bubble.
${{{V}}_2}$= Volume of the large bubble.
${{P}}$= Pressure inside the new bubble.
${{V}}$= Volume of the new bubble.
For soap bubbles, we know,
${{P = }}\dfrac{{{{4T}}}}{{{r}}}$…………$(2)$
Here, ${{P}}$= Pressure inside the bubble.
${{T}}$= Temperature gas inside the bubble.
${{r}}$= Radius of the soap bubble.
And for the volume of the soap bubble we have-
${{V = }}\dfrac{{{4}}}{{{3}}}{{\pi }}{{{r}}^{{3}}}$
where ${{r}}$= Radius of the soap bubble.
By substituting all the values in $(1)$, we have-
$\dfrac{{{{4T}}}}{{{{{r}}_{{1}}}}}{{ \times }}\dfrac{{{4}}}{{{3}}}{{\pi }}{{{r}}_{{1}}}^{{3}}{{ + }}\dfrac{{{{4T}}}}{{{{{r}}_{{2}}}}}{{ \times }}\dfrac{{{4}}}{{{3}}}{{\pi }}{{{r}}_{{2}}}^{{3}}{{ = }}\dfrac{{{{4T}}}}{{{R}}}{{ \times }}\dfrac{{{4}}}{{{3}}}{{\pi }}{{{R}}^{{3}}}$
Here ${{R}}$ is the radius of the new bubble.
By simplifying the above equation, we have-
$\Rightarrow \dfrac{{{{16\pi T}}}}{{{3}}}\left( {{{r}}_{{1}}^{{2}}{{ + r}}_{{2}}^{{2}}} \right){{ = }}\dfrac{{{{16\pi T}}}}{{{3}}}{{{R}}^{{2}}}$
We cancel $\dfrac{{{{16\pi T}}}}{{{3}}}$ from both sides-
$\Rightarrow {{{R}}^{{2}}}{{ = r}}_{{1}}^{{2}}{{ + r}}_{{2}}^{{2}}$
$ \Rightarrow {{R = }}\sqrt {{{{r}}_{{1}}}^{{2}}{{ + }}{{{r}}_{{2}}}^{{2}}} $
Now we put ${{{r}}_{{1}}}{{ = 3}}$ and ${{{r}}_{{2}}}{{ = 4}}$in the above equation and get-
${{R = }}\sqrt {{{{3}}^{{2}}}{{ + }}{{{4}}^{{2}}}} $
$ \Rightarrow {{R = }}\sqrt {{{25}}} {{ = 5}}$
Therefore, the radius of the new soap bubble formed under an isothermal process is ${{5cm}}$.
Note: In Thermodynamics, the systems are divided into three categories, which are an open system, closed system, and isolated system. Open system exchanges both energy and mass with its surroundings. Closed systems can exchange only energy with its surroundings. An isolated system can neither exchange energy nor mass with its surroundings.
Complete step by step solution:
In thermodynamics, an isothermal is a thermodynamic process where the temperature of the system remains constant, i.e., $\Delta {{T = 0}}$.
In thermodynamics, an adiabatic is a thermodynamic process where heat or mass is not transferred between the system and the surroundings. Unlike the isothermal process, the system can transfer energy to the surroundings only as work in an adiabatic process.
Now, Boyle's law holds good in an isothermal process-
${{{P}}_1}{{{V}}_1} + {{{P}}_2}{{{V}}_2} = {{PV}}$…………$(1)$
Here,
${{{P}}_1}$= Pressure inside the small bubble.
${{{P}}_2}$= Pressure inside the large bubble.
${{{V}}_1}$= Volume of the small bubble.
${{{V}}_2}$= Volume of the large bubble.
${{P}}$= Pressure inside the new bubble.
${{V}}$= Volume of the new bubble.
For soap bubbles, we know,
${{P = }}\dfrac{{{{4T}}}}{{{r}}}$…………$(2)$
Here, ${{P}}$= Pressure inside the bubble.
${{T}}$= Temperature gas inside the bubble.
${{r}}$= Radius of the soap bubble.
And for the volume of the soap bubble we have-
${{V = }}\dfrac{{{4}}}{{{3}}}{{\pi }}{{{r}}^{{3}}}$
where ${{r}}$= Radius of the soap bubble.
By substituting all the values in $(1)$, we have-
$\dfrac{{{{4T}}}}{{{{{r}}_{{1}}}}}{{ \times }}\dfrac{{{4}}}{{{3}}}{{\pi }}{{{r}}_{{1}}}^{{3}}{{ + }}\dfrac{{{{4T}}}}{{{{{r}}_{{2}}}}}{{ \times }}\dfrac{{{4}}}{{{3}}}{{\pi }}{{{r}}_{{2}}}^{{3}}{{ = }}\dfrac{{{{4T}}}}{{{R}}}{{ \times }}\dfrac{{{4}}}{{{3}}}{{\pi }}{{{R}}^{{3}}}$
Here ${{R}}$ is the radius of the new bubble.
By simplifying the above equation, we have-
$\Rightarrow \dfrac{{{{16\pi T}}}}{{{3}}}\left( {{{r}}_{{1}}^{{2}}{{ + r}}_{{2}}^{{2}}} \right){{ = }}\dfrac{{{{16\pi T}}}}{{{3}}}{{{R}}^{{2}}}$
We cancel $\dfrac{{{{16\pi T}}}}{{{3}}}$ from both sides-
$\Rightarrow {{{R}}^{{2}}}{{ = r}}_{{1}}^{{2}}{{ + r}}_{{2}}^{{2}}$
$ \Rightarrow {{R = }}\sqrt {{{{r}}_{{1}}}^{{2}}{{ + }}{{{r}}_{{2}}}^{{2}}} $
Now we put ${{{r}}_{{1}}}{{ = 3}}$ and ${{{r}}_{{2}}}{{ = 4}}$in the above equation and get-
${{R = }}\sqrt {{{{3}}^{{2}}}{{ + }}{{{4}}^{{2}}}} $
$ \Rightarrow {{R = }}\sqrt {{{25}}} {{ = 5}}$
Therefore, the radius of the new soap bubble formed under an isothermal process is ${{5cm}}$.
Note: In Thermodynamics, the systems are divided into three categories, which are an open system, closed system, and isolated system. Open system exchanges both energy and mass with its surroundings. Closed systems can exchange only energy with its surroundings. An isolated system can neither exchange energy nor mass with its surroundings.
Recently Updated Pages
Difference Between Circuit Switching and Packet Switching
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Difference Between Mass and Weight
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
JEE Main Participating Colleges 2024 - A Complete List of Top Colleges
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
JEE Main Maths Paper Pattern 2025 – Marking, Sections & Tips
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Sign up for JEE Main 2025 Live Classes - Vedantu
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
JEE Main 2025 Helpline Numbers - Center Contact, Phone Number, Address
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility & More
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Class 11 JEE Main Physics Mock Test 2025
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
JEE Main 2023 January 24 Shift 2 Question Paper with Answer Keys & Solutions
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Learn About Angle Of Deviation In Prism: JEE Main Physics 2025
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
NCERT Solutions for Class 11 Physics Chapter 1 Units and Measurements
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
NCERT Solutions for Class 11 Physics Chapter 9 Mechanical Properties of Fluids
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
Units and Measurements Class 11 Notes: CBSE Physics Chapter 1
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More
![arrow-right](/cdn/images/seo-templates/arrow-right.png)
NCERT Solutions for Class 11 Physics Chapter 2 Motion In A Straight Line
![arrow-right](/cdn/images/seo-templates/arrow-right.png)