Answer
Verified
99.9k+ views
Hint:When a spring is stretched or compressed it undergoes some displacement then comes back to its equilibrium after some time, therefore the spring exerts an equal and opposite force on a body that compresses or stretches the spring. This energy stored in the spring is called potential energy of spring and is equal to the product of force with displacement.
Formula used :
\[F = kx\,\,\]and \[U = \dfrac{1}{2}k{x^2}\]
Here, F= spring force K = Spring constant, x = Elongation in spring and U = Spring potential energy.
Complete step by step solution:
Two springs of constant \[{K_1} = 1500\,N/m\] and \[{K_1} = 3000\,N/m\] are given here and we have to find the ratio of potential energy for the spring when they are stretched by same force. Form spring force, \[F = kx\,\,\] we have elongation in spring as,
\[x = \dfrac{F}{k}\,\,\]
As the force on both the springs is the same, let the elongation be \[{x_1}\] and \[{x_2}\].
Then, \[{x_1} = \dfrac{F}{{{K_1}}}\] and \[{x_2} = \dfrac{F}{{{K_2}}}\,..........(1)\].
Potential energy of spring is defined by the amount of energy stored in it, which the spring applies to come to equilibrium when it is either stretched or compressed. Potential energy U for spring constant K and elongation in spring x is given by,
\[U = \dfrac{1}{2}k{x^2}\]
Using above equation potential energy \[{U_1}\] and \[{U_2}\] for springs of constant \[{K_1}\] and \[{K_2}\] and elongation \[{x_1}\] and \[{x_2}\] respectively will be,
\[{U_1} = \dfrac{1}{2}{K_1}x_1^2\,.......(2)\]
\[\Rightarrow {U_2} = \dfrac{1}{2}{K_2}x_2^2\,.......(3)\]
Dividing equation (2) by (3)
\[\dfrac{{{U_1}}}{{{U_2}}} = \dfrac{{{K_1}x_1^2}}{2} \times \dfrac{2}{{{K_2}x_2^2}} \Rightarrow \dfrac{{{U_1}}}{{{U_2}}} = \dfrac{{{K_1}x_1^2}}{{{K_2}x_2^2}}\]
Substituting values of $x_1$ and $x_2$ from equation (1) in above equation we get,
$\dfrac{{{U_1}}}{{{U_2}}} = \dfrac{K_1\,(F/K_1)^2}{K_2\,(F/K_2)^2} \\
\Rightarrow \dfrac{{{U_1}}}{{{U_2}}} = \dfrac{{{K_1}{F^2}K_2^2}}{{{K_2}K_1^2{F^2}}}\,.......(3)$
Further solving equation (3) we get,
\[\dfrac{{{U_1}}}{{{U_2}}} = \dfrac{{{K_2}}}{{{K_1}}}\,........(4)\]
Substituting \[{K_1} = 1500\,N/m\] and \[{K_1} = 3000\,N/m\] in equation (4) we get,
\[\dfrac{{{U_1}}}{{{U_2}}} = \dfrac{{3000}}{{1500}} = \dfrac{2}{1}\]
Hence, the ratio of potential energy stored in the springs is 2:1.
Therefore, option A is the correct answer.
Note: When the spring is at equilibrium position the potential energy of the spring is minimum i. e. zero and when the spring is stretched to length x where kinetic energy is zero, at that point potential energy is equal to the total external work done on the system.
Formula used :
\[F = kx\,\,\]and \[U = \dfrac{1}{2}k{x^2}\]
Here, F= spring force K = Spring constant, x = Elongation in spring and U = Spring potential energy.
Complete step by step solution:
Two springs of constant \[{K_1} = 1500\,N/m\] and \[{K_1} = 3000\,N/m\] are given here and we have to find the ratio of potential energy for the spring when they are stretched by same force. Form spring force, \[F = kx\,\,\] we have elongation in spring as,
\[x = \dfrac{F}{k}\,\,\]
As the force on both the springs is the same, let the elongation be \[{x_1}\] and \[{x_2}\].
Then, \[{x_1} = \dfrac{F}{{{K_1}}}\] and \[{x_2} = \dfrac{F}{{{K_2}}}\,..........(1)\].
Potential energy of spring is defined by the amount of energy stored in it, which the spring applies to come to equilibrium when it is either stretched or compressed. Potential energy U for spring constant K and elongation in spring x is given by,
\[U = \dfrac{1}{2}k{x^2}\]
Using above equation potential energy \[{U_1}\] and \[{U_2}\] for springs of constant \[{K_1}\] and \[{K_2}\] and elongation \[{x_1}\] and \[{x_2}\] respectively will be,
\[{U_1} = \dfrac{1}{2}{K_1}x_1^2\,.......(2)\]
\[\Rightarrow {U_2} = \dfrac{1}{2}{K_2}x_2^2\,.......(3)\]
Dividing equation (2) by (3)
\[\dfrac{{{U_1}}}{{{U_2}}} = \dfrac{{{K_1}x_1^2}}{2} \times \dfrac{2}{{{K_2}x_2^2}} \Rightarrow \dfrac{{{U_1}}}{{{U_2}}} = \dfrac{{{K_1}x_1^2}}{{{K_2}x_2^2}}\]
Substituting values of $x_1$ and $x_2$ from equation (1) in above equation we get,
$\dfrac{{{U_1}}}{{{U_2}}} = \dfrac{K_1\,(F/K_1)^2}{K_2\,(F/K_2)^2} \\
\Rightarrow \dfrac{{{U_1}}}{{{U_2}}} = \dfrac{{{K_1}{F^2}K_2^2}}{{{K_2}K_1^2{F^2}}}\,.......(3)$
Further solving equation (3) we get,
\[\dfrac{{{U_1}}}{{{U_2}}} = \dfrac{{{K_2}}}{{{K_1}}}\,........(4)\]
Substituting \[{K_1} = 1500\,N/m\] and \[{K_1} = 3000\,N/m\] in equation (4) we get,
\[\dfrac{{{U_1}}}{{{U_2}}} = \dfrac{{3000}}{{1500}} = \dfrac{2}{1}\]
Hence, the ratio of potential energy stored in the springs is 2:1.
Therefore, option A is the correct answer.
Note: When the spring is at equilibrium position the potential energy of the spring is minimum i. e. zero and when the spring is stretched to length x where kinetic energy is zero, at that point potential energy is equal to the total external work done on the system.
Recently Updated Pages
Write a composition in approximately 450 500 words class 10 english JEE_Main
Arrange the sentences P Q R between S1 and S5 such class 10 english JEE_Main
Write an article on the need and importance of sports class 10 english JEE_Main
Name the scale on which the destructive energy of an class 11 physics JEE_Main
Choose the exact meaning of the given idiomphrase The class 9 english JEE_Main
Choose the one which best expresses the meaning of class 9 english JEE_Main
Other Pages
The values of kinetic energy K and potential energy class 11 physics JEE_Main
What torque will increase the angular velocity of a class 11 physics JEE_Main
BF3 reacts with NaH at 450 K to form NaF and X When class 11 chemistry JEE_Main
Electric field due to uniformly charged sphere class 12 physics JEE_Main
In the reaction of KMnO4 with H2C204 20 mL of 02 M class 12 chemistry JEE_Main
Dependence of intensity of gravitational field E of class 11 physics JEE_Main