Answer
Verified
110.4k+ views
Hint So for this question, we have mass and the velocity of each ball. So we will calculate the velocity by using the formula which will use all the values given. The formula is given below. Since momentum is conserved so the elastic collision will be equal to one.
Formula used:
Velocity for the elastic collision,
$V = \left( {\dfrac{{{m_2} - e{m_1}}}{{{m_1} + {m_2}}}} \right){u_2} + \left( {\dfrac{{{m_1} - e{m_1}}}{{{m_1} + {m_2}}}} \right){u_1}$
Here,
$V$, will be the velocity
$e$, will be the elastic collision
${m_1}$, will be the mass of the ball $A$
${m_2}$, will be the mass of the ball $B$
${u_2}$, will be the initial velocity of the ball $A$
${u_1}$, will be the initial velocity of the ball $B$
Complete Step By Step Solution
Firstly, we will see the values given to us.
${u_1} = 5m/s$
${u_2} = 1m/s$
${m_1} = 10kg$
${m_2} = 10g = 0.01kg$
Now by using the formula we have already seen,
$V = \left( {\dfrac{{{m_2} - e{m_1}}}{{{m_1} + {m_2}}}} \right){u_2} + \left( {\dfrac{{{m_1} - e{m_1}}}{{{m_1} + {m_2}}}} \right){u_1}$
Velocity will be,
Substituting the values, we get
Here, the value of elastic collision will be
$ \Rightarrow e = 1$
On putting the values, we get
$ \Rightarrow V = \left( {\dfrac{{0.01 - 10}}{{10 + 0.01}}} \right)\left( { - 1} \right) + \left( {\dfrac{{10 - 10}}{{10 + 0.01}}} \right)5$
On further simplifying it, we get
\[ \Rightarrow V = \dfrac{{9.99 + 150}}{{10.01}}\]
Again solving the equation,
\[ \Rightarrow V = \dfrac{{109.99}}{{10.01}}\]
And it will be approximately equal to
$ \Rightarrow \approx 11m/s$
So if it is the case of elastic collision $B$ will move with the speed of approximately $11m/s$.
Hence the option $\left( c \right)$ is the correct option.
Note All collisions, from elastic to completely inelastic and anything in between, must conserve momentum. The reason is simply that all forces in a collision are internal to the objects colliding, i.e. no outside forces act on the system.
This is most effectively perceived in a two-body crash. The adjustment in the energy of an article is equivalent to the motivation, Assuming a consistent power, this is only the power times the timeframe. All the more, by and large, it is the fundamental of power concerning time.
Formula used:
Velocity for the elastic collision,
$V = \left( {\dfrac{{{m_2} - e{m_1}}}{{{m_1} + {m_2}}}} \right){u_2} + \left( {\dfrac{{{m_1} - e{m_1}}}{{{m_1} + {m_2}}}} \right){u_1}$
Here,
$V$, will be the velocity
$e$, will be the elastic collision
${m_1}$, will be the mass of the ball $A$
${m_2}$, will be the mass of the ball $B$
${u_2}$, will be the initial velocity of the ball $A$
${u_1}$, will be the initial velocity of the ball $B$
Complete Step By Step Solution
Firstly, we will see the values given to us.
${u_1} = 5m/s$
${u_2} = 1m/s$
${m_1} = 10kg$
${m_2} = 10g = 0.01kg$
Now by using the formula we have already seen,
$V = \left( {\dfrac{{{m_2} - e{m_1}}}{{{m_1} + {m_2}}}} \right){u_2} + \left( {\dfrac{{{m_1} - e{m_1}}}{{{m_1} + {m_2}}}} \right){u_1}$
Velocity will be,
Substituting the values, we get
Here, the value of elastic collision will be
$ \Rightarrow e = 1$
On putting the values, we get
$ \Rightarrow V = \left( {\dfrac{{0.01 - 10}}{{10 + 0.01}}} \right)\left( { - 1} \right) + \left( {\dfrac{{10 - 10}}{{10 + 0.01}}} \right)5$
On further simplifying it, we get
\[ \Rightarrow V = \dfrac{{9.99 + 150}}{{10.01}}\]
Again solving the equation,
\[ \Rightarrow V = \dfrac{{109.99}}{{10.01}}\]
And it will be approximately equal to
$ \Rightarrow \approx 11m/s$
So if it is the case of elastic collision $B$ will move with the speed of approximately $11m/s$.
Hence the option $\left( c \right)$ is the correct option.
Note All collisions, from elastic to completely inelastic and anything in between, must conserve momentum. The reason is simply that all forces in a collision are internal to the objects colliding, i.e. no outside forces act on the system.
This is most effectively perceived in a two-body crash. The adjustment in the energy of an article is equivalent to the motivation, Assuming a consistent power, this is only the power times the timeframe. All the more, by and large, it is the fundamental of power concerning time.
Recently Updated Pages
Write an article on the need and importance of sports class 10 english JEE_Main
Write a composition in approximately 450 500 words class 10 english JEE_Main
Arrange the sentences P Q R between S1 and S5 such class 10 english JEE_Main
If x2 hx 21 0x2 3hx + 35 0h 0 has a common root then class 10 maths JEE_Main
The radius of a sector is 12 cm and the angle is 120circ class 10 maths JEE_Main
For what value of x function fleft x right x4 4x3 + class 10 maths JEE_Main
Other Pages
If a wire of resistance R is stretched to double of class 12 physics JEE_Main
The energy stored is a condenser is in the form of class 12 physics JEE_Main
Excluding stoppages the speed of a bus is 54 kmph and class 11 maths JEE_Main
Electric field due to uniformly charged sphere class 12 physics JEE_Main
In Searles apparatus when the experimental wire is class 11 physics JEE_Main