Unpolarised light of intensity $I$ passes through an ideal polarizer A. Another identical polarizer B is placed behind A. The intensity of light beyond B is found to be $\dfrac{1}{2}$. Now another identical polarizer C is placed between A and B. The intensity beyond B is now found to be $\dfrac{1}{8}$. The angle between polarizer A and C is:
A) $45^\circ $
B) $60^\circ $
C) $0^\circ $
D) $30^\circ $
Answer
Verified
123k+ views
Hint: Whenever a light passes through a polarizer, the intensity of the light will be halved. And if there is no change in the intensity between two polarizers, they are placed parallel to each other.
Complete step by step answer:
Let’s discuss the first case, that is an unpolarised light passes through a polarizer A. we know, whenever a light passes through a polarizer, the intensity of the light will be halved.
That is $\dfrac{I}{2}$
As described in the question Light passes through two polarizers A and B, and the intensity is reduced to $\dfrac{I}{2}$
The light coming from the polarizer A is having the intensity equal to $\dfrac{I}{2}$, the same light passing through the polarizer B and the intensity remains the same.
By applying Malus formula, $I = {I_0}{\cos ^2}\theta $
Where, $I$ is the final intensity, ${I_0}$ is the intensity of light which coming from the first polarizer, $\theta $ is the angle between the two polarizers (here,\[{\theta _{AB}}\])
\[ \Rightarrow \dfrac{I}{2} = \dfrac{I}{2}{\cos ^2}{\theta _{AB}}\]
$ \Rightarrow {\cos ^2}{\theta _{AB}} = 1$
$ \Rightarrow {\theta _{AB}} = 0^\circ .$
Which means the polarizers A&B are parallel to each other.
Now another polarizer C is placed between the polarizers A&B, then the resultant becomes $\dfrac{1}{8}$.
That is the intensities coming from A=$\dfrac{I}{2}$, C=${I_C}$& B=$\dfrac{1}{8}$
By applying Malus formula between polarizers A&C
………………………………………… (Eqn. P)
By applying Malus formula between Polarizers C&B
\[ \Rightarrow \dfrac{I}{8} = {I_C}{\cos ^2}{\theta _{CB}}\]………………………………………… (Eqn. Q)
By analyzing these data, we understand that polarizer C is making angle between polarizers A&B
As A&B are parallel, ${\theta _{AC}} = {\theta _{BC}} = \theta $
Eqn. P in Eqn. Q, we get,
$ \Rightarrow \dfrac{I}{8} = \dfrac{I}{2}{\cos ^2}\theta {\cos ^2}\theta $
$ \Rightarrow \dfrac{1}{4} = {\cos ^4}\theta $
$ \Rightarrow \dfrac{1}{2} = {\cos ^2}\theta $
$ \Rightarrow \cos \theta = \dfrac{1}{{\sqrt 2 }}$
$ \Rightarrow \theta = 45^\circ $
We get, final answer is option (A)
Note: An unpolarized light is a light wave that is vibrating in more than one plane is referred to as unpolarized light. In unpolarised light, the vibrations are symmetric about the direction of propagation. For an unpolarised wave the displacement will be randomly changing with time though it will always be perpendicular to the direction of propagation.
Complete step by step answer:
Let’s discuss the first case, that is an unpolarised light passes through a polarizer A. we know, whenever a light passes through a polarizer, the intensity of the light will be halved.
That is $\dfrac{I}{2}$
As described in the question Light passes through two polarizers A and B, and the intensity is reduced to $\dfrac{I}{2}$
The light coming from the polarizer A is having the intensity equal to $\dfrac{I}{2}$, the same light passing through the polarizer B and the intensity remains the same.
By applying Malus formula, $I = {I_0}{\cos ^2}\theta $
Where, $I$ is the final intensity, ${I_0}$ is the intensity of light which coming from the first polarizer, $\theta $ is the angle between the two polarizers (here,\[{\theta _{AB}}\])
\[ \Rightarrow \dfrac{I}{2} = \dfrac{I}{2}{\cos ^2}{\theta _{AB}}\]
$ \Rightarrow {\cos ^2}{\theta _{AB}} = 1$
$ \Rightarrow {\theta _{AB}} = 0^\circ .$
Which means the polarizers A&B are parallel to each other.
Now another polarizer C is placed between the polarizers A&B, then the resultant becomes $\dfrac{1}{8}$.
That is the intensities coming from A=$\dfrac{I}{2}$, C=${I_C}$& B=$\dfrac{1}{8}$
By applying Malus formula between polarizers A&C
………………………………………… (Eqn. P)
By applying Malus formula between Polarizers C&B
\[ \Rightarrow \dfrac{I}{8} = {I_C}{\cos ^2}{\theta _{CB}}\]………………………………………… (Eqn. Q)
By analyzing these data, we understand that polarizer C is making angle between polarizers A&B
As A&B are parallel, ${\theta _{AC}} = {\theta _{BC}} = \theta $
Eqn. P in Eqn. Q, we get,
$ \Rightarrow \dfrac{I}{8} = \dfrac{I}{2}{\cos ^2}\theta {\cos ^2}\theta $
$ \Rightarrow \dfrac{1}{4} = {\cos ^4}\theta $
$ \Rightarrow \dfrac{1}{2} = {\cos ^2}\theta $
$ \Rightarrow \cos \theta = \dfrac{1}{{\sqrt 2 }}$
$ \Rightarrow \theta = 45^\circ $
We get, final answer is option (A)
Note: An unpolarized light is a light wave that is vibrating in more than one plane is referred to as unpolarized light. In unpolarised light, the vibrations are symmetric about the direction of propagation. For an unpolarised wave the displacement will be randomly changing with time though it will always be perpendicular to the direction of propagation.
Recently Updated Pages
The ratio of the diameters of two metallic rods of class 11 physics JEE_Main
What is the difference between Conduction and conv class 11 physics JEE_Main
Mark the correct statements about the friction between class 11 physics JEE_Main
Find the acceleration of the wedge towards the right class 11 physics JEE_Main
A standing wave is formed by the superposition of two class 11 physics JEE_Main
Derive an expression for work done by the gas in an class 11 physics JEE_Main
Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility & More
JEE Main Login 2045: Step-by-Step Instructions and Details
Class 11 JEE Main Physics Mock Test 2025
JEE Main Chemistry Question Paper with Answer Keys and Solutions
JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking
JEE Main 2023 January 24 Shift 2 Question Paper with Answer Keys & Solutions
Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs
NCERT Solutions for Class 11 Physics Chapter 1 Units and Measurements
NCERT Solutions for Class 11 Physics Chapter 9 Mechanical Properties of Fluids
Units and Measurements Class 11 Notes: CBSE Physics Chapter 1
JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More
NCERT Solutions for Class 11 Physics Chapter 2 Motion In A Straight Line