
Using properties of integral evaluate: $\int\limits_{0}^{\pi }{\dfrac{x}{1+\sin x}dx}$.
Answer
133.5k+ views
Hint: The given definite integral requires two different theorems to narrow it down to its simplest form. We apply $\int\limits_{0}^{a}{f\left( x \right)dx}=\int\limits_{0}^{a}{f\left( a-x \right)dx}$ and $\int\limits_{0}^{2a}{f\left( x \right)dx}=2\int\limits_{0}^{a}{f\left( x \right)dx}$ to remove the x component from the numerator part. Then we use trigo integral form to find the solution of the problem.
Complete step-by-step solution
We have been given a definite integral. We assume $I=\int\limits_{0}^{\pi }{\dfrac{x}{1+\sin x}dx}$.
We have the theorem of definite integral $\int\limits_{0}^{a}{f\left( x \right)dx}=\int\limits_{0}^{a}{f\left( a-x \right)dx}$.
For our given integral $a=\pi ,f\left( x \right)=\dfrac{x}{1+\sin x}$.
We try to find the value of $f\left( a-x \right)=f\left( \pi -x \right)=\dfrac{\pi -x}{1+\sin \left( \pi -x \right)}=\dfrac{\pi -x}{1+\sin x}$.
So, $I=\int\limits_{0}^{\pi }{\dfrac{x}{1+\sin x}dx}=\int\limits_{0}^{\pi }{\dfrac{\pi -x}{1+\sin x}dx}$.
We add these two integrals to remove the x in the numerator of the integral.
We have the theorem $\int\limits_{a}^{b}{f\left( x \right)dx}+\int\limits_{a}^{b}{g\left( x \right)dx}=\int\limits_{a}^{b}{\left[ f\left( x \right)+g\left( x \right) \right]dx}$.
So, $2I=\int\limits_{0}^{\pi }{\dfrac{x}{1+\sin x}dx}+\int\limits_{0}^{\pi }{\dfrac{\pi -x}{1+\sin x}dx}=\int\limits_{0}^{\pi }{\dfrac{x+\pi -x}{1+\sin x}dx}=\int\limits_{0}^{\pi }{\dfrac{\pi }{1+\sin x}dx}$.
The integral becomes
\[\begin{align}
& 2I=\int\limits_{0}^{\pi }{\dfrac{\pi }{1+\sin x}dx} \\
& \Rightarrow I=\dfrac{\pi }{2}\int\limits_{0}^{\pi }{\dfrac{dx}{1+\sin x}} \\
\end{align}\]
We again apply the theorem $\int\limits_{0}^{2a}{f\left( x \right)dx}=2\int\limits_{0}^{a}{f\left( x \right)dx}$ if $f\left( 2a-x \right)=f\left( x \right)$.
In our integral if we assume \[{{I}_{1}}=\int\limits_{0}^{\pi }{\dfrac{dx}{1+\sin x}}\], we have $\sin \left( \pi -x \right)=\sin x$.
So, \[{{I}_{1}}=\int\limits_{0}^{\pi }{\dfrac{dx}{1+\sin x}}=2\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{dx}{1+\sin x}}\] which means \[I=\dfrac{\pi }{2}{{I}_{1}}=\pi \int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{dx}{1+\sin x}}\].
We multiply with $1-\sin x$ to both numerator and denominator and get
\[I=\pi \int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{dx}{1+\sin x}}=\pi \int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{\left( 1-\sin x \right)}{\left( 1+\sin x \right)\left( 1-\sin x \right)}}dx=\pi \int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{\left( 1-\sin x \right)}{{{\cos }^{2}}x}}dx\].
Now we use the trigonometric identities and find the integral as
\[I=\pi \int\limits_{0}^{\dfrac{\pi }{2}}{\left( {{\sec }^{2}}x-\tan x\sec x \right)}dx\]. We now use the integral theorem of trigo ratios.
\[\begin{align}
& I=\pi \int\limits_{0}^{\dfrac{\pi }{2}}{\left( {{\sec }^{2}}x-\tan x\sec x \right)}dx \\
& \Rightarrow \pi \left[ \tan x-\sec x \right]_{0}^{\dfrac{\pi }{2}} \\
& \Rightarrow \pi \left[ \left( \tan \dfrac{\pi }{2}-\tan 0 \right)-\left( \sec \dfrac{\pi }{2}-\sec 0 \right) \right] \\
& \Rightarrow \pi \left[ \left( \tan \dfrac{\pi }{2}-\tan 0 \right)-\left( \sec \dfrac{\pi }{2}-\sec 0 \right) \right] \\
& \Rightarrow \pi \\
\end{align}\]
So, the integral value of $\int\limits_{0}^{\pi }{\dfrac{x}{1+\sin x}dx}$ is $\pi $.
Note: In the last part of the integral we had terms like \[\tan \dfrac{\pi }{2}\] and \[\sec \dfrac{\pi }{2}\] which have no exact value as they tends to infinity as they approach $\dfrac{\pi }{2}$. But the value of them gets similar as $x\to \dfrac{\pi }{2}$. That’s why we can eliminate them.
Complete step-by-step solution
We have been given a definite integral. We assume $I=\int\limits_{0}^{\pi }{\dfrac{x}{1+\sin x}dx}$.
We have the theorem of definite integral $\int\limits_{0}^{a}{f\left( x \right)dx}=\int\limits_{0}^{a}{f\left( a-x \right)dx}$.
For our given integral $a=\pi ,f\left( x \right)=\dfrac{x}{1+\sin x}$.
We try to find the value of $f\left( a-x \right)=f\left( \pi -x \right)=\dfrac{\pi -x}{1+\sin \left( \pi -x \right)}=\dfrac{\pi -x}{1+\sin x}$.
So, $I=\int\limits_{0}^{\pi }{\dfrac{x}{1+\sin x}dx}=\int\limits_{0}^{\pi }{\dfrac{\pi -x}{1+\sin x}dx}$.
We add these two integrals to remove the x in the numerator of the integral.
We have the theorem $\int\limits_{a}^{b}{f\left( x \right)dx}+\int\limits_{a}^{b}{g\left( x \right)dx}=\int\limits_{a}^{b}{\left[ f\left( x \right)+g\left( x \right) \right]dx}$.
So, $2I=\int\limits_{0}^{\pi }{\dfrac{x}{1+\sin x}dx}+\int\limits_{0}^{\pi }{\dfrac{\pi -x}{1+\sin x}dx}=\int\limits_{0}^{\pi }{\dfrac{x+\pi -x}{1+\sin x}dx}=\int\limits_{0}^{\pi }{\dfrac{\pi }{1+\sin x}dx}$.
The integral becomes
\[\begin{align}
& 2I=\int\limits_{0}^{\pi }{\dfrac{\pi }{1+\sin x}dx} \\
& \Rightarrow I=\dfrac{\pi }{2}\int\limits_{0}^{\pi }{\dfrac{dx}{1+\sin x}} \\
\end{align}\]
We again apply the theorem $\int\limits_{0}^{2a}{f\left( x \right)dx}=2\int\limits_{0}^{a}{f\left( x \right)dx}$ if $f\left( 2a-x \right)=f\left( x \right)$.
In our integral if we assume \[{{I}_{1}}=\int\limits_{0}^{\pi }{\dfrac{dx}{1+\sin x}}\], we have $\sin \left( \pi -x \right)=\sin x$.
So, \[{{I}_{1}}=\int\limits_{0}^{\pi }{\dfrac{dx}{1+\sin x}}=2\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{dx}{1+\sin x}}\] which means \[I=\dfrac{\pi }{2}{{I}_{1}}=\pi \int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{dx}{1+\sin x}}\].
We multiply with $1-\sin x$ to both numerator and denominator and get
\[I=\pi \int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{dx}{1+\sin x}}=\pi \int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{\left( 1-\sin x \right)}{\left( 1+\sin x \right)\left( 1-\sin x \right)}}dx=\pi \int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{\left( 1-\sin x \right)}{{{\cos }^{2}}x}}dx\].
Now we use the trigonometric identities and find the integral as
\[I=\pi \int\limits_{0}^{\dfrac{\pi }{2}}{\left( {{\sec }^{2}}x-\tan x\sec x \right)}dx\]. We now use the integral theorem of trigo ratios.
\[\begin{align}
& I=\pi \int\limits_{0}^{\dfrac{\pi }{2}}{\left( {{\sec }^{2}}x-\tan x\sec x \right)}dx \\
& \Rightarrow \pi \left[ \tan x-\sec x \right]_{0}^{\dfrac{\pi }{2}} \\
& \Rightarrow \pi \left[ \left( \tan \dfrac{\pi }{2}-\tan 0 \right)-\left( \sec \dfrac{\pi }{2}-\sec 0 \right) \right] \\
& \Rightarrow \pi \left[ \left( \tan \dfrac{\pi }{2}-\tan 0 \right)-\left( \sec \dfrac{\pi }{2}-\sec 0 \right) \right] \\
& \Rightarrow \pi \\
\end{align}\]
So, the integral value of $\int\limits_{0}^{\pi }{\dfrac{x}{1+\sin x}dx}$ is $\pi $.
Note: In the last part of the integral we had terms like \[\tan \dfrac{\pi }{2}\] and \[\sec \dfrac{\pi }{2}\] which have no exact value as they tends to infinity as they approach $\dfrac{\pi }{2}$. But the value of them gets similar as $x\to \dfrac{\pi }{2}$. That’s why we can eliminate them.
Recently Updated Pages
Sign up for JEE Main 2025 Live Classes - Vedantu

JEE Main Books 2023-24: Best JEE Main Books for Physics, Chemistry and Maths

JEE Main 2023 April 13 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 11 Shift 2 Question Paper with Answer Key

JEE Main 2023 April 10 Shift 2 Question Paper with Answer Key

JEE Main 2023 (April 6th Shift 2) Maths Question Paper with Answer Key

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility & More

JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Current Loop as Magnetic Dipole and Its Derivation for JEE

Inertial and Non-Inertial Frame of Reference - JEE Important Topic

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced 2024 Syllabus Weightage

Degree of Dissociation and Its Formula With Solved Example for JEE

Clemmenson and Wolff Kishner Reductions for JEE

CBSE Date Sheet 2025 Released for Class 12 Board Exams, Download PDF

CBSE Class 10 Hindi Sample Papers 2024-25
