
Which of the following is not an assumption for an ideal fluid flow for which Bernoulli's principle is valid:
A) Steady flow
B) Incompressible
C) Viscous
D) Irrotational
Answer
233.1k+ views
Hint: Bernoulli’s principle states that an increase in the speed of a fluid occurs simultaneously with a decrease in static pressure or a decrease in the fluid's potential energy. This also means that the total mechanical energy of the moving fluid comprising the gravitational potential energy of elevation, the energy associated with the fluid pressure and the kinetic energy of the fluid motion, remains constant. The only property of liquid that is not involved in this definition is the property that causes a drag force.
Complete step by step answer:
Bernoulli's principle states that an increase in the speed of a fluid occurs simultaneously with a decrease in static pressure or a decrease in the fluid's potential energy. It is applicable in fluid mechanics. This theorem holds well for both compressible and incompressible flows. There are few assumptions which must be met for applying Bernoulli's equation. The flow must be steady. The flow must be incompressible which implies density must remain constant even pressure varies. The friction (viscosity) must be ignored. The significance of this principle is that the total pressure is constant along a streamline. So, we can assume that the flow is irrotational. So, these assumptions are valid for an ideal flow for which Bernoulli's equation is valid.
As we can see only vicious in options is missing in these assumptions, the correct option is option (C) i.e. Viscous.
Additional Information: The applications of Bernoulli's theorem can be seen in wings of aero planes, flying discs, ships, chimneys, etc.
Note: Bernoulli's principle is not valid in the boundary layer.
1. This principle mostly applies to non-viscous fluids.
2. Steady implies the flow parameters should remain constant at any point of time.
Complete step by step answer:
Bernoulli's principle states that an increase in the speed of a fluid occurs simultaneously with a decrease in static pressure or a decrease in the fluid's potential energy. It is applicable in fluid mechanics. This theorem holds well for both compressible and incompressible flows. There are few assumptions which must be met for applying Bernoulli's equation. The flow must be steady. The flow must be incompressible which implies density must remain constant even pressure varies. The friction (viscosity) must be ignored. The significance of this principle is that the total pressure is constant along a streamline. So, we can assume that the flow is irrotational. So, these assumptions are valid for an ideal flow for which Bernoulli's equation is valid.
As we can see only vicious in options is missing in these assumptions, the correct option is option (C) i.e. Viscous.
Additional Information: The applications of Bernoulli's theorem can be seen in wings of aero planes, flying discs, ships, chimneys, etc.
Note: Bernoulli's principle is not valid in the boundary layer.
1. This principle mostly applies to non-viscous fluids.
2. Steady implies the flow parameters should remain constant at any point of time.
Recently Updated Pages
JEE Main 2023 April 6 Shift 1 Question Paper with Answer Key

JEE Main 2023 April 6 Shift 2 Question Paper with Answer Key

JEE Main 2023 (January 31 Evening Shift) Question Paper with Solutions [PDF]

JEE Main 2023 January 30 Shift 2 Question Paper with Answer Key

JEE Main 2023 January 25 Shift 1 Question Paper with Answer Key

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Key

Trending doubts
JEE Main 2026: Session 2 Registration Open, City Intimation Slip, Exam Dates, Syllabus & Eligibility

JEE Main 2026 Application Login: Direct Link, Registration, Form Fill, and Steps

JEE Main Marking Scheme 2026- Paper-Wise Marks Distribution and Negative Marking Details

Understanding the Angle of Deviation in a Prism

Hybridisation in Chemistry – Concept, Types & Applications

How to Convert a Galvanometer into an Ammeter or Voltmeter

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

Laws of Motion Class 11 Physics Chapter 4 CBSE Notes - 2025-26

Waves Class 11 Physics Chapter 14 CBSE Notes - 2025-26

Mechanical Properties of Fluids Class 11 Physics Chapter 9 CBSE Notes - 2025-26

Thermodynamics Class 11 Physics Chapter 11 CBSE Notes - 2025-26

Units And Measurements Class 11 Physics Chapter 1 CBSE Notes - 2025-26

