Answer
Verified
112.5k+ views
Hint: Bernoulli’s principle states that an increase in the speed of a fluid occurs simultaneously with a decrease in static pressure or a decrease in the fluid's potential energy. This also means that the total mechanical energy of the moving fluid comprising the gravitational potential energy of elevation, the energy associated with the fluid pressure and the kinetic energy of the fluid motion, remains constant. The only property of liquid that is not involved in this definition is the property that causes a drag force.
Complete step by step answer:
Bernoulli's principle states that an increase in the speed of a fluid occurs simultaneously with a decrease in static pressure or a decrease in the fluid's potential energy. It is applicable in fluid mechanics. This theorem holds well for both compressible and incompressible flows. There are few assumptions which must be met for applying Bernoulli's equation. The flow must be steady. The flow must be incompressible which implies density must remain constant even pressure varies. The friction (viscosity) must be ignored. The significance of this principle is that the total pressure is constant along a streamline. So, we can assume that the flow is irrotational. So, these assumptions are valid for an ideal flow for which Bernoulli's equation is valid.
As we can see only vicious in options is missing in these assumptions, the correct option is option (C) i.e. Viscous.
Additional Information: The applications of Bernoulli's theorem can be seen in wings of aero planes, flying discs, ships, chimneys, etc.
Note: Bernoulli's principle is not valid in the boundary layer.
1. This principle mostly applies to non-viscous fluids.
2. Steady implies the flow parameters should remain constant at any point of time.
Complete step by step answer:
Bernoulli's principle states that an increase in the speed of a fluid occurs simultaneously with a decrease in static pressure or a decrease in the fluid's potential energy. It is applicable in fluid mechanics. This theorem holds well for both compressible and incompressible flows. There are few assumptions which must be met for applying Bernoulli's equation. The flow must be steady. The flow must be incompressible which implies density must remain constant even pressure varies. The friction (viscosity) must be ignored. The significance of this principle is that the total pressure is constant along a streamline. So, we can assume that the flow is irrotational. So, these assumptions are valid for an ideal flow for which Bernoulli's equation is valid.
As we can see only vicious in options is missing in these assumptions, the correct option is option (C) i.e. Viscous.
Additional Information: The applications of Bernoulli's theorem can be seen in wings of aero planes, flying discs, ships, chimneys, etc.
Note: Bernoulli's principle is not valid in the boundary layer.
1. This principle mostly applies to non-viscous fluids.
2. Steady implies the flow parameters should remain constant at any point of time.
Recently Updated Pages
Uniform Acceleration - Definition, Equation, Examples, and FAQs
JEE Main 2021 July 25 Shift 2 Question Paper with Answer Key
JEE Main 2021 July 20 Shift 2 Question Paper with Answer Key
JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key
JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key
JEE Main 2023 (January 30th Shift 1) Physics Question Paper with Answer Key
Trending doubts
JEE Main 2025: Application Form (Out), Exam Dates (Released), Eligibility & More
JEE Main Chemistry Question Paper with Answer Keys and Solutions
Class 11 JEE Main Physics Mock Test 2025
Angle of Deviation in Prism - Important Formula with Solved Problems for JEE
Average and RMS Value for JEE Main
JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics
Other Pages
NCERT Solutions for Class 11 Physics Chapter 7 Gravitation
NCERT Solutions for Class 11 Physics Chapter 9 Mechanical Properties of Fluids
Units and Measurements Class 11 Notes - CBSE Physics Chapter 1
NCERT Solutions for Class 11 Physics Chapter 5 Work Energy and Power
NCERT Solutions for Class 11 Physics Chapter 1 Units and Measurements
NCERT Solutions for Class 11 Physics Chapter 2 Motion In A Straight Line