Answer
Verified
114.6k+ views
Hint: Repulsive forces between bond pairs and lone pairs have influence on the shapes of the molecules. Lone pair-lone pair repulsions are the most strong repulsions of these types of repulsions.
Complete step by step solution:
In both the shapes of \[S{F_4}\], we can say that the only difference is that lone pair is at axial position and in another shape, the lone pair of sulphur atoms is in equatorial position. So, let’s compare them two and their stability.
- In (i), lone pair is at axial position and hence, it has three fluorine atoms in the vicinity that give lone pair-bond pair repulsion. While in case of (ii), the lone pair of sulphur is having only two fluorine atoms in the vicinity and hence it will have two lone pair-bond pair repulsions with fluorine atoms.
- The rest of the repulsive factors are almost the same in both the molecules.
- So, based on this discussion, we can conclude that structure (ii) will be more stable because there is less repulsion for sulphur lone pair in comparison with structure (i).
Thus correct answer is (B) (ii) Lone pair at equatorial position is stable
Additional Information:
- If the atoms that are situated at a position that is in the plane that involves most number of atoms in that molecule, then the positions are called equatorial positions and axial positions are perpendicular to the equatorial ones.
Note: Do not consider that \[S{F_4}\] has a tetrahedral shape because it has 4 atoms binded with it, also take the lone pair of the central atom into consideration which also has higher repulsion towards other bond pairs. Do not consider that the amount of repulsion will be the same for all the compounds that have the same atoms; the arrangement of these atoms in space decides the repulsive factors.
Complete step by step solution:
In both the shapes of \[S{F_4}\], we can say that the only difference is that lone pair is at axial position and in another shape, the lone pair of sulphur atoms is in equatorial position. So, let’s compare them two and their stability.
- In (i), lone pair is at axial position and hence, it has three fluorine atoms in the vicinity that give lone pair-bond pair repulsion. While in case of (ii), the lone pair of sulphur is having only two fluorine atoms in the vicinity and hence it will have two lone pair-bond pair repulsions with fluorine atoms.
- The rest of the repulsive factors are almost the same in both the molecules.
- So, based on this discussion, we can conclude that structure (ii) will be more stable because there is less repulsion for sulphur lone pair in comparison with structure (i).
Thus correct answer is (B) (ii) Lone pair at equatorial position is stable
Additional Information:
- If the atoms that are situated at a position that is in the plane that involves most number of atoms in that molecule, then the positions are called equatorial positions and axial positions are perpendicular to the equatorial ones.
Note: Do not consider that \[S{F_4}\] has a tetrahedral shape because it has 4 atoms binded with it, also take the lone pair of the central atom into consideration which also has higher repulsion towards other bond pairs. Do not consider that the amount of repulsion will be the same for all the compounds that have the same atoms; the arrangement of these atoms in space decides the repulsive factors.
Recently Updated Pages
JEE Main 2021 July 25 Shift 2 Question Paper with Answer Key
JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key
JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key
JEE Main 2021 July 20 Shift 2 Question Paper with Answer Key
Hybridization of Atomic Orbitals Important Concepts and Tips for JEE
Atomic Structure: Complete Explanation for JEE Main 2025
Trending doubts
JEE Main 2025: Application Form (Out), Exam Dates (Released), Eligibility & More
Learn About Angle Of Deviation In Prism: JEE Main Physics 2025
JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics
JEE Main Login 2045: Step-by-Step Instructions and Details
Degree of Dissociation and Its Formula With Solved Example for JEE
JEE Main 2025: Derivation of Equation of Trajectory in Physics
Other Pages
NCERT Solutions for Class 11 Chemistry Chapter 5 Thermodynamics
NCERT Solutions for Class 11 Chemistry Chapter 7 Redox Reaction
NCERT Solutions for Class 11 Chemistry Chapter 8 Organic Chemistry
NCERT Solutions for Class 11 Chemistry Chapter 6 Equilibrium
NCERT Solutions for Class 11 Chemistry Chapter 9 Hydrocarbons
Equilibrium Class 11 Notes: CBSE Chemistry Chapter 6