
Which of the following shows \[ds{{p}^{2}}\] hybridisation and a square planar geometry?
A. $S{{F}_{6}}$
B. $Br{{F}_{5}}$
C. $PC{{l}_{5}}$
D. ${{\left[ Ni{{\left( CN \right)}_{4}} \right]}^{2-}}$
Answer
127.8k+ views
Hint: We have to find out the hybridisation, which means when different atomic orbitals are combined having different energies to give the equivalent orbitals. Here we will see the combination of one d orbital, one s orbital and two p orbitals to give the \[ds{{p}^{2}}\] hybridisation and square planar geometry.
Step by step solution:
- We will find the electronic configuration of Ni in the compound ${{\left[ Ni{{\left( CN \right)}_{4}} \right]}^{2-}}$,
- The electronic configuration of Ni is-$1{{s}^{2}}2{{s}^{2}}2{{p}^{6}}3{{s}^{2}}3{{p}^{6}}4{{s}^{2}}3{{d}^{8}}$
- And the electronic configuration of \[N{{i}^{2+}}\]will be-\[1{{s}^{2}}2{{s}^{2}}2{{p}^{6}}3{{s}^{2}}3{{p}^{6}}4{{s}^{0}}3{{d}^{8}}\]
- We can represent the valence bond representation as:

- Here we have filled the 8 electrons of \[N{{i}^{2+}}\] in 3d orbitals, the two unpaired electrons in the ground state of ion, will pair up in the excited state , due to the pairing energy supplied by the formation of strong bonds in the complex.
- This makes one of the 3d orbitals empty. By this we can see above that there are no unpaired electrons and hence the compound will be diamagnetic.
- Here we can see that 4 $C{{N}^{-}}$ ions will form a strong bond in the complex.
- And here the central metal ion undergoes \[ds{{p}^{2}}\] hybridisation and the complex ion takes square planar geometry.
- Therefore, we can conclude that the correct option is(d) that is ${{\left[ Ni{{\left( CN \right)}_{4}} \right]}^{2-}}$ shows \[ds{{p}^{2}}\] hybridisation and a square planar geometry.
- As we have seen from the above valence bond representation that there are no unpaired electrons present and hence it is diamagnetic, we can also say that it has zero magnetic moment.
Note:
- In presence of any strong field ligand like $C{{N}^{-}}$ , all the electrons are paired up, and in the presence of weak field ligands electrons are not paired up.
- We can calculate the magnetic moment, hybridisation, geometry, and magnetic nature from the valence bond representation.
Step by step solution:
- We will find the electronic configuration of Ni in the compound ${{\left[ Ni{{\left( CN \right)}_{4}} \right]}^{2-}}$,
- The electronic configuration of Ni is-$1{{s}^{2}}2{{s}^{2}}2{{p}^{6}}3{{s}^{2}}3{{p}^{6}}4{{s}^{2}}3{{d}^{8}}$
- And the electronic configuration of \[N{{i}^{2+}}\]will be-\[1{{s}^{2}}2{{s}^{2}}2{{p}^{6}}3{{s}^{2}}3{{p}^{6}}4{{s}^{0}}3{{d}^{8}}\]
- We can represent the valence bond representation as:

- Here we have filled the 8 electrons of \[N{{i}^{2+}}\] in 3d orbitals, the two unpaired electrons in the ground state of ion, will pair up in the excited state , due to the pairing energy supplied by the formation of strong bonds in the complex.
- This makes one of the 3d orbitals empty. By this we can see above that there are no unpaired electrons and hence the compound will be diamagnetic.
- Here we can see that 4 $C{{N}^{-}}$ ions will form a strong bond in the complex.
- And here the central metal ion undergoes \[ds{{p}^{2}}\] hybridisation and the complex ion takes square planar geometry.
- Therefore, we can conclude that the correct option is(d) that is ${{\left[ Ni{{\left( CN \right)}_{4}} \right]}^{2-}}$ shows \[ds{{p}^{2}}\] hybridisation and a square planar geometry.
- As we have seen from the above valence bond representation that there are no unpaired electrons present and hence it is diamagnetic, we can also say that it has zero magnetic moment.
Note:
- In presence of any strong field ligand like $C{{N}^{-}}$ , all the electrons are paired up, and in the presence of weak field ligands electrons are not paired up.
- We can calculate the magnetic moment, hybridisation, geometry, and magnetic nature from the valence bond representation.
Recently Updated Pages
JEE Main 2025 - Session 2 Registration Open | Exam Dates, Answer Key, PDF

Difference Between Vapor and Gas: JEE Main 2024

Area of an Octagon Formula - Explanation, and FAQs

Difference Between Solute and Solvent: JEE Main 2024

Absolute Pressure Formula - Explanation, and FAQs

Carbon Dioxide Formula - Definition, Uses and FAQs

Trending doubts
JEE Main Login 2045: Step-by-Step Instructions and Details

JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Keys & Solutions

JEE Main Participating Colleges 2024 - A Complete List of Top Colleges

JEE Main Course 2025: Get All the Relevant Details

Common Ion Effect and Its Application for JEE

Other Pages
JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

Organic Chemistry Class 11 Notes: CBSE Chemistry Chapter 8

NCERT Solutions for Class 11 Chemistry In Hindi Chapter 1 Some Basic Concepts of Chemistry

Physical Chemistry

Total number of lone pair electrons in I3 ion is A class 11 chemistry JEE_Main

JEE Main Chemistry Question Paper with Answer Keys and Solutions
