
Which one of the following is a strong electrolyte?
(A) \[PbB{{r}_{2}}\]
(B) \[CuC{{l}_{2}}\]
(C) ${AgN}{O}_{3}$
(D) All of the above
Answer
131.7k+ views
Hint: We cannot find the strength of electrolyte just by looking at the chemical formulae of the compounds as there are many variations in finding if an electrolyte is strong or weak. Also, there are several types of compounds that can act as an electrolyte like acids, bases as well as salts.
Complete step by step solution:
-Before answering about the strength of an electrolyte, let us first talk about what an electrolyte is. An electrolyte is a compound which dissociates into its constituent ions, cation and anion in presence of DC current under the process of electrolysis.
-Many types of compound can be used as electrolytes but the most preferred compounds are acids, bases and salts.
-Acids are the compounds that donate ${{H}^{+}}$ion to become an anion. Bases are compounds that accept the ${{H}^{+}}$ion and convert into a cation. Salts are the compounds formed mainly by the reaction of acids and bases.
-Electrolytes dissolve in water to form a solution and that solution conducts electricity by dissociating into ions.
Eg. $NaCl\left( s \right)\to N{{a}^{+}}\left( aq \right)+C{{l}^{-}}\left( aq \right)$
Water is added as a solvent so that the ions can become mobile. Only then they can conduct electricity.
-Now coming to the strength of the electrolytes. There are two types of electrolytes, strong and weak. Strong electrolytes are those which can dissociate to a very large extent to give the respective cations and anions. Weak electrolytes are those which dissociate very less and so the ions formed are not much which reduces the conductivity of the solution.
-Dissociation of strong electrolytes is shown by a forward arrow and that of weak electrolytes is shown by double arrows.
$NaCl\left( s \right)\to N{{a}^{+}}\left( aq \right)+C{{l}^{-}}\left( aq \right)$
It signifies that this electrolyte is a strong electrolyte.
\[{{H}_{2}}O\rightleftarrows {{H}^{+}}+O{{H}^{-}}\]
It signifies that water is a weak electrolyte.
-If we want to talk about the strength of the electrolytes, we need to see if the compound is acid, base or salt first. Then we need to see if it is a strong acid/base or a weak acid/base. Generally strong acids and bases are strong electrolytes because they completely lose/gain ${{H}^{+}}$ion and so dissociate completely.
Weak acids/bases are weak electrolytes as they are not able to lose/gain ${{H}^{+}}$ion easily, thus, they do not dissociate properly into cation and anion.
-Salts are formed by the reaction of acids and bases. So they are generally treated as strong electrolytes as they can dissociate into their respective ions which came from the original acid and base. Thus generally all salts are strong or good electrolytes. Some salts are so strong they dissociate even in solid form.
-Some examples of acids as strong electrolytes are HCl, HBr, HI, $HCl{{O}_{4}},{{H}_{2}}S{{O}_{4}}$ and acids as weak electrolytes are $C{{H}_{3}}COOH,HF,{{H}_{2}}C{{O}_{3}},{{H}_{3}}P{{O}_{4}}$
-Some examples of bases as strong electrolytes are $NaOH$, $KOH$, $LiOH$, $Ca{{\left( OH \right)}_{2}}$ and bases as weak electrolytes are ammonia, pyridine.
-Some examples of salts as strong electrolytes are $NaCl$, $KCl$, $N{{H}_{4}}Cl$ and salts which are weak electrolytes are $AgCl$, $PbC{{l}_{2}}$
-The strength of electrolytes can be measured by the value of their electrical conductance obtained by dissolving the substances in water.
Therefore, all of the above electrolytes are strong electrolytes. So the correct option is (D) All of the above.
Note: The compounds which do not dissociate at all into its cation and anion are termed as non-electrolytes. Do not confuse it with weak electrolytes. Weak electrolytes do dissociate themselves, though very less. Eg includes glucose, fructose, sucrose, galactose, etc. Also, there are certain ionic compounds which are thought to be strong electrolytes but in reality are weak electrolytes as they cannot dissociate themselves completely into their ions. They dissociate a few of their ions only. Eg ${{K}_{2}}S{{O}_{4}},$
Complete step by step solution:
-Before answering about the strength of an electrolyte, let us first talk about what an electrolyte is. An electrolyte is a compound which dissociates into its constituent ions, cation and anion in presence of DC current under the process of electrolysis.
-Many types of compound can be used as electrolytes but the most preferred compounds are acids, bases and salts.
-Acids are the compounds that donate ${{H}^{+}}$ion to become an anion. Bases are compounds that accept the ${{H}^{+}}$ion and convert into a cation. Salts are the compounds formed mainly by the reaction of acids and bases.
-Electrolytes dissolve in water to form a solution and that solution conducts electricity by dissociating into ions.
Eg. $NaCl\left( s \right)\to N{{a}^{+}}\left( aq \right)+C{{l}^{-}}\left( aq \right)$
Water is added as a solvent so that the ions can become mobile. Only then they can conduct electricity.
-Now coming to the strength of the electrolytes. There are two types of electrolytes, strong and weak. Strong electrolytes are those which can dissociate to a very large extent to give the respective cations and anions. Weak electrolytes are those which dissociate very less and so the ions formed are not much which reduces the conductivity of the solution.
-Dissociation of strong electrolytes is shown by a forward arrow and that of weak electrolytes is shown by double arrows.
$NaCl\left( s \right)\to N{{a}^{+}}\left( aq \right)+C{{l}^{-}}\left( aq \right)$
It signifies that this electrolyte is a strong electrolyte.
\[{{H}_{2}}O\rightleftarrows {{H}^{+}}+O{{H}^{-}}\]
It signifies that water is a weak electrolyte.
-If we want to talk about the strength of the electrolytes, we need to see if the compound is acid, base or salt first. Then we need to see if it is a strong acid/base or a weak acid/base. Generally strong acids and bases are strong electrolytes because they completely lose/gain ${{H}^{+}}$ion and so dissociate completely.
Weak acids/bases are weak electrolytes as they are not able to lose/gain ${{H}^{+}}$ion easily, thus, they do not dissociate properly into cation and anion.
-Salts are formed by the reaction of acids and bases. So they are generally treated as strong electrolytes as they can dissociate into their respective ions which came from the original acid and base. Thus generally all salts are strong or good electrolytes. Some salts are so strong they dissociate even in solid form.
-Some examples of acids as strong electrolytes are HCl, HBr, HI, $HCl{{O}_{4}},{{H}_{2}}S{{O}_{4}}$ and acids as weak electrolytes are $C{{H}_{3}}COOH,HF,{{H}_{2}}C{{O}_{3}},{{H}_{3}}P{{O}_{4}}$
-Some examples of bases as strong electrolytes are $NaOH$, $KOH$, $LiOH$, $Ca{{\left( OH \right)}_{2}}$ and bases as weak electrolytes are ammonia, pyridine.
-Some examples of salts as strong electrolytes are $NaCl$, $KCl$, $N{{H}_{4}}Cl$ and salts which are weak electrolytes are $AgCl$, $PbC{{l}_{2}}$
-The strength of electrolytes can be measured by the value of their electrical conductance obtained by dissolving the substances in water.
Therefore, all of the above electrolytes are strong electrolytes. So the correct option is (D) All of the above.
Note: The compounds which do not dissociate at all into its cation and anion are termed as non-electrolytes. Do not confuse it with weak electrolytes. Weak electrolytes do dissociate themselves, though very less. Eg includes glucose, fructose, sucrose, galactose, etc. Also, there are certain ionic compounds which are thought to be strong electrolytes but in reality are weak electrolytes as they cannot dissociate themselves completely into their ions. They dissociate a few of their ions only. Eg ${{K}_{2}}S{{O}_{4}},$
Recently Updated Pages
Classification of Drugs Based on Pharmacological Effect, Drug Action

Types of Solutions - Solution in Chemistry

Difference Between Alcohol and Phenol

JEE Main Participating Colleges 2024 - A Complete List of Top Colleges

JEE Main Maths Paper Pattern 2025 – Marking, Sections & Tips

Sign up for JEE Main 2025 Live Classes - Vedantu

Trending doubts
Degree of Dissociation and Its Formula With Solved Example for JEE

Convert chloro benzene to phenol class 12 chemistry JEE_Main

In order to convert Aniline into chlorobenzene the class 12 chemistry JEE_Main

Displacement-Time Graph and Velocity-Time Graph for JEE

Clemmenson and Wolff Kishner Reductions for JEE

Chlorobenzene is extremely less reactive towards a class 12 chemistry JEE_Main

Other Pages
Biomolecules Class 12 Notes: CBSE Chemistry Chapter 10

NCERT Solutions for Class 12 Chemistry Chapter 4 The D and F Block Elements

NCERT Solutions for Class 12 Chemistry Chapter 5 Coordination Chemistry

Chemical Kinetics Class 12 Notes: CBSE Chemistry Chapter 3

The D and F Block Class 12 Notes: CBSE Chemistry Chapter 4

Aldehyde Ketone and Carboxylic Acid Class 12 Notes: CBSE Chemistry Chapter 8
