Answer
Verified
111.6k+ views
Hint: Convert \[{{\log }_{a}}x=y\]to \[x={{a}^{y}}\]and find the appropriate values of \[{{a}^{y}}\].
Here, we have to find that which is greater among \[{{\log }_{2}}3\]or \[{{\log }_{\dfrac{1}{2}}}5\].
Taking \[{{\log }_{2}}3=A\]
We know that, when \[{{\log }_{b}}a=n\]
Then, \[a={{b}^{n}}....\left( i \right)\]
Similarly, \[3={{2}^{A}}...\left( ii \right)\]
Now, we know that \[{{\left( 2 \right)}^{1}}=2\]and \[{{\left( 2 \right)}^{2}}=4\].
Also, \[{{2}^{1}}<3<{{2}^{2}}\]
From equation \[\left( ii \right)\], \[{{2}^{1}}<{{2}^{A}}<{{2}^{2}}\]
Hence, \[1Therefore, we get the approximate value of \[A={{\log }_{2}}3\]between \[1\] and \[2\].
Taking \[{{\log }_{\dfrac{1}{2}}}5=B\]
From equation \[\left( i \right)\],
\[\Rightarrow 5={{\left( \dfrac{1}{2} \right)}^{B}}\]
We know that \[\dfrac{1}{a}={{a}^{-1}}\]
Hence, we get \[5={{2}^{-B}}....\left( iii \right)\]
Now, we know that
\[{{2}^{2}}=4\]
And \[{{2}^{3}}=8\]
Also, \[{{2}^{2}}<5<{{2}^{3}}\]
As, \[-\left( -a \right)=a\]
We can also write it as \[{{2}^{-\left( -2 \right)}}<5<{{2}^{-\left( -3 \right)}}\]
From equation \[\left( iii \right)\], \[{{2}^{-\left( -2 \right)}}<{{2}^{-B}}<{{2}^{-\left( -3 \right)}}\]
Hence, \[-2Therefore, we get the approximate value of \[B={{\log }_{\dfrac{1}{2}}}5\]between \[-2\]and \[-3\].
Clearly, as \[A\]is positive and \[B\]is negative.
\[A>B\]
Or, \[{{\log }_{2}}3>{{\log }_{\dfrac{1}{2}}}5\]
Therefore, option (a) is correct
Note: Here, some students may think that as \[\dfrac{1}{2}\]is smaller as compared to \[2\], so it will require greater power to become \[5\]as compared to power required by\[2\] to become \[3\]. But in this process, they miss the negative sign in the power that will also be required to convert \[\dfrac{1}{2}\]to \[5\]and get the wrong result.
Here, we have to find that which is greater among \[{{\log }_{2}}3\]or \[{{\log }_{\dfrac{1}{2}}}5\].
Taking \[{{\log }_{2}}3=A\]
We know that, when \[{{\log }_{b}}a=n\]
Then, \[a={{b}^{n}}....\left( i \right)\]
Similarly, \[3={{2}^{A}}...\left( ii \right)\]
Now, we know that \[{{\left( 2 \right)}^{1}}=2\]and \[{{\left( 2 \right)}^{2}}=4\].
Also, \[{{2}^{1}}<3<{{2}^{2}}\]
From equation \[\left( ii \right)\], \[{{2}^{1}}<{{2}^{A}}<{{2}^{2}}\]
Hence, \[1Therefore, we get the approximate value of \[A={{\log }_{2}}3\]between \[1\] and \[2\].
Taking \[{{\log }_{\dfrac{1}{2}}}5=B\]
From equation \[\left( i \right)\],
\[\Rightarrow 5={{\left( \dfrac{1}{2} \right)}^{B}}\]
We know that \[\dfrac{1}{a}={{a}^{-1}}\]
Hence, we get \[5={{2}^{-B}}....\left( iii \right)\]
Now, we know that
\[{{2}^{2}}=4\]
And \[{{2}^{3}}=8\]
Also, \[{{2}^{2}}<5<{{2}^{3}}\]
As, \[-\left( -a \right)=a\]
We can also write it as \[{{2}^{-\left( -2 \right)}}<5<{{2}^{-\left( -3 \right)}}\]
From equation \[\left( iii \right)\], \[{{2}^{-\left( -2 \right)}}<{{2}^{-B}}<{{2}^{-\left( -3 \right)}}\]
Hence, \[-2Therefore, we get the approximate value of \[B={{\log }_{\dfrac{1}{2}}}5\]between \[-2\]and \[-3\].
Clearly, as \[A\]is positive and \[B\]is negative.
\[A>B\]
Or, \[{{\log }_{2}}3>{{\log }_{\dfrac{1}{2}}}5\]
Therefore, option (a) is correct
Note: Here, some students may think that as \[\dfrac{1}{2}\]is smaller as compared to \[2\], so it will require greater power to become \[5\]as compared to power required by\[2\] to become \[3\]. But in this process, they miss the negative sign in the power that will also be required to convert \[\dfrac{1}{2}\]to \[5\]and get the wrong result.
Recently Updated Pages
JEE Main 2021 July 25 Shift 2 Question Paper with Answer Key
JEE Main 2021 July 20 Shift 2 Question Paper with Answer Key
JEE Main 2021 July 22 Shift 2 Question Paper with Answer Key
JEE Main 2021 July 25 Shift 1 Question Paper with Answer Key
JEE Main 2023 (January 30th Shift 1) Physics Question Paper with Answer Key
JEE Main 2023 (January 25th Shift 1) Physics Question Paper with Answer Key
Trending doubts
JEE Main 2025: Application Form (Out), Exam Dates (Released), Eligibility & More
Angle of Deviation in Prism - Important Formula with Solved Problems for JEE
JEE Main Chemistry Question Paper with Answer Keys and Solutions
Average and RMS Value for JEE Main
JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics
Inductive Effect and Acidic Strength - Types, Relation and Applications for JEE
Other Pages
NCERT Solutions for Class 11 Maths Chapter 9 Straight Lines
NCERT Solutions for Class 11 Maths Chapter 10 Conic Sections
NCERT Solutions for Class 11 Maths Chapter 13 Statistics
NCERT Solutions for Class 11 Maths Chapter 12 Limits and Derivatives
NCERT Solutions for Class 11 Maths Chapter 8 Sequences and Series
NCERT Solutions for Class 11 Maths Chapter 4 Complex Numbers and Quadratic Equations