Why is the dot Product a scalar?
Answer
Verified
116.4k+ views
Hint: In order to solve this question, we should know that here dot product is asked with the context of vectors and the dot product is one of the types of product between vectors, here we will discuss about dot product.
Complete answer:
As we know, a vector represents that quantity with a definite magnitude and a direction associated with it while scalars are the quantities with only magnitude. In vector algebra other than addition and subtraction, multiplication operation is also done and Dot product is one of the types of multiplication between vectors.
Dot product between two vectors gives the scalar values because of its nature of operation defined, dot product is defined mathematically as
$\vec a.\vec b = \left| {\vec a} \right|\left| {\vec b} \right|\cos \theta $
where, $\left| {\vec a} \right|,\left| {\vec b} \right|$ are the magnitudes of the vectors a and b which will have scalar value and $\theta $ is the angle between vectors a and b, so the final value of dot product between vectors a and b will have a scalar value.
For example: if
$
\vec a = 2\hat i + 3\hat j \\
\vec b = 3\hat i + 2\hat j \\
$
and angle between them is $\theta = {60^0}$ then dot product between the vectors a and b will be
$
\vec a.\vec b = \left| {\vec a} \right|\left| {\vec b} \right|\cos \theta \\
\vec a.\vec b = \sqrt {13} .\sqrt {13} .\dfrac{1}{2} \\
\vec a.\vec b = 6.5 \\
$
so, we see that dot product of two vectors is scalar quantity.
Hence, Due to specific nature of dot product operation as $\vec a.\vec b = \left| {\vec a} \right|\left| {\vec b} \right|\cos \theta $, Dot product is scalar.
Note: It should be remembered that, physically and graphically, the dot product between two vectors represents the area enclosed between them if two vectors represent the adjacent side of the parallelogram; hence, the units of the dot product will be unit square.
Complete answer:
As we know, a vector represents that quantity with a definite magnitude and a direction associated with it while scalars are the quantities with only magnitude. In vector algebra other than addition and subtraction, multiplication operation is also done and Dot product is one of the types of multiplication between vectors.
Dot product between two vectors gives the scalar values because of its nature of operation defined, dot product is defined mathematically as
$\vec a.\vec b = \left| {\vec a} \right|\left| {\vec b} \right|\cos \theta $
where, $\left| {\vec a} \right|,\left| {\vec b} \right|$ are the magnitudes of the vectors a and b which will have scalar value and $\theta $ is the angle between vectors a and b, so the final value of dot product between vectors a and b will have a scalar value.
For example: if
$
\vec a = 2\hat i + 3\hat j \\
\vec b = 3\hat i + 2\hat j \\
$
and angle between them is $\theta = {60^0}$ then dot product between the vectors a and b will be
$
\vec a.\vec b = \left| {\vec a} \right|\left| {\vec b} \right|\cos \theta \\
\vec a.\vec b = \sqrt {13} .\sqrt {13} .\dfrac{1}{2} \\
\vec a.\vec b = 6.5 \\
$
so, we see that dot product of two vectors is scalar quantity.
Hence, Due to specific nature of dot product operation as $\vec a.\vec b = \left| {\vec a} \right|\left| {\vec b} \right|\cos \theta $, Dot product is scalar.
Note: It should be remembered that, physically and graphically, the dot product between two vectors represents the area enclosed between them if two vectors represent the adjacent side of the parallelogram; hence, the units of the dot product will be unit square.
Recently Updated Pages
Uniform Acceleration - Definition, Equation, Examples, and FAQs
How to find Oxidation Number - Important Concepts for JEE
How Electromagnetic Waves are Formed - Important Concepts for JEE
Electrical Resistance - Important Concepts and Tips for JEE
Average Atomic Mass - Important Concepts and Tips for JEE
Chemical Equation - Important Concepts and Tips for JEE
Trending doubts
JEE Main 2025: Application Form (Out), Exam Dates (Released), Eligibility & More
Class 11 JEE Main Physics Mock Test 2025
JEE Main Chemistry Question Paper with Answer Keys and Solutions
Learn About Angle Of Deviation In Prism: JEE Main Physics 2025
JEE Main Login 2045: Step-by-Step Instructions and Details
JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics
Other Pages
NCERT Solutions for Class 11 Physics Chapter 7 Gravitation
NCERT Solutions for Class 11 Physics Chapter 1 Units and Measurements
NCERT Solutions for Class 11 Physics Chapter 9 Mechanical Properties of Fluids
Units and Measurements Class 11 Notes - CBSE Physics Chapter 1
NCERT Solutions for Class 11 Physics Chapter 2 Motion In A Straight Line
NCERT Solutions for Class 11 Physics Chapter 8 Mechanical Properties of Solids