
With an increase in temperature, the angle of contact:
(A) Decrease
(B) Increase
(C) remains constant
(D) sometimes increases and sometimes decrease
Answer
140.1k+ views
Hint The angle of contact, as shown in the figure is the angle $\theta $, which is formed with the water meniscus and the tube surface. As temperature increases, the surface tension of the liquid decreases and vice versa.
Complete Step by step solution On the increasing temperature, adhesion increases and cohesive forces decrease. The increase in temperature also causes the surface tension to decrease due to more molecular vibrations among the liquid molecules. The rise in temperature of the liquid causes an increase in the adhesive forces between the tube and the liquid molecules. Similarly, on an increase in temperature, the cohesive forces between the liquid molecules decrease. This causes the surface tension to decrease and the angle of contact to increase as shown below.
The surface tension $S$ and the angle of contact $\theta $ are related as, $\frac{{2S}}{{r\cos \theta }} = \rho gh$.
In this equation, for the L.H.S. to remain constant, as $S$ decreases with a temperature rise in temperature, $\cos \theta $ should also decrease. Thus, the angle $\theta $ should increase.
The angle of contact $\theta $, and the absolute temperature $T$, are thus related as $\theta \propto T$.
In the case of the above solution, we ignore the changes (if any), in the height and density of the liquid with respect to changes in temperature.

Therefore, the correct answer is an option (B).
Note Highly soluble impurities increase surface tension since adhesive forces between liquid and impurity molecules increase because of stronger intermolecular forces of attraction. The sparingly soluble impurities decrease the surface tension since the adhesive forces between the liquid molecule and the impurity molecule become less than the cohesive forces among the liquid molecules.
Complete Step by step solution On the increasing temperature, adhesion increases and cohesive forces decrease. The increase in temperature also causes the surface tension to decrease due to more molecular vibrations among the liquid molecules. The rise in temperature of the liquid causes an increase in the adhesive forces between the tube and the liquid molecules. Similarly, on an increase in temperature, the cohesive forces between the liquid molecules decrease. This causes the surface tension to decrease and the angle of contact to increase as shown below.
The surface tension $S$ and the angle of contact $\theta $ are related as, $\frac{{2S}}{{r\cos \theta }} = \rho gh$.
In this equation, for the L.H.S. to remain constant, as $S$ decreases with a temperature rise in temperature, $\cos \theta $ should also decrease. Thus, the angle $\theta $ should increase.
The angle of contact $\theta $, and the absolute temperature $T$, are thus related as $\theta \propto T$.
In the case of the above solution, we ignore the changes (if any), in the height and density of the liquid with respect to changes in temperature.

Therefore, the correct answer is an option (B).
Note Highly soluble impurities increase surface tension since adhesive forces between liquid and impurity molecules increase because of stronger intermolecular forces of attraction. The sparingly soluble impurities decrease the surface tension since the adhesive forces between the liquid molecule and the impurity molecule become less than the cohesive forces among the liquid molecules.
Recently Updated Pages
Difference Between Circuit Switching and Packet Switching

Difference Between Mass and Weight

JEE Main Participating Colleges 2024 - A Complete List of Top Colleges

JEE Main Maths Paper Pattern 2025 – Marking, Sections & Tips

Sign up for JEE Main 2025 Live Classes - Vedantu

JEE Main 2025 Helpline Numbers - Center Contact, Phone Number, Address

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main 2025: Derivation of Equation of Trajectory in Physics

JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics

Other Pages
Units and Measurements Class 11 Notes: CBSE Physics Chapter 1

JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions for Class 11 Physics Chapter 1 Units and Measurements

Motion in a Straight Line Class 11 Notes: CBSE Physics Chapter 2

Important Questions for CBSE Class 11 Physics Chapter 1 - Units and Measurement

NCERT Solutions for Class 11 Physics Chapter 2 Motion In A Straight Line
