Courses
Courses for Kids
Free study material
Offline Centres
More
Store Icon
Store

Comparing Fractions

Reviewed by:
ffImage
hightlight icon
highlight icon
highlight icon
share icon
copy icon
SearchIcon

By comparing fractions, we mean determining which is the larger and which is the smaller fraction. Numerators and denominators of fractions are compared using a set of rules because they are composed of two parts. Let us learn more about comparing fractions on this page. The numerator is the number on the upper part of the fractional bar that tells how many pieces of the whole we're talking about. The denominator is located below the fractional bar that tells how many total pieces make up one whole. How do you compare fractions? In this article, we discuss the different methods of how to compare fractions to understand the concept better.


Fractions

Fractions


Fractions

A fraction can be expressed in the form ab, where a, and b are whole numbers and b≠0, in which ‘a‘ is the numerator and ‘b’ is the denominator.

The numbers like 35, 23, etc., are fractions.

Like and unlike fractions are the two groups of fractions:

  • Like Fractions - Fractions with the same denominator.

Example: 17, 27, 37

The denominator of each fraction is the same i.e., 7.

  • Unlike Fractions - Fractions with different denominators.

Example: 14, 56, 13

The denominator of each fraction is different.


Comparing Fractions

Finding the greater and smaller fraction between any two or more fractions is known as comparing fractions. Fractions are compared according to a set of rules. In this article, we study more about comparing fractions and comparing unlike fractions and their steps to compare fractions.


Ways of Comparing Fractions

A set of rules relating to the numerator and denominator must be followed while comparing fractions. We can find the greater and smaller fractions by comparing any two fractions. We compare fractions by comparing like fractions and comparing unlike fractions.


Comparing Fractions


Comparing Fractions


Methods of Comparing Fractions

  • Decimal Method

  • Same Denominator Method


Comparing Fractions with Unlike Denominators

For comparing fractions with unlike denominators, we must convert fractions from different denominators to similar denominators. For this, we must find the Least Common Multiple(LCM) for the denominators. Then we easily compare the fractions.


Comparing Unlike Fractions

Comparing Unlike Fractions


Method 1: Decimal Method of Comparing Fractions with Different Denominators

This method compares fractional decimal numbers. For this, the fraction is reduced to a decimal form by dividing the numerator by the denominator. The decimal values are then compared. Let's compare 25 and 58 as an example. These are the following steps to compare fractions:

  • Step 1: Write the numbers 25 and 58 in decimals.

25 = 0.4

58 = 0.625

  • Step 2: Evaluate the decimal values. 0.625 > 0.4

  • Step 3: The fraction that has a higher decimal value is greater. Hence, 58 > 25.


Method 2: Same Denominator Method of Comparing Fractions with Unlike Denominators

For comparing fractions with unlike denominators, the Least Common Multiple (LCM) of the denominators should be determined in order to convert them to like denominators. For example, compare 34 and 25. These are the following steps of the same denominator method:

  • Step 1: Check the fractions' denominators, 4 and 5. They are different.

Thus, LCM(4 and 5) = 20.

  • Step 2: Now convert their denominators to the same. Multiply the first fraction by 55, and the second fraction by 44,

i.e., 34×55 = 1520

25×44 = 820

  • Step 3: Compare the fractions 1520 and 820. We will compare the numerators because the denominators are the same, so 15 > 8.

  • Step 4: The greater fraction is the fraction with the larger numerator, 1520 > 820

So, 34 > 25.

We can simply compare fractions by looking at their denominators if the denominators are different and the numerators are the same. Fractions with a greater denominator have a lesser value, while fractions with a smaller denominator have a greater value. For example, 23>26


Solved Examples

Q1. Which is larger, 712 or 415 ?

Ans: The LCM of the denominators 12 and 15.

LCM(12,15)=2×2×3×5=60

Now, convert the fractions to equivalent fractions with a denominator of 60.

712=(7×5)(12×5)=3560

415=(4×4)(15×4)=1660

Now, observe the numerator, 35>16.

So, 3560>1660

Therefore, 712>415.


Q2. Compare 910 and 96 with the decimal method.

Ans: First write the fractions in decimals form.

910 = 0.9

96 = 1.5

The fraction that has a higher decimal value is greater. hence, 96 > 910.


Q3. Shalu has 35 of her homework complete and Malini has 34 of her homework complete. Who has done more homework?

Ans: The LCM of the denominators 5 and 4 is 20.

Now, convert fractions to equivalent fractions with a denominator of 20.

35=(3×4)(5×4)=1220

34=(3×5)(4×5)=1520

So, 1520 > 1220

Therefore, 34 > 35.


Practice Questions

Q1. Compare 38 and 89 which is greater?

Ans: 89


Q2. Arrange the fractions 54, 74, 29, and 58 in Ascending order.

Ans: 29, 58, 54, 74


Q3. Rajni ate 922 part of the pizza and Irfan ate 511 part of the pizza. Who ate the greater part of the pizza?

Ans: Irfan ate the greater part of the pizza.


Q4. Jasmine covered a distance of 911 km and Madhav covered a distance of 57 km. Who covered the greater distance?

Ans: Madhav covered the greater distance.


Summary

In this article, we got to know about comparing fractions. Here we specifically learned about comparing unlike fractions with two different methods, the decimal method, and the same denominator method. You can compare two fractions with unlike denominators by comparing their denominators’ LCM. By comparing fractions, we identify which part is larger and which part is smaller. So, comparing fractions is a very important and regular part of our life.

FAQs on Comparing Fractions

1. What is a unit fraction?

Unit fractions are any fractions with 1 as the numerator.


For example, 12, 14, 16, etc.

2. Why do we need to Compare Fractions?

Comparing fractions is an important component, which helps students develop their number sense of fraction size. This helps them realize that the strategies they use to compare whole numbers do not necessarily apply while comparing fractions.

3. What are equivalent fractions?

Fractions that have different numerators and denominators but are equal to the same value are referred to as equivalent. For example, 39 and 1236.