What is a Laplace Transform Calculator?
Laplace Transform Calculator is a free tool available online on several websites. Its primary purpose is to convert a function containing a simple variable to a complex variable. Pierre-Simon Laplace invented the Laplace Transform for integral transformation. Using his theorem we have Laplace calculator today. This article will talk about Laplace transform and how to use the Laplace transform calculator freely available online.
What is Laplace Transform?
Laplace Transform is a theorem that can solve integral transforms of simple variable functions to complex variable processes. You can quickly solve differential equations using the Laplace transform calculator. It can solve algebraic equations from linear differential equations. All differential equations are functions (f). In the below equation, the Laplace transform does the integral transformation to retrieve an algebraic equation. There are two conditions for a function to be Laplace transformable:-
The function f(t) must be continuous. It is applicable for all real numbers greater than or equal to 0.
Function f(t) must be in exponential order.
(Image will be uploaded soon)
History
Pierre-Simon Laplace did a lot of work on generating functions in 1814. This work eventually led to the Laplace transform integral form. However, the Laplace transform that we know today came to be after several transformations by various mathematicians. He even devised a similar transformation in his work on probability theory.
Mathematicians such as Gustav Doetsch have explained several advantages of the Laplace Transform. Others did their research based on the Euler theories to investigate various integral forms. According to his ideas, integrals themselves can be the equation solution. However, Laplace chose not to accept integral forms as a solution of the equation simply. He applied the transform that later became famous. Today, tons of websites offer free Laplace Transform calculators, so people need to complete the equations to get the solution.
How to Find the Laplace Transform of the Function?
People often search how to find Laplace Transform of a function. To solve the Laplace Transform of the function, one must write the function(f) in a real variable(t) then use the integral form to calculate the solution. You can also utilise Laplace transform solvers available online. They are simply calculators that ask you to input the function, and you can get the answer with a click of a button. Some calculators also let you enter the variable of the function as well as the transform variable.
Laplace Transform Calculator with Steps.
The best way is to solve differential equation using Laplace transform calculator available online. Let us look at the Laplace transform calculator with steps:-
Make sure you have the equation as a function f(s)
Enter the equation in the calculator
Some calculators can also ask you to enter the transform variable, i.e., function variable, i.e. t.
Finally, click on solve to get the solution of the Laplace transforms integral.
Inverse Laplace Transform
We know that Laplace Transform has an inverse because any two functions(integral) can only have the same Laplace transform when they differ on a set of zero. If we take a look through functions, then all integrals have one on one mapping functions. All such functions are tempered distributions that are [0, ∞). Laplace transform is also suitable for tempered distributions.
The inverse image of the Laplace transforms lies in the region of convergence. The inverse form is a complex integral that is also called Bromwich Integral. If you look at inverse Laplace Transform practically, it is easier to calculate via inspection than solving the complex integral. Break the Laplace Transform into its transforms of functions using the table.
Critical Applications of Laplace Transform
Laplace transforms have a wide range of applications in several fields such as mathematics, signal processing, electrical engineering, optics, and physics. Let us look at a few of them to understand how helpful Laplace transform is in real life:-
Physics: There are various applications of Laplace transform in the subject of Physics itself. One commonly known application is in the harmonic vibrations of a beam that has support on two ends. Considering that a beam of length l is parallel to the YZ plane is downward where the beam is towards the x-axis, the standard deflection calculates as w(x,t). Laplace transform can also form and solve the equation to get the harmonic vibrations.
Electrical Engineering: In electrical engineering, Laplace transforms to solve the transient switching phenomenon in RLC, RC, and RL circuits.
Power Systems: Laplace transform is applicable in power systems, including generation, transmission, and distribution systems. The generator model, Governor model, Prime mover model, and Load model all use Laplace transforms.
FAQs on Laplace Transform Calculator
1. Can we solve any Differential Equation using Laplace Transform?
Laplace Transform only solves the differential equations that are functions of real variables. Its primary purpose is to transform the process (consists of inputs and outputs as a function of time) from the time domain to the function(consists of inputs and outputs as a function of complex angular frequency) of the frequency domain. There are several tools available online that let you calculate differential equations using Laplace Transform. You can also check whether the equation is Laplace Transformable or not.
2. What is the Difference between z-transform and Laplace Transform?
Z-transform is quite similar to Laplace Transform. It is used in the analysis of discrete-time systems, whereas Laplace transforms can analyse continuous-time systems. As we know, the Laplace transform can convert the differential equations into algebraic equations, and the z-transform converts discrete differential equations into algebraic equations. The z- transforms maps on the z-plane as a discrete-time function, whereas the Laplace transforms maps on the s-plane as a continuous-time function. You can use an online Laplace transform calculator to solve differential equations. Laplace calculator is quite simple to use. Similarly, you can also use the z transform calculator online to solve equations.