NCERT Solutions for Class 11 Maths Chapter 12 Miscellaneous Exercise - Free PDF Download
NCERT Solutions for Class 11 Maths Chapter 12 Limits and Derivatives, introduces key ideas in calculus. This chapter helps students understand limits, which show how functions work as they get close to certain points. It also explains derivatives, which measure how a function's value changes. These concepts are important for many Math problems.
The Miscellaneous Exercise in this chapter includes various problems to practice limits and derivatives. By working through NCERT Solutions for Class 11 Maths, students can improve their understanding of these topics. Focus on different types of questions to improve confidence and accuracy. Download the NCERT Solutions in PDF format to practice offline and prepare well for exams. Get the latest CBSE Class 11 Maths Syllabus here.
Access NCERT Class 11 Maths Chapter 12 Limits and Derivatives Miscellaneous Exercise
1. Find the derivative of the following functions from first principle:
(i) -x
(ii) $\mathbf{(-x)^{-1}}$
(iii) $\mathbf{\sin (x+1)}$
(iv) $\mathbf{\cos \left(x-\dfrac{\pi}{8}\right)}$
Ans: (i) Let $f(x)=-x$. Accordingly, $f(x+h)=-(x+h)$
By first principle, $f^{\prime}(x)=\lim _{n \rightarrow 0} \dfrac{f(x+h)-f(x)}{h}$
$=\lim _{h \rightarrow 0} \dfrac{-(x+h)-(-x)}{h}$
$=\lim _{n \rightarrow 0} \dfrac{-x-h+x}{h}$
$=\lim _{n \rightarrow 0} \dfrac{-h}{h}$
$=\lim _{h \rightarrow 0}(-1)=-1$
(ii) Let $f(x)=(-x)^{-1}=\dfrac{1}{-x}=\dfrac{-1}{x} .$ Accordingly, $f(x+h)=\dfrac{-1}{(x+h)}$
By first principle,
$f^{\prime}(x)=\lim _{n \rightarrow 0} \dfrac{f(x+h)-f(x)}{h}$
$=\lim _{h \rightarrow 0} \dfrac{1}{h}\left[\dfrac{-1}{(x+h)}-\left(\dfrac{-1}{x}\right)\right]$
$=\lim _{n \rightarrow 0} \dfrac{1}{h}\left[\dfrac{-x+(x+h)}{x(x+h)}\right]$
$=\lim _{h \rightarrow 0} \dfrac{1}{h}\left[\dfrac{h}{x(x+h)}\right]$
$=\lim _{n \rightarrow 0} \dfrac{1}{x(x+h)}$
$=\dfrac{1}{x \cdot X}=\dfrac{1}{x^{2}}$
(iii) Let $f(x)=\sin (x+1)$. Accordingly, $f(x+h)=\sin (x+h+1)$
By first principle,
$f^{\prime}(x)=\lim _{n \rightarrow 0} \dfrac{f(x+h)-f(x)}{h}$
$=\lim _{n \rightarrow 0} \dfrac{1}{h}[\sin (x+h+1)-\sin (x+1)]$
$=\lim _{n \rightarrow 0} \dfrac{1}{h}\left[2 \cos \left(\dfrac{x+h+1+x+1}{2}\right) \sin \left(\dfrac{x+h+1-x-1}{2}\right)\right]$
$=\lim _{n \rightarrow 0} \dfrac{1}{h}\left[2 \cos \left(\dfrac{2 x+h+2}{2}\right) \sin \left(\dfrac{h}{2}\right)\right]$
$=\lim _{n \rightarrow 0}\left[\cos \left(\dfrac{2 x+h+2}{2}\right) \cdot \dfrac{\sin \left(\dfrac{h}{2}\right)}{\left(\dfrac{h}{2}\right)}\right]$
$\begin{array}{l}=\lim _{n \rightarrow 0} \dfrac{1}{h} \cos \left(\dfrac{2 x+h+2}{2}\right) \cdot \lim _{\dfrac{b}{2} \rightarrow} \dfrac{\sin \left(\dfrac{h}{2}\right)}{h} \dfrac{h}{\left.\dfrac{h}{2}\right)} \quad\left[\text { As } h \rightarrow 0 \Rightarrow \dfrac{h}{2} \rightarrow 0\right]\\=\cos \left(\dfrac{2 x+0+2}{2}\right) \cdot 1 \quad\left[\lim _{h \rightarrow 0} \dfrac{\sin x}{x}=1\right]\\=\cos (x+1)\\\text (iv) Let f(x)=\cos \left(x-\dfrac{\pi}{8}\right) Accordingly, f(x+h)-\cos \left(x+h-\dfrac{\pi}{8}\right)\\\text { By first principle, }\\f^{\prime}(x)=\lim _{n \rightarrow 0} \dfrac{f(x+f)-f(x)}{h}\\=\lim _{h \rightarrow 0} \dfrac{1}{h}\left[\cos \left(x+h-\dfrac{\pi}{8}\right)-\cos \left(x-\dfrac{\pi}{8}\right)\right]\\=\lim _{n \rightarrow 0} \dfrac{1}{h}\left[-2 \sin \dfrac{\left(x+h-\dfrac{\pi}{8}+x-\dfrac{\pi}{8}\right)}{2} \sin \left(\dfrac{x+h-\dfrac{\pi}{8}-x+\dfrac{\pi}{8}}{2}\right)\right]\\=\lim _{n \rightarrow 0} \dfrac{1}{h}\left[-2 \sin \left(\dfrac{2 x+h-\dfrac{\pi}{4}}{2}\right) \sin \left(\dfrac{h}{2}\right)\right]\\=\lim _{n \rightarrow 0}\left[-\sin \left(\dfrac{2 x+h-\dfrac{\pi}{4}}{2}\right) \dfrac{\sin \left(\dfrac{h}{2}\right)}{\left(\dfrac{h}{2}\right)}\right]\\\left.=\lim _{n \rightarrow 0}\left[-\sin \left(\dfrac{2 x+h-\dfrac{\pi}{4}}{2}\right)\right] \cdot \lim _{\dfrac{\pi}{2} \rightarrow 0} \dfrac{\sin \left(\dfrac{h}{2}\right)}{\left(\dfrac{h}{2}\right)} \quad \text { [As } h \rightarrow 0 \Rightarrow \dfrac{h}{2} \rightarrow 0\right]\\=-\sin \left(\dfrac{2 x+0-\dfrac{\pi}{4}}{2}\right) \cdot 1\end{array}$
$=-\sin \left(x-\dfrac{\pi}{8}\right)$
2. Find the derivative of the following functions (it is to be understood that a, b, c, d. p, q, r and s are fixed non-zero constants and $m$ and $n$ are integers): $(x+a)$
Ans: Let $f(x)=x+a$. Accordingly. $f(x+h)-x+h+a$ By first principle,
$f^{\prime}(x)=\lim _{n \rightarrow 0} \dfrac{f(x+h)-f(x)}{h}$
$\lim _{n \rightarrow 0} \dfrac{x+h+a-x-a}{h}$
$\lim _{n \rightarrow 0}\left(\dfrac{h}{h}\right)$
$-\lim _{n \rightarrow 0}(1)$
$=1$
3. Find the derivative of the following functions (it is to be understood that $a, b, c$. d, $p, q, r$ and s are fixed non- zero constants and $m$ and $n$ are integers): $\mathbf{(p x+q)\left(\dfrac{r}{x}+s\right)}$
Ans: Let $f(x)=(p x+q)\left(\dfrac{r}{x}+s\right)$
By Leibnitz product rule.
$f^{\prime}(x)=(p x+q)\left(\dfrac{r}{x}+s\right)^{\prime}+\left(\dfrac{r}{x}+s\right)(p x+q)^{\prime}$
$-(p x+q)\left(r x^{-1}+s\right)^{\prime}+\left(\dfrac{r}{x}+s\right)(p)$
$-(p x+q)\left(-n x^{2}\right)+\left(\dfrac{r}{x}+s\right) p$
$=(p x+q)\left(\dfrac{-r}{x^{2}}\right)+\left(\dfrac{r}{x}+s\right) p$
$=\dfrac{-p x}{x}-\dfrac{q r}{x^{2}}+\dfrac{p r}{x}+p s$
$p s-\dfrac{q r}{x^{2}}$
4. Find the derivative of the following functions (it is to be understood that $a, b, c$, d, $p, q, r$ and $s$ are fixed non-zero constants and $m$ and $n$ are integers): $\mathbf{(ax+b)(c x+d)^{2}}$
Ans: Let $f^{\prime}(x)=(a x+b)(c x+d)^{2}$
By Leibnitz product rule,
$f^{\prime}(x)=(a x+b) \dfrac{d}{d x}(c x+d)^{2} \dfrac{d}{d x}(a x+b)$
$(a x+b) \dfrac{d}{d x}\left(c^{2} x^{2}+2 c d x^{2}\right)+(c x+d)^{2} \dfrac{d}{d x}(a x+b)$
$(a x+b)\left[\dfrac{d}{d x}\left(c^{2} x^{2}\right)+\dfrac{d}{d x}(2 c d x)+\dfrac{d}{d x} d^{2}\right]+(c x+d)^{2}\left[\dfrac{d}{d x} a x+\dfrac{d}{d x} b\right]$
$=(a x+b)\left(2 c^{2} x+2 c d\right)+(c x+d)^{2} a$
$-2 c(a x+b)(c x+d)+a(c x+d)^{2}$
5. Find the derivative of the following functions (it is to be understood that $a, b, c$, d, $p, q, r$ and $s$ are fixed non zero constants and $m$ and $n$ are integers): $\mathbf{\dfrac{a x+b}{c x+d}}$
Ans: Let $f(x)=\dfrac{a x+b}{c x+d}$
By quotient rule,
$f(x)=\dfrac{(c x+d) \dfrac{d}{d x}(a x+b)-(a x+b) \dfrac{d}{d x}(c x+d)}{(c x+d)^{2}}$
$=\dfrac{(c x+d)(a)-(a x+d)(c)}{(c x+d)^{2}}$
$\dfrac{a c x+a d-a c x-b c}{(c x+d)^{2}}$
$\dfrac{a d-b c}{(c x+d)^{2}}$
6. Find the derivative of the following functions (it is to be understood that $a, b, c$, d, $p, q, r$ and $s$ are fixed non-zero constants and $m$ and $n$ are integers): $\mathbf{\dfrac{1+\dfrac{1}{x}}{1-\dfrac{1}{x}}}$
Ans: Let$f(x)=\dfrac{1+\dfrac{1}{x}}{1-\dfrac{1}{x}}=\dfrac{\dfrac{x+1}{x}}{\dfrac{x-1}{x}}=\dfrac{x+1}{x-1}$, where $x \neq 0$
By quotient rule, $f^{\prime}(x)=\dfrac{(x-1) \dfrac{d}{d x}(x-1)-(x+1) \dfrac{d}{d x}(x-1)}{(x-1)^{2}}, x \neq 0,1$
$=\dfrac{(x-1)(1)-(x+1)(1)}{(x-1)^{2}}, x \neq 0,1$
$\dfrac{x-1-x-1}{(x-1)^{2}}, x \neq 0,1$
$\dfrac{-2}{(x-1)^{2}}, x \neq 0,1$
7. Find the derivative of the following functions (it is to be understood that $a, b, c$, d, $p, q, r$ and s are fixed non-zero constants and $m$ and $n$ are integers) $\mathbf{: \dfrac{1}{a x^{2}+b x+c}}$
Ans: Let $f(x)=\dfrac{1}{a x^{2}+b x+c}$
By quotient rule,
$f^{\prime}(x)=\dfrac{\left(a x^{2}+b x+c\right) \dfrac{d}{d x}(1)-\dfrac{d}{d x}\left(a x^{2}+b x+c\right)}{\left(a x^{2}+b x+c\right)^{2}}$
$\dfrac{\left(a x^{2}+b x+c\right)(0)-(2 a x+b)}{\left(a x^{2}+b x+c\right)^{2}}$
$\dfrac{-(2 a x+b)}{\left(a x^{2}+b x+c\right)^{2}}$
8. Find the derivative of the following functions (it is to be understood that $a, b, c$ d, p, q, r and s are fixed non-zero constants and m and $n$ are integers): $\mathbf{\dfrac{ax+b}{p x^{2}+q x+r}}$
Ans: Let $f(x)=\dfrac{a x+b}{p x^{2}+q x+r}$
By quotient rule,
$f^{\prime}(x)=\dfrac{\left(p x^{2}+q x+r\right) \dfrac{d}{d x}(a x+b)-(a x+b) \dfrac{d}{d x}\left(p x^{2}+q x+r\right)}{\left(p x^{2}+q x+r\right)^{2}}$
$=\dfrac{\left(p x^{2}+q x+r\right)(a)-(a x+b)(2 p x+q)}{\left(p x^{2}+q x+r\right)^{2}}$
$=\dfrac{a p x^{2}+a q x+a r-a q x+2 n p x+b q}{\left(p x^{2}+q x+r\right)^{2}}$
$\dfrac{-a p x^{2}+2 b p x+a r-b q}{\left(p x^{2}+q x+r\right)^{2}}$
9. Find the derivative of the following functions (it is to be understood that $a, b, c$. d, $p$, q, $r$ and s are fixed non-zero constants and $m$ and $n$ are integers): $\mathbf{\dfrac{p x^{2}+q x+r}{ax+b}}$
Ans: Let $f(x)=\dfrac{p x^{2}+q x+r}{a x+b}$
By the quotient rule,
$\dot{f}(x)=\dfrac{(a x+b) \dfrac{d}{d x}\left(p x^{2}+q x+\eta\right)-\left(p x^{2}+q x+r\right) \dfrac{d}{d x}(a x+b)}{(a x+b)^{2}}$
$\dfrac{(a x+b)(2 p x+q)-\left(p x^{2}+q x+r\right)(a)}{(a x+b)^{2}}$
$=\dfrac{2 a p x^{2}+a q x+2 b p x+b q-a q x^{2}-a q x-a r}{(a x+b)^{2}}$
$\dfrac{a p x^{2}+2 b p x+b q-a r}{(a x+b)^{2}}$
10. Find the derivative of the following functions (it is to be understood that $a, b, c$, d, $p$, q, $r$ and $s$ are fixed non-zero constants and $m$ and $n$ are integers): $\mathbf{\dfrac{a}{x^{4}}-\dfrac{b}{x^{2}}+\cos x}$
Ans: Let $f(x)=\dfrac{a}{x^{4}}-\dfrac{b}{x^{2}}+\cos x$
$f^{\prime}(x)=\dfrac{d}{d x}\left(\dfrac{a}{x^{4}}\right)-\dfrac{d}{d x}\left(\dfrac{a}{x^{2}}\right)+\dfrac{d}{d x}(\cos x)$
$a \dfrac{d}{d x}\left(x^{-4}\right)-b \dfrac{d}{d x}\left(x^{2}\right)+\dfrac{d}{d x}(\cos x)$
$-a\left(-4 x^{-5}\right)-b\left(-2 x^{3}\right)+(-\sin x) \quad\left[\dfrac{d}{d x}\left(x^{n}\right)=n x^{n-1}\right.$ and $\left.\dfrac{d}{d x}(\cos x)=-\sin x\right]$
$\dfrac{-4 a}{x^{5}}+\dfrac{2 b}{x^{3}}-\sin x$
11. Find the derivative of the following functions (it is to be understood that $a, b, c$, d, $p, q, r$ and $s$ are fixed nonzero constants and $m$ and $n$ are integers): $\mathbf{4 \sqrt{x}-2}$
Ans: Let $f(x)=4 \sqrt{x}-2$
$f^{\prime}(x)=\dfrac{d}{d x}(4 \sqrt{x}-2)=\dfrac{d}{d x}(4 \sqrt{x})-\dfrac{d}{d x}(2)$
$=4 \dfrac{d}{d x}\left(x^{\dfrac{1}{2}}\right)-0=4\left(\dfrac{1}{2} x^{\dfrac{1}{2}}\right)$
$=\left(2 x^{-\dfrac{1}{2}}\right)=\dfrac{2}{\sqrt{x}}$
12. Find the derivative of the following functions (it is to be understood that $a, b, c$, d, $p, q, r$ and $s$ are fixed non-zero constants and $m$ and $n$ are integers): $\mathbf{(ax+b)^{n}}$
Ans: Let $f(x)=(a x+b)^{n} .$ Accordingly, $f(x+h)-\{a(x+h)+b\}^{n}-(a x+a h+b)^{n}$
By first principle,
$f^{\prime}(x)=\lim _{n \rightarrow 0} \dfrac{f(x+h)-f(x)}{h}$
$=\lim _{h \rightarrow 0} \dfrac{(a x+a h+b)-(a x+b)^{n}}{h}$
$=\lim _{h \rightarrow 0} \dfrac{(a x+b)^{n}\left(1+\dfrac{a h}{a x+b}\right)^{n}-(a x+b)^{n}}{h}$
$=(a x+b)^{n} \lim _{n \rightarrow 0} \dfrac{1}{h}\left[\left\{1+n\left(\dfrac{a h}{a x+b}\right)+\dfrac{n(n-1)}{2}\left(\dfrac{a h}{a x+b}\right)^{2}+\cdots\right\}-1\right] \quad$ (using binomial theorem)
$=(a x+b)^{n} \lim _{n \rightarrow 0} \dfrac{1}{h}\left[\left(\dfrac{a h}{a x+b}\right)+\dfrac{n(n-1) a^{2} h^{2}}{2(a x+b)^{2}}+\cdots\right.$ (Terms containing higher degrees of $\left.\left.h\right)\right]$
$=(a x+b)^{n} \lim _{n \rightarrow 0}\left[\dfrac{n a}{(a x+b)}+\dfrac{n(n-1) \nexists^{7} h^{2}}{2(a x+b)^{2}}+\cdots\right]$
$=(a x+b)^{n}\left[\dfrac{n a}{(a x+b)}+0\right]$
$=n a \dfrac{(a x+b)^{n}}{a x+b}$
$-n a(a x+b)^{n-1}$
13. Find the derivative of the following functions (it is to be understood that $a, b, c$, d, $p, q, r$ and $s$ are fixed non-zero constants and $m$ and $n$ are integers): $\mathbf{(a x+b)^{n}(c x+d)^{m}}$
Ans: Let $f(x)=(a x+b)^{n}(c x+d)^{m}$
By Leibnitz product rule,
$f^{\prime}(x)=(a x+b)^{n} \dfrac{d}{d x}(c x+d)^{m}+(c x+d)^{m} \dfrac{d}{d x}(a x+b)^{n}$
Now let $f_{1}(x)=(c x+d)^{m}$
$f_{1}(x+h)=(c x+c h+d)^{m}$
$f_{1}^{\prime}(x)=\lim _{n \rightarrow 0} \dfrac{f_{1}(x+h)-f_{1}(x)}{h}$
$=\lim _{n \rightarrow 0} \dfrac{(c x+c h+d)^{m}-(c x+d)^{m}}{h}$
$=(c x+d)^{m} \lim _{n \rightarrow 0} \dfrac{1}{h}\left[\left(1+\dfrac{c h}{c x+d}\right)^{m}-1\right]$
$=(c x+d)^{m} \lim _{h \rightarrow 0} \dfrac{1}{h}\left[\left(1+\dfrac{m c h}{(c x+d)}+\dfrac{m(m-1)}{2} \dfrac{c^{2} h^{2}}{(c x+d)^{2}}+\cdots\right)^{m}-1\right]$
$=(c x+d)^{m} \lim _{n \rightarrow 0} \dfrac{1}{h}\left[\dfrac{m c h}{(c x+d)}+\dfrac{m(m-1) c^{2} h^{2}}{2(c x+d)^{2}}+\cdots\right.$ (Terms containing higher degree oh $\left.\left.h\right)\right]$
$=(c x+d)^{m} \lim _{h \rightarrow 0}\left[\dfrac{m c}{(c x+d)}+\dfrac{m(m-1) c^{2} h^{2}}{2(c x+d)^{2}}+\cdots\right]$
$=(C x+a)^{m}\left[\dfrac{m c h}{(c x+d)}+0\right]$
$=\dfrac{m c(c x+d)^{m}}{(c x+d)}$
$=m c(c x+d)^{m-1}$
$\dfrac{d}{d x}(c x+d)^{m}=m d(x+d)^{m-1}$
Similarly, $\dfrac{d}{d x}(a x+b)^{n}=n a(a x+b)^{n-1}$... (3)
Therefore, from (1), (2), and (3), we obtain
$f^{\prime}(x)=(a x+b)^{n}\left\{m c(c x+d)^{m-1}\right\}+(c+d)^{m}\left\{n a(a x+b)^{n-1}\right\}$
$=(a x+b)^{n-1}(c x+d)^{m-1}[m c(a x+b)+n a(c x+d)]$
14. Find the derivative of the following functions (it is to be understood that $a, b, c$. d, $p, q, r$ and s are fixed non-zero constants and $m$ and $n$ are integers): $\mathbf{\sin (x+a)}$
Ans: Let, $f(x)=\sin (x+a)$
$f(x+h)=\sin (x+h+a)$
By first principle, $f^{\prime}(x)=\lim _{n \rightarrow 0} \dfrac{f(x+h)-f(x)}{h}$
$=\lim _{n \rightarrow 0} \dfrac{\sin (x+h+a)-\sin (x+a)}{h}$
$=\lim _{n \rightarrow 0} \dfrac{1}{h}\left[2 \cos \left(\dfrac{x+h+a+x+a}{2}\right) \sin \left(\dfrac{x+h+a-x-a}{2}\right)\right]$
$=\lim _{n \rightarrow 0} \dfrac{1}{h}\left[2 \cos \left(\dfrac{2 x+2 a+h}{2}\right) \sin \left(\dfrac{h}{2}\right)\right]$
$=\lim _{h \rightarrow 0}\left[\cos \left(\dfrac{2 x+2 a+h}{2}\right)\left[\dfrac{\sin \left(\dfrac{h}{2}\right)}{\left(\dfrac{h}{2}\right)}\right]\right]$
$=\lim _{h \rightarrow 0} \cos \left(\dfrac{2 x+2 a+h}{2}\right) \cdot \lim _{\dfrac{h}{2} \rightarrow 0}\left[\dfrac{\sin \left(\dfrac{h}{2}\right)}{\left(\dfrac{h}{2}\right)}\right] \quad\left[\right.$ As $\left.h \rightarrow 0 \Rightarrow \dfrac{h}{2} \rightarrow 0\right]$
$=\cos \left(\dfrac{2 x+2 a}{2}\right) \times 1 \quad\left[\lim _{n \rightarrow 0} \dfrac{\sin x}{x}=1\right]$
$=\cos (x+a)$
15. Find the derivative of the following functions (it is to be understood that $a, b, c$, d, $p, q, r$ and $s$ are fixed non-zero constants and $m$ and $n$ are integers): $\mathbf{\operatorname{cosec} x \cot x}$
Ans: Let $f(x)=\operatorname{cosec} x \cot x$
By Leibnitz product rule,
$f^{\prime}(x)=\operatorname{cosec} x(\cot x)^{\prime}+\cot x(\operatorname{cosec} x)^{\prime} \ldots .(1)$
Let $f_{1}(x)=\cot x .$ Accordingly, $f_{1}(x+h)=\cot (x+h)$
By first principle,
$f^{\prime \prime}(x)=\lim _{n \rightarrow 0} \dfrac{f(x+h)-f(x)}{h}$
$=\lim _{h \rightarrow 0} \dfrac{\cot (x+h)-\cot (x)}{h}$
$=\lim _{h \rightarrow 0} \dfrac{1}{h}\left(\dfrac{\cos (x+h)}{\sin (x+h)}-\dfrac{\cos (x)}{\sin x}\right)$
$=\lim _{n \rightarrow 0} \dfrac{1}{h}\left(\dfrac{\sin x \cos (x+h)-\cos x \sin (x+h)}{\sin x \sin (x+h)}\right)$
$=\lim _{h \rightarrow 0} \dfrac{1}{h}\left(\dfrac{\sin (x-x+h)}{\sin x \sin (x+h)}\right)$
$=\dfrac{1}{\sin x^{n \rightarrow 0}} \lim _{h} \dfrac{1}{h}\left[\dfrac{\sin (-h)}{\sin (x+h)}\right]$
$=\dfrac{-1}{\sin x}\left(\lim _{n \rightarrow 0} \dfrac{\sin h}{h}\right)\left(\lim _{n \rightarrow 0} \dfrac{1}{\sin (x+h)}\right)$
$=\dfrac{-1}{\sin x} \cdot 1 \cdot\left(\lim _{n \rightarrow 0} \dfrac{1}{\sin (x+0)}\right)$
$=\dfrac{-1}{\sin ^{2} x}$
$=-\operatorname{cosec}^{2} x$
$\therefore(\cot x)^{\prime}=-\operatorname{cosec}^{2} x \quad \ldots$ (2)
Now, let $f_{2}(x)=\operatorname{cosec} x .$ Accordingly, $f_{2}(x+h)=\operatorname{cosec}(x+h)$
By first principle, $f_{2}(x)=\lim _{n \rightarrow 0} \dfrac{f_{2}(x+h)-f_{2}(x)}{h}$
$=\lim _{h \rightarrow 0} \dfrac{1}{h}[\operatorname{cosec}(x+h)-\operatorname{cosec}(x)]$
$=\lim _{n \rightarrow 0} \dfrac{1}{h}\left(\dfrac{1}{\sin (x+h)}-\dfrac{1}{\sin x}\right)$
$=\lim _{n \rightarrow 0} \dfrac{1}{h}\left(\dfrac{\sin x-\sin (x+h)}{\sin x \sin (x+h)}\right)$
$=\dfrac{1}{\sin x} \cdot \lim _{h \rightarrow 0} \dfrac{1}{h}\left[\dfrac{2 \cos \left(\dfrac{x+x+h}{2}\right) \sin \left(\dfrac{x-x-h}{2}\right)}{\sin (x+h)}\right]$
$=\dfrac{1}{\sin x} \cdot \lim _{n \rightarrow 0} \dfrac{1}{h}\left[\dfrac{2 \cos \left(\dfrac{2 x+h}{2}\right) \sin \left(\dfrac{-h}{2}\right)}{\sin (x+h)}\right]$
$=\dfrac{1}{\sin x} \cdot \lim _{h \rightarrow 0}\left[\dfrac{-\sin \left(\dfrac{h}{2}\right)}{\left(\dfrac{h}{2}\right)} \cdot \dfrac{\cos \left(\dfrac{2 x+h}{2}\right)}{\sin (x+h)}\right]$
$=\dfrac{-1}{\sin x} \cdot \lim _{h \rightarrow 0} \dfrac{\sin \left(\dfrac{h}{2}\right)}{\left(\dfrac{h}{2}\right)} \cdot \lim _{n \rightarrow 0} \dfrac{\cos \left(\dfrac{2 x+h}{2}\right)}{\sin (x+h)}$
$=\dfrac{-1}{\sin x} \cdot 1 \cdot \dfrac{\cos \left(\dfrac{2 x+h}{2}\right)}{\sin (x+0)}$
$=\dfrac{-1}{\sin x} \cdot \dfrac{\cos x}{\sin x}$
$=-\operatorname{cosec} x \cdot \cot x$
$\therefore(\operatorname{cosec} x)^{\prime}=-\operatorname{cosec} x \cdot \cot x$
From (1), (2), and (3), we obtain
$f^{\prime}(x)=\operatorname{cosec} x\left(-\operatorname{cosec}^{2} x\right)+\cot x(-\operatorname{cosec} x \cot x)$
$=-\operatorname{cosec}^{3} x-\cot ^{2} x \operatorname{cosec} x$
16. Find the derivative of the following functions (it is to be understood that $a, b, c$, d, $p, q, r$ and $s$ are fixed non-zero constants and $m$ and $n$ are integers): $\mathbf{\dfrac{\cos x}{1+\sin x}}$
Ans: Let $f(x)=\dfrac{\cos x}{1+\sin x}$
By the quotient rule,
$f^{\prime}(x)=\dfrac{(1+\sin x) \dfrac{d}{d x}(\cos x)-(\cos x) \dfrac{d}{d x}(1+\sin x)}{(1+\sin x)^{2}}$
$=\dfrac{(1+\sin x)(-\sin x)-(\cos x)(\cos x)}{(1+\sin x)^{2}}$
$=\dfrac{-\sin x-\sin ^{2} x-\cos ^{2} x}{(1+\sin x)^{2}}$
$=\dfrac{-\sin x-\left(\sin ^{2} x+\cos ^{2} x\right)}{(1+\sin x)^{2}}$
$=\dfrac{-\sin x-1}{(1+\sin x)^{2}}$
$=\dfrac{-(1-\sin x)}{(1+\sin x)^{2}}$
$=\dfrac{-1}{(1+\sin x)^{2}}$
17. Find the derivative of the following functions (it is to be understood that $a, b, c$, d, $p, q, r$ and $s$ are fixed non-zero constants and m and n are integers): $\mathbf{\dfrac{\sin x+\cos x}{\sin x-\cos x}}$
Ans:17: Let $f(x)=\dfrac{\sin x+\cos x}{\sin x-\cos x}$
By the quotient rule,
$f^{\prime \prime}(x)=\dfrac{(\sin x-\cos x) \dfrac{d}{d x}(\sin x+\cos x)-(\sin x+\cos x) \dfrac{d}{d x}(\sin x-\cos x)}{(\sin x+\cos x)^{2}}$
$=\dfrac{(\sin x-\cos x)(\cos x-\sin x)-(\sin x+\cos x)(\cos x+\sin x)}{(\sin x+\cos x)^{2}}$
$=\dfrac{-(\sin x-\cos x)^{2}-(\sin x+\cos x)^{2}}{(\sin x+\cos x)^{2}}$
$=\dfrac{-\left[\sin ^{2} x+\cos ^{2} x-2 \sin x \cos x+\sin ^{2} x+\cos ^{2} x+2 \sin x \cos x\right]}{(\sin x+\cos x)^{2}}$
$=\dfrac{-[1+1]}{(\sin x-\cos x)^{2}}$
$=\dfrac{-2}{(\sin x-\cos x)^{2}}$
18. Find the derivative of the following functions (it is to be understood that $a, b, c$, d. $p, q, r$ and $s$ are fixed non-zero constants and $m$ and $n$ are integers): $\mathbf{\dfrac{\sec x-1}{\sec x+1}}$
Ans: Let $f(x)=\dfrac{\sec x-1}{\sec x+1}$
$f(x)=\dfrac{\dfrac{1}{\cos x}-1}{\dfrac{1}{\cos x}+1}=\dfrac{1-\cos x}{1+\cos x}$
By the quotient rule,
$f^{\prime}(x)=\dfrac{(1+\cos x) \dfrac{d}{d x}(1-\cos x)-(1-\cos x) \dfrac{d}{d x}(1+\cos x)}{(1+\cos x)^{2}}$
$=\dfrac{(1+\cos x)(\sin x)-(1-\cos x)(-\sin x)}{(1+\cos x)^{2}}$
$=\dfrac{\sin x+\cos x \sin x+\sin x-\sin x \cos x}{(1+\cos x)^{2}}$
$=\dfrac{2 \sin x}{(1+\cos x)^{2}}$
$=\dfrac{2 \sin x}{\left(1+\dfrac{1}{\sec x}\right)^{2}}=\dfrac{2 \sin x}{\dfrac{(\sec x+1)^{2}}{\sec ^{2} x}}$
$=\dfrac{2 \sin x \sec ^{2} x}{(\sec x+1)^{2}}$
$=\dfrac{\dfrac{2 \sin x}{\cos x} \sec x}{(\sec x+1)^{2}}$
$=\dfrac{2 \sec x \tan x}{(\sec x+1)^{2}}$
19. Find the derivative of the following functions (it is to be understood that $a, b, c$, d. $p, q, r$ and s are fixed non-zero constants and $m$ and $n$ are integers): $\mathbf{\sin ^{n} x}$
Ans: Let $y=\sin ^{n} x$
Accordingly, for $n=1, y=\sin x$
$\therefore \dfrac{d y}{d x}=\cos x$, i.e., $\dfrac{d}{d x} \sin x=\cos x$
For $n=2, y=\sin ^{2} x$.
$\therefore \dfrac{d y}{d x}=\dfrac{d}{d x}(\sin x \sin x)$
$=(\sin x)^{\prime}\left(\sin x+\sin x(\sin x)^{\prime} \quad\right.$ (By Leibnitz product rule)
$=\cos x \sin x+\sin x \cos x$
$=2 \sin x \cos x$
$\ldots .(1)$
For $n=3, y=\sin ^{3} x$
$\therefore \dfrac{d y}{d x}=\dfrac{d}{d x}\left(\sin x \sin ^{2} x\right)$
$=(\sin x)^{\prime} \sin ^{2} x+\sin x(\sin x)^{\prime}$
(By Leibnitz product rule)
$-\cos x \sin ^{2} x+\sin x(2 \sin x \cos x) \quad[$ Using $(1)]$
$=\cos x \sin ^{2} x+\sin ^{2} x \cos x$
$=3 \sin ^{2} x \cos x$
We assert that $\dfrac{d}{d x}\left(\sin ^{n} x\right)=n \sin ^{(n-1)} x \cos x$
Let our assertion be true for $n=k$.
i.e., $\dfrac{d}{d x}\left(\sin ^{k} x\right)=k \sin ^{(k-1)} x \cos x \quad \ldots .$ (2)
Consider,
$\dfrac{d}{d x}\left(\sin ^{k+1} x\right)=\dfrac{d}{d x}\left(\sin x \sin ^{(k)} x\right)$
$=(\sin x)^{\prime} \sin ^{k} x+\sin x\left(\sin ^{k} x\right)^{n}$
(By Leibnitz product rule)
$=\cos x \sin ^{k} x+\sin x\left(k \sin ^{k-1} \cos x\right) \quad[$ Using $(2)]$
$=\cos x \sin ^{k} x+2 \sin ^{k} x \cos x$
$-(k+1) \sin ^{k} x \cos x$
Thus, our assertion is true for $n=k+1$.
Hence, by mathematical induction, $\dfrac{d}{d x}\left(\sin ^{n} x\right)=n \sin ^{(n-1)} x \cos x$
20. Find the derivative of the following functions (it is to be understood that $a, b, c$, d, $p, q, r$ and s are fixed non-zero constants and $m$ and n are integers): $\mathbf{\dfrac{a+b \sin x}{c+d \cos x}}$
Ans: Let $f(x)=\dfrac{a+b \sin x}{c+d \cos x}$
By the quotient rule,
$f^{\prime}(x)=\dfrac{(c+d \cos x) \dfrac{d}{d x}(a+b \sin x)-(a+b \sin x) \dfrac{d}{d x}(c+d \cos x)}{(c+d \cos x)^{2}}$
$=\dfrac{(c+d \cos x)(b \cos x)-(a+b \sin x)(-d \sin x)}{(c+d \cos x)^{2}}$
$=\dfrac{c b \cos x+b d \cos ^{2} x+a d \sin x+b d \sin ^{2} x}{(c+d \cos x)^{2}}$
$=\dfrac{b c \cos x+a d \sin x+b d\left(\cos ^{2} x+\sin ^{2} x\right)}{(C+d \cos x)^{2}}$
$=\dfrac{b c \cos x+a d \sin x+b d}{(c+d \cos x)^{2}}$
21. Find the derivative of the following functions (it is to be understood that $a, b, c$, d, $p, q, r$ and s are fixed non-zero constants and m and $n$ are integers): $\mathbf{\dfrac{\sin (x+a)}{\cos x}}$
Ans: Let $f(x)=\dfrac{\sin (x+a)}{\cos x}$
By the quotient rule,
$f^{\prime}(x)=\dfrac{\cos x \dfrac{d}{d x}[\sin (x+a)]-\sin (x+a) \dfrac{d}{d x} \cos x}{\cos ^{2} x}$
$f^{\prime}(x)=\dfrac{\cos x \dfrac{d}{d x}[\sin (x+a)]-\sin (x+a) \dfrac{d}{d x}(-\sin x)}{\cos ^{2} x}$
Let $g(x)-\sin (x+a) .$ Accordingly,$g(x+h)=\sin (x+h+a)$
By first principle,
$g^{\prime}(x)=\lim _{h \rightarrow 0} \dfrac{g(x+h)-g(x)}{h}$
$=\lim _{n \rightarrow 0} \dfrac{1}{h}[\sin (x+h+a)-\sin (x+a)]$
$=\lim _{n \rightarrow 0} \dfrac{1}{h}\left[2 \cos \left(\dfrac{x+h+a+x+a}{2}\right) \sin \left(\dfrac{x+h+a-x-a}{2}\right)\right]$
$=\lim _{n \rightarrow 0} \dfrac{1}{h}\left[2 \cos \left(\dfrac{2 x+2 a+h}{2}\right) \sin \left(\dfrac{h}{2}\right)\right]$
$=\lim _{n \rightarrow 0}\left[\cos \left(\dfrac{2 x+2 a+h}{h}\right)\left\{\dfrac{\sin \left(\dfrac{h}{2}\right)}{\left(\dfrac{h}{2}\right)}\right\}\right]$
$=\lim _{n \rightarrow 0} \cos \left(\dfrac{2 x+2 a+h}{h}\right) \cdot \lim _{n \rightarrow 0}\left\{\dfrac{\sin \left(\dfrac{h}{2}\right)}{\left(\dfrac{h}{2}\right)}\right\} \quad\left[\right.$ As $\left.h \rightarrow 0 \Rightarrow \dfrac{h}{2} \rightarrow 0\right]$
$=\left(\cos \dfrac{2 x+2 a}{2}\right) \times 1 \quad\left[\lim _{n \rightarrow 0} \dfrac{\sin h}{h}=1\right]$
$=\cos (x+a) \quad \ldots$ (ii)
From (i) and (ii), we obtain $f^{\prime}(x)=\dfrac{\cos x \cos (x+a)+\sin x \sin (x+a)}{\cos ^{2} x}$
$=\dfrac{\cos (x+a-x)}{\cos ^{2} x}$
$=\dfrac{\cos a}{\cos ^{2} x}$
22. Find the derivative of the following functions (it is to be understood that $a, b, c$, d. $p, q, r$ and $s$ are fixed non-zero constants and $m$ and $n$ are integers) $\mathbf{: x^{4}(5 \sin x-3 \cos x)}$
Ans: Let $f(x)=x^{4}(5 \sin x-3 \cos x)$
By product rule.
$f^{\prime}(x)=x^{4} \dfrac{d}{d x}(5 \sin x-3 \cos x)+(5 \sin x-3 \cos x) \dfrac{d}{d x}\left(x^{4}\right)$
$=x^{4}\left[5 \dfrac{d}{d x}(\sin x)-3 \dfrac{d}{d x}(\cos x)\right]+(5 \sin x-3 \cos x) \dfrac{d}{d x}\left(x^{4}\right)$
$=x^{4}[5 \cos x-3(-\sin x)]+(5 \sin x-3 \cos x)\left(4 x^{3}\right)$
$=x^{3}[5 x \cos x+3 x \sin x+20 \sin x-12 \cos x]$
23. Find the derivative of the following functions (it is to be understood that $a, b, c$, d, p, q, r and s are fixed non-zero constants and m and n are integers): $\mathbf{\left(x^{2}+1\right) \cos x}$
Ans: Let $f(x)=\left(x^{2}+1\right) \cos x$
By product rule.
$f^{\prime}(x)=\left(x^{2}+1\right) \dfrac{d}{d x}(\cos x)+\cos x \dfrac{d}{d x}\left(x^{2}+1\right)$
$=\left(x^{2}+1\right)(-\sin x)+\cos x(2 x)$
$=-x^{2} \sin x-\sin x+2 x \cos x$
24. Find the derivative of the following functions (it is to be understood that $a, b, c$, d, $p, q, r$ and s are fixed non-zero constants and $m$ and $n$ are integers): $\mathbf{\left(ax^{2}+\sin x\right)(p+q \cos x)}$
Ans: Let $f(x)=\left(a x^{2}+\sin x\right)(p+q \cos x)$
By product rule.
$f^{\prime}(x)=\left(a x^{2}+\sin x\right) \dfrac{d}{d x}(p+q \cos x)+(p+q \cos x) \dfrac{d}{d x}\left(a x^{2}+\sin x\right)$
$=\left(a x^{2}+\sin x\right)(-q \sin x)+(p+q \cos x)(2 a x+\cos x)$
$=-q \sin x\left(a x^{2}+\sin x\right)+(p+q \cos x)(2 a x+\cos x)$
25. Find the derivative of the following functions (it is to be understood that $a, b, c$, d. $p, q, r$ and $s$ are fixed non-zero constants and $m$ and $n$ are integers): $\mathbf{(x+\cos x)(x-\tan x)}$
Ans: Let $f(x)=(x+\cos x)(x-\tan x)$
By product rule,
$f^{\prime}(x)=(x+\cos x) \dfrac{d}{d x}(x-\tan x)+(x-\tan x) \dfrac{d}{d x}(x+\cos x)$
$=(x+\cos x)\left[\dfrac{d}{d x}(x)-\dfrac{d}{d x}(\tan x)\right]+(x-\tan x)(1-\sin x)$
$=(x+\cos x)\left[1-\dfrac{d}{d x}(\tan x)\right]+(x-\tan x)(1-\sin x)$
Let $g(x)=\tan x .$ Accordingly,$g(x+h)=\tan (x+h)$
By first principle,
$g^{\prime \prime}(x)=\lim _{n \rightarrow 0} \dfrac{g(x+h)-g(x)}{h}$
$=\lim _{h \rightarrow 0} \dfrac{\tan (x+h)-\tan (x)}{h}$
$=\lim _{n \rightarrow 0} \dfrac{1}{h}\left[\dfrac{\sin (x+h)}{\cos (x+h)}-\dfrac{\sin x}{\cos x}\right]$
$=\lim _{n \rightarrow 0} \dfrac{1}{h}\left[\dfrac{\sin (x+h) \cos x-\sin x \cos (x+h)}{\cos x \cos (x+h)}\right]$
$=\dfrac{1}{\cos x^{n \rightarrow 0}} \lim _{h} \dfrac{1}{h}\left[\dfrac{\sin (x+h-x)}{\cos (x+h)}\right]$
$=\dfrac{1}{\cos x^{h \rightarrow 0}} \lim _{h} \dfrac{1}{h}\left[\dfrac{\sin h}{\cos (x+h)}\right]$
$=\dfrac{1}{\cos x}\left(\lim _{n \rightarrow 0} \dfrac{\sin h}{h}\right)\left(\lim _{n \rightarrow 0} \dfrac{1}{\cos (x+h)}\right)$
$=\dfrac{1}{\cos x} \cdot \cdot\left(\dfrac{1}{\cos (x+0)}\right)$
$=\dfrac{1}{\cos ^{2} x}$
$=\sec ^{2} x \quad$... (ii)
Therefore, from (i) and (ii). We obtain
$f^{\prime}(x)=(x+\cos x)\left(1-\sec ^{2} x\right)+(x-\tan x)(1-\sin x)$
$=(x+\cos x)\left(-\tan ^{2} x\right)+(x-\tan x)(1-\sin x)$
$=-\tan ^{2} x(x+\cos x)+(x-\tan x)(1-\sin x)$
26. Find the derivative of the following functions (it is to be understood that $a, b, c$, d, $p, q, r$ and s are fixed non-zero constants and m and $n$ are integers): $\mathbf{\dfrac{4 x+5 \sin x}{3 x+7 \cos x}}$
Ans: Let $f(x)=\dfrac{4 x+5 \sin x}{3 x+7 \cos x}$
Quotient rule,
$f^{\prime}(x)=\dfrac{(3 x+7 \cos x) \dfrac{d}{d x}(4 x+5 \sin x)-(4 x+5 \sin x) \dfrac{d}{d x}(3 x+7 \cos x)}{(3 x+7 \cos x)^{2}}$
$=\dfrac{(3 x+7 \cos x)\left[4 \dfrac{d}{d x}(x)+5 \dfrac{d}{d x}(\sin x)\right]-(4 x+5 \sin x)\left[3 \dfrac{d}{d x}(x)+7 \dfrac{d}{d x}(\cos x)\right]}{(3 x+7 \cos x)^{2}}$
$=\dfrac{(3 x+7 \cos x)[4 x+5 \cos x]-(4 x+5 \sin x)[3-7 \sin x]}{(3 x+7 \cos x)^{2}}$
$=\dfrac{12 x+15 x \cos x+28 x \cos x+35 \cos ^{2} x-12 x+28 x \sin x-15 \sin x+35\left(\cos ^{2} x+\sin ^{2} x\right)}{(3 x+7 \cos x)^{2}}$
$=\dfrac{15 x \cos x+28 \cos x+28 x \sin x-15 \sin x+35\left(\cos ^{2} x+\sin ^{2} x\right)}{(3 x+7 \cos x)^{2}}$
$=\dfrac{35+15 x \cos x+28 \cos x+28 x \sin x-15 \sin x}{(3 x+7 \cos x)^{2}}$
27. Find the derivative of the following functions (it is to be understood that $a, b, c$, d, $p, q, r$ and $s$ are fixed non-zero constants and $m$ and $n$ are integers): $\mathbf{\dfrac{x^{2} \cos \left(\dfrac{\pi}{4}\right)}{\sin x}}$
Ans: Let $\mathrm{f}(\mathrm{x})=\dfrac{x^{2} \cos \left(\dfrac{\pi}{4}\right)}{\sin x}$
By quotient rule, $f^{\prime}(x)=\cos \left(\dfrac{\pi}{4}\right)\left[\dfrac{\sin x \dfrac{d}{d x}\left(x^{2}\right)-x^{2} \dfrac{d}{d x}(\sin x)}{\sin ^{2} x}\right]$
$=\cos \left(\dfrac{\pi}{4}\right)\left[\dfrac{\sin x(2 x)-x^{2}(\cos x)}{\sin ^{2} x}\right]$
$=\dfrac{x \cos \dfrac{\pi}{4}[2 \sin x-x \cos x]}{\sin ^{2} x}$
28. Find the derivative of the following functions (it is to be understood that $a, b, c$. d, p, q, r and s are fixed non-zero constants and $m$ and $n$ are integers): $\mathbf{\dfrac{x}{1+\tan x}}$
Ans: Let $f(x)=\dfrac{x}{1+\tan x}$
$f(x)=\dfrac{(1+\tan x) \dfrac{d}{d x}(x)-(x) \dfrac{d}{d x}(1+\tan x)}{(1+\tan x)^{2}}$
$f^{\prime}(x)=\dfrac{(1+\tan x)-x \dfrac{d}{d x}(1+\tan x)}{(1+\tan x)^{2}}$
Let $g(x)=1+\tan x .$ Accordingly $g(x+h)=1+\tan (x+h)$.
By first principle, $\dot{g}(x)=\lim _{n \rightarrow 0} \dfrac{g(x+h)-g(x)}{h}$
$\lim _{h \rightarrow 0}\left[\dfrac{1+\tan (x+h)-1-\tan (x)}{h}\right]$
$\lim _{n \rightarrow 0} \dfrac{1}{h}\left[\dfrac{\sin (x+h)}{\cos (x+h)}-\dfrac{\sin x}{\cos x}\right]$
$\lim _{n \rightarrow 0} \dfrac{1}{h}\left[\dfrac{\sin (x+h) \cos x-\sin x \cos x(x+h)}{\cos (x+h) \cos x}\right]$
$\lim _{n \rightarrow 0} \dfrac{1}{h}\left[\dfrac{\sin (x+h-x)}{\cos (x+h) \cos x}\right]$
$\lim _{h \rightarrow 0} \dfrac{1}{h}\left[\dfrac{\sinh }{\cos (x+h) \cos x}\right]$
$-\left(\lim _{n \rightarrow 0} \dfrac{\sinh }{h}\right) \cdot\left(\lim _{n \rightarrow 0} \dfrac{1}{\cos (x+h) \cos x}\right)$
$-1 \times \dfrac{1}{\cos ^{2}}=\sec ^{2} x$
$\Rightarrow \dfrac{d}{d x}\left(1+\tan ^{2} x\right)=\sec ^{2} x$
From (i) and (ii), we obtain
$\dot{f}(x)=\dfrac{1+\tan x-x \sec ^{2} x}{(1+\tan x)^{2}}$
29. Find the derivative of the following functions (it is to be understood that $\mathrm{a}, \mathrm{b}, \mathrm{c}$, d, p, q, r and s are fixed non-zero constants and m and n are integers): $\mathbf{(x+\sec x)(x-\tan x)}$
Ans: Let $f(x)=(x+\sec x)(x-\tan x)$
By product rule.
$f(x)=(x+\sec x) \dfrac{d}{d x}(x-\tan x)+(x-\tan x) \dfrac{d}{d x}(x+\sec x)$
$-(x+\sec x)\left[\dfrac{d}{d x}(x)-\dfrac{d}{d x} \tan x\right]+(x-\tan x)\left[\dfrac{d}{d x}(x)-\dfrac{d}{d x} \sec x\right]$
$\left.-f(x+\sec x)\left[1-\dfrac{d}{d x} \tan x\right)\right]+(x-\tan x)\left[1+\dfrac{d}{d x} \sec x\right]$
$\ldots(\mathrm{i})$
Let $f_{1}(x)=\tan x, f_{2}(x)=\sec x$
Accordingly, $f_{1}(x+h) \cdot \tan (x+h)$ and $f_{2}(x+h)-\sec (x+h)$
$f_{1}^{\prime}(x)=\lim _{n \rightarrow 0}\left(\dfrac{f_{1}(x+h)-f_{1}(x)}{h}\right)$
$=\lim _{h \rightarrow 0}\left[\dfrac{\tan (x+h)-\tan (x)}{h}\right]$
$\begin{array}{l}-\lim _{n \rightarrow 0} \dfrac{1}{h}\left[\dfrac{\sin (x+h)}{\cos (x+h)}-\dfrac{\sin x}{\cos x}\right]\\-\lim _{n \rightarrow 0} \dfrac{1}{h}\left[\dfrac{\sin (x+h) \cos x-\sin x \cos x(x+h)}{\cos (x+h) \cos x}\right]\\-\lim _{n \rightarrow 0} \dfrac{1}{h}\left[\dfrac{\sin (x+h-x)}{\cos (x+h) \cos x}\right]\\-\lim _{n \rightarrow 0} \dfrac{1}{h}\left[\dfrac{\sinh }{\cos (x+h) \cos x}\right]\\-\left(\lim _{n \rightarrow 0} \dfrac{\sinh }{h}\right) \cdot\left(\lim _{n \rightarrow 0} \dfrac{1}{\cos (x+h) \cos x}\right)\\-1 \times \dfrac{1}{\cos ^{2}}=\sec ^{2} x\\\Rightarrow \dfrac{d}{d x}\left(1+\tan ^{2} x\right)=\sec ^{2} x\\f_{2}^{\prime}(x)=\lim _{n \rightarrow 0}\left(\dfrac{f_{2}+(x+h)-f_{2}(x)}{h}\right)\\=\lim _{h \rightarrow 0}\left(\dfrac{\sec (x+h)-\sec (x)}{h}\right)\\=\lim _{n \rightarrow 0} \dfrac{1}{h}\left(\dfrac{1}{\cos (x+h)}-\dfrac{1}{\cos x}\right)\\=\lim _{n \rightarrow 0} \dfrac{1}{h}\left(\dfrac{\cos x-\cos (x+h)}{\cos (x+h) \cos x}\right)\\=\dfrac{1}{\cos x^{\prime \rightarrow 0}} \lim _{h} \dfrac{1}{h}\left[\dfrac{-2 \sin \left(\dfrac{x+x+h}{2}\right) \cdot \sin \left(\dfrac{x-x-h}{2}\right)}{\cos (x+h)}\right]\\=\dfrac{1}{\cos x} \lim _{h \rightarrow 0} \dfrac{1}{h}\left[\dfrac{-2 \sin \left(\dfrac{2 x+h}{2}\right) \cdot \sin \left(\dfrac{-h}{2}\right)}{\cos (x+h)}\right]\end{array}$
$=\dfrac{1}{\cos x} \lim _{h \rightarrow 0} \dfrac{1}{h}\left[\dfrac{\sin \left(\dfrac{2 x+h}{2}\right)\left\{\dfrac{\sin\left(\dfrac{h}{2}\right)}{\left(\dfrac{h}{2}\right)}\right\}}{\cos (x+h)}\right]$
$=\sec x \dfrac{\left\{\lim _{n \rightarrow 0} \sin \left(\dfrac{2 x+h}{2}\right)\right\}\left\{\lim _{\dfrac{h}{2} \rightarrow 0} \dfrac{\sin \left(\dfrac{h}{2}\right)}{\left(\dfrac{h}{2}\right)}\right\}}{\lim _{n \rightarrow 0} \cos (x+h)}$
$=\sec x \cdot \dfrac{\sin x \cdot 1}{\cos x}$
$\Rightarrow \dfrac{d}{d x} \sec x=\sec x \tan x$
From (i). (ii), and (iii), we obtain
$f^{\prime}(x)=(x+\sec x)\left(1-\sec ^{2} x\right)+(x-\tan x)(1+\sec x \tan x)$
30. Find the derivative of the following functions (it is to be understood that $a, b, c$, d, $p, q, r$ and s are fixed non-zero constants and $m$ and $n$ are integers): $\mathbf{\dfrac{x}{\sin ^{n} x}}$
Ans: Let $\mathrm{f}(\mathrm{x})=\dfrac{x}{\sin ^{n} x}$
By quotient rule, $f^{\prime}(x)=\dfrac{\sin ^{n} x \dfrac{d}{d x} x-x \dfrac{d}{d x} \sin ^{n} x}{\sin ^{2 n} x}$
It can be easily shown that $\dfrac{d}{d x} \sin ^{n} x=n \sin ^{n-1} x \cos x$
Therefore,
$f^{\prime}(x)=\dfrac{\sin ^{n} \times \dfrac{d}{d x} x-x \dfrac{d}{d x} \sin ^{n} x}{\sin ^{2 n} x}$
$=\dfrac{\sin ^{n} x \cdot 1-x\left(\operatorname{nin}^{n-1} x \cos x\right)}{\sin ^{2 n} x}$
$=\dfrac{\sin ^{n-1} x(\sin x-n x \cos x)}{\sin ^{2 n} x}$
$=\dfrac{\sin x-n x \cos x}{\sin ^{n+1} x}$
Conclusion
NCERT Solutions for Class 11 Maths Chapter 12, focused on Limits and Derivatives, are fundamental for understanding the basics of calculus. This chapter focuses on finding out the rates of change (derivatives) of functions and how they solve particular values (limits). To fully understand these concepts, you must focus on solving various kinds of problems. The basic foundation for advanced mathematical studies and practical applications is a knowledge of limits and derivatives. Using NCERT Solutions regularly provides complete exam preparation and improves your mathematical problem-solving skills.
Class 11 Maths Chapter 12: Exercises Breakdown
Exercise | Number of Questions |
32 Questions & Solutions | |
11 Questions & Solutions |
CBSE Class 11 Maths Chapter 12 Other Study Materials
S. No | Important Links for Chapter 12 Limits and Derivatives |
1 | |
2 | |
3 | |
4 | |
5 | |
6 | |
7 |
Chapter-Specific NCERT Solutions for Class 11 Maths
Given below are the chapter-wise NCERT Solutions for Class 11 Maths. Go through these chapter-wise solutions to be thoroughly familiar with the concepts.
S. No | NCERT Solutions Class 11 Maths All Chapters |
1 | |
2 | |
3 | |
4 | Chapter 4 - Complex Numbers and Quadratic Equations Solutions |
5 | |
6 | |
7 | |
8 | |
9 | |
10 | |
11 | Chapter 11 - Introduction to Three Dimensional Geometry Solutions |
12 | |
13 | |
14 |
Important Related Links for CBSE Class 11 Maths
S. No | Important Study Material for CBSE Class 11 Maths |
1 | |
2 | |
3 | |
4 | |
5 |
FAQs on NCERT Solutions for Class 11 Maths Miscellaneous Exercise Chapter 12 - Limits and Derivatives
1. What is the limit in calculus in Miscellaneous Exercise Class 11 Chapter 12?
Miscellaneous Exercise Class 11 Chapter 12, a limit in calculus describes the behaviour of a function as it approaches a certain value or point. It's crucial to understand how functions behave near specific points without actually reaching them.
2. How do you find the limit of a function in Miscellaneous Exercise Class 11 Chapter 12?
To find the limit of a function in Class 11 Maths Chapter 12 Miscellaneous Solutions, you evaluate the function's value as it approaches a given point. This process involves substituting values closer and closer to the specified point to see where the function tends.
3. Why are limits important in Class 11 Maths Chapter 12 Miscellaneous Solutions?
Limits are essential as they allow us to understand continuity, derivatives, and integrals in calculus. They are also used in defining and analyzing functions in various fields like physics and engineering.
4. What are the different types of limits in Class 11 Maths Chapter 12 Miscellaneous Solutions?
There are various types of limits in Class 11 Maths Chapter 12 Miscellaneous Solutions, including limits at infinity, one-sided limits, and limits involving indeterminate forms like 0/0. Each type serves specific purposes in analyzing different aspects of functions.
5. What is a derivative in Miscellaneous Ch 11 Class 11?
A derivative measures the rate at which a function changes for one of its variables. It indicates the slope of the tangent line to the graph of the function at a given point for more refer Miscellaneous Ch 11 Class 11 website.
6. How do you calculate derivatives in Miscellaneous Ch 11 Class 11?
Derivatives are calculated using differentiation rules that involve finding the slope of a function at a specific point. These rules include power rule, product rule, quotient rule, and chain rule.
7. Why are derivatives important in real life from this Miscellaneous Ch 11 Class 11?
Derivatives are crucial in various real-life applications such as physics, economics, engineering, and biology. They help in analyzing rates of change, optimizing functions, and predicting behaviours of systems.
8. What is the relationship between limits and derivatives in 3D Miscellaneous Exercise Class 11?
Limits are foundational to derivatives because derivatives are defined as limits of average rates of change. Understanding limits helps in accurately finding derivatives of functions.
9. How can I practice solving limit problems effectively in 3D Miscellaneous Exercise Class 11?
To practice solving limited problems from 3D Miscellaneous Exercise Class 11 effectively, start with basic examples and gradually move to more complex problems. Focus on understanding the concepts behind limits and use step-by-step methods to solve them.
10. What are some common mistakes to avoid when solving limit problems in 3D Miscellaneous Exercise Class 11?
Common mistakes include confusing indeterminate forms, such as 0/0, and overlooking algebraic manipulations that simplify limit calculations. It's important to carefully analyze each step of the solution.
11. How can NCERT 3D Miscellaneous Exercise Class 11 solutions help in preparing for exams related to limits and derivatives?
NCERT Solutions provides detailed explanations and step-by-step solutions to problems in Chapter 12. They help in understanding concepts thoroughly and practising different types of questions, ensuring readiness for exams.
12. What are some practical applications of Chapter 12 3D Miscellaneous Exercise Class 11 in everyday life?
Derivatives are used in calculating rates of change in business trends, predicting population growth, optimizing production processes, designing algorithms, and analyzing physical phenomena like motion and fluid dynamics.