NCERT Solutions for Class 11 Maths Chapter 5 Complex Numbers and Quadratic Equations in Hindi PDF Download
Download the Class 11 Maths NCERT Solutions in Hindi medium and English medium as well offered by the leading e-learning platform Vedantu. If you are a student of Class 11, you have reached the right platform. The NCERT Solutions for Class 11 Maths in Hindi provided by us are designed in a simple, straightforward language, which are easy to memorise. You will also be able to download the PDF file for NCERT Solutions for Class 11 Maths in Hindi from our website at absolutely free of cost.
NCERT, which stands for The National Council of Educational Research and Training, is responsible for designing and publishing textbooks for all the classes and subjects. NCERT textbooks covered all the topics and are applicable to the Central Board of Secondary Education (CBSE) and various state boards.
We, at Vedantu, offer free NCERT Solutions in English medium and Hindi medium for all the classes as well. Created by subject matter experts, these NCERT Solutions in Hindi are very helpful to the students of all classes.
Access NCERT Solutions for Class 11 Mathematics Chapter 5 – समिश्र संख्या और द्विघातीय
प्रश्नवाली 5.1
1. $\left( \text{5i} \right)\left( \text{ - }\dfrac{\text{3}}{\text{5}}\text{i} \right)$
उत्तर:
हमे प्राप्त हैं, $\left( \text{5i} \right)$ $\left( \dfrac{\text{- 3}}{\text{ 5}}\text{i} \right)\text{ = 5}\left( \dfrac{\text{-3}}{\text{5}} \right)\text{ }\!\!\times\!\!\text{ i }\!\!\times\!\!\text{ i = - 3}{{\text{i}}^{^{\text{2}}}}$
$\text{= - 3 }\!\!\times\!\!\text{ }\left( \text{ - 1} \right)$
$\left[ \because \text{, }{{\text{i}}^{\text{2}}}\text{ = - 1} \right]$
$\text{= 3 = 3 + i0}$
2. ${{\text{i}}^{\text{9}}}\text{+}{{\text{i}}^{\text{19}}}$
उत्तर: हमे प्राप्त हैं, ${{\text{i}}^{\text{9}}}\text{ + }{{\text{i}}^{\text{19}}}$ $\text{= }{{\left( {{\text{i}}^{\text{4}}} \right)}^{\text{2}}}\text{.i + }{{\left( {{\text{i}}^{\text{4}}} \right)}^{\text{4}}}\text{.}{{\text{i}}^{\text{2}}}\text{.i}$
${{\left( \text{1} \right)}^{\text{2}}}\text{.i + }{{\left( \text{1} \right)}^{\text{4}}}\text{.}\left( \text{ - 1} \right)\text{.i}$
$\left[ \because \text{,}{{\text{i}}^{\text{2}}}\text{ = - 1, }{{\text{i}}^{\text{4}}}\text{ = 1} \right]$
$\text{= i - i = 0 + i0}$
3. $\text{ i}{{\text{ }}^{\text{-39}}}$
उत्तर: हमें प्राप्त हैं, $\text{ i}{{\text{ }}^{\text{-39}}}$ $\text{= }\dfrac{\text{1}}{{{\text{i}}^{\text{39}}}}\text{ = }\dfrac{\text{i}}{{{\text{i}}^{\text{40}}}}\text{ = }\dfrac{\text{i}}{{{\left( {{\text{i}}^{\text{4}}} \right)}^{\text{10}}}}\text{ = i = 0 + i1}$
$\left[ \because \text{,}{{\text{i}}^{\text{2}}}\text{ = -1} \right]$
4. $\text{3}\left( \text{7 + i7} \right)\text{ + i}\left( \text{7 + i7} \right)$
उत्तर: हमें प्राप्त हैं, $\text{3}\left( \text{7 + i7} \right)\text{ + i}\left( \text{7 + i7} \right)$
$\text{= 21 + i}\text{.21 + i}\text{.7 + }{{\text{i}}^{\text{2}}}\text{.7}$
$\text{= 21 + i}\text{.28 + }\left( \text{-1} \right)\text{.7}$
$\left[ \because \text{,}{{\text{i}}^{\text{2}}}\text{ = -1} \right]$
$\text{= 21 + 28i - 7}$
$\text{= 14 + 28i}$
5. $\left( 1-i \right)-\left( 1+i6 \right)$
उत्तर: हमें प्राप्त हैं, $\left( \text{1 - i} \right)\text{ - }\left( \text{ - 1 + i6} \right)\text{ = 1-i+1+ 6i = 2 - 7i}$
6. $\left( \dfrac{\text{1}}{\text{5}}\text{ + i}\dfrac{\text{2}}{\text{5}} \right)\text{ - }\left( \text{4 + i}\dfrac{\text{5}}{\text{2}} \right)$
उत्तर: हमें प्राप्त हैं,$\left( \dfrac{\text{1}}{\text{5}}\text{ + i}\dfrac{\text{2}}{\text{5}} \right)\text{ - }\left( \text{4 + i}\dfrac{\text{5}}{\text{2}} \right)\text{ = }\dfrac{\text{1}}{\text{5}}\text{ + i}\dfrac{\text{2}}{\text{5}}\text{ - 4 - i}\dfrac{\text{5}}{\text{2}}$
$\text{= }\left( \dfrac{\text{1}}{\text{5}}\text{ - 4} \right)\text{ + i}\left( \dfrac{\text{2}}{\text{5}}\text{ - }\dfrac{\text{5}}{\text{2}} \right)$
$\text{= }\left( \dfrac{\text{1 - 20}}{\text{5}} \right)\text{ + i}\left( \dfrac{\text{4 - 25}}{\text{10}} \right)$
$\text{= - }\dfrac{\text{19}}{\text{5}}\text{ - i}\dfrac{\text{21}}{\text{10}}$
7. $\left[ \left( \dfrac{\text{1}}{\text{3}}\text{ + i}\dfrac{\text{7}}{\text{3}} \right)\text{ + }\left( \text{4 + i}\dfrac{\text{1}}{\text{3}} \right) \right]\text{ - }\left( \dfrac{\text{-4}}{\text{3}}\text{ + i} \right)$
उत्तर: हमें प्राप्त हैं,
$\left[ \left( \dfrac{\text{1}}{\text{3}}\text{ + i}\dfrac{\text{7}}{\text{3}} \right)\text{ + }\left( \text{4 + i}\dfrac{\text{1}}{\text{3}} \right) \right]\text{ - }\left( \dfrac{\text{-4}}{\text{3}}\text{ + i} \right)$
$\text{ = }\dfrac{\text{1}}{\text{3}}\text{ + i}\dfrac{\text{7}}{\text{3}}\text{ + 4 + i}\dfrac{\text{1}}{\text{3}}\text{ +}\dfrac{\text{4}}{\text{3}}\text{ - i}$
$\text{ = }\left( \dfrac{\text{1}}{\text{3}}\text{ + 4 + }\dfrac{\text{4}}{\text{3}} \right)\text{ + i}\left( \dfrac{\text{7}}{\text{3}}\text{ + }\dfrac{\text{1}}{\text{3}}\text{ - 1} \right)$
$\text{ = }\left( \dfrac{\text{1 + 12 + 4}}{\text{3}} \right)\text{ + i}\left( \dfrac{\text{7 + 1 - 3}}{\text{3}} \right)$
$\text{ = }\dfrac{\text{17}}{\text{3}}\text{ + i}\dfrac{\text{5}}{\text{3}}$
8. ${{\left( \text{1 - i} \right)}^{\text{4}}}$
उत्तर: हमें प्राप्त हैं,
${{\left( \text{1 - i} \right)}^{\text{4}}}\text{ = }{{\left[ \text{1 + }{{\text{i}}^{\text{2}}}\text{ - 2i} \right]}^{\text{2}}}\text{ = }{{\left[ \text{1 - 1 - 2i} \right]}^{\text{2}}}$
$\left[ \because \text{, }{{\text{i}}^{\text{2}}}\text{ = - 1} \right]$
$\text{ = }{{\left( \text{ - 2i} \right)}^{\text{2}}}$
$\text{= 4}{{\text{i}}^{\text{2}}}\text{ = 4}\left( \text{ - 1} \right)\text{ = -4}$
$\text{= - 4 + i0}$
9. ${{\left( \dfrac{\text{1}}{\text{3}}\text{ + 3i} \right)}^{\text{3}}}$
उत्तर: हमें प्राप्त हैं,
${{\left( \dfrac{\text{1}}{\text{3}}\text{ + 3i} \right)}^{\text{3}}}\text{ = }{{\left( \dfrac{\text{1}}{\text{3}} \right)}^{\text{3}}}\text{+ }{{\left( \text{3i} \right)}^{\text{3}}}\text{+ 3}\text{.}{{\left( \dfrac{\text{1}}{\text{3}} \right)}^{\text{2}}}\text{.3i + 3}\text{.}\dfrac{\text{1}}{\text{3}}\text{.}{{\left( \text{3i} \right)}^{\text{2}}}$
$\text{ = }\dfrac{\text{1}}{\text{27}}\text{ + 27}{{\text{i}}^{\text{2}}}\text{.i + i + 9}{{\text{i}}^{\text{2}}}$
$\text{ = }\dfrac{\text{1}}{\text{27}}\text{ - 27i + i - 9}$
$\left[ \because \text{, }{{\text{i}}^{\text{2}}}\text{ = - 1} \right]$
$\text{= }\left( \dfrac{\text{1}}{\text{27}}\text{ - 9} \right)\text{ - 26i}$
$\text{= }\left( \dfrac{\text{1 - 243}}{\text{27}} \right)\text{ - 26i}$
$\text{ = - }\dfrac{\text{242}}{\text{27}}\text{ - 26i}$
10. ${{\left( \text{- 2 - i}\dfrac{\text{1}}{\text{3}} \right)}^{\text{3}}}$
उत्तर: हमें प्राप्त हैं,
${{\left( \text{ - 2 - i}\dfrac{\text{1}}{\text{3}} \right)}^{\text{3}}}\text{= ( - 2}{{\text{)}}^{\text{3}}}\text{ + }{{\left( \text{ - }\dfrac{\text{1}}{\text{3}}\text{i} \right)}^{\text{3}}}\text{+ 3}\text{.}{{\left( \text{ - 2} \right)}^{\text{2}}}\text{.}\left( \text{ - }\dfrac{\text{1}}{\text{3}}\text{i} \right)\text{ + 3}\text{.}\left( \text{ - 2} \right)\text{.}{{\left( \text{ - }\dfrac{\text{1}}{\text{3}}\text{i} \right)}^{\text{2}}}$
$\text{= - 8 - }\dfrac{\text{1}}{\text{27}}{{\text{i}}^{\text{3}}}\text{ + 3 }\!\!\times\!\!\text{ 4 }\!\!\times\!\!\text{ }\left( \text{ - }\dfrac{\text{1}}{\text{3}}\text{i} \right)\text{ + 3 }\!\!\times\!\!\text{ ( - 2) }\!\!\times\!\!\text{ }\dfrac{\text{1}}{\text{9}}{{\text{i}}^{\text{2}}}\text{ }$
$\text{ = - 8 - }\dfrac{\text{1}}{\text{27}}\text{ }{{\text{i}}^{\text{2}}}\text{ }\!\!\times\!\!\text{ i - 4 i - }\dfrac{\text{2}}{\text{3}}\text{ }{{\text{i}}^{\text{2}}}\text{ }$
$\text{ = - 8 + }\dfrac{\text{1}}{\text{27}}\text{i - 4i + }\dfrac{\text{2}}{\text{3}}$
$\text{ }\!\![\!\!\text{ }\because \text{, }\left. {{\text{i}}^{\text{2}}}\text{ = - 1} \right]$
$\text{ = }\left( \text{- 8 + }\dfrac{\text{2}}{\text{3}} \right)\text{ + i}\left( \dfrac{\text{1}}{\text{27}}\text{ - 47} \right)$
$\text{ = }\left( \dfrac{\text{ - 24 + 2}}{\text{3}} \right)\text{ + i}\left( \dfrac{\text{1 - 108}}{\text{27}} \right)$
$\text{ = - }\dfrac{\text{22}}{\text{3}}\text{ - }\dfrac{\text{107}}{\text{27}}\text{i}$
प्रश्न 11 से13 की सम्मिश्र संख्याओ में प्रत्येक का गुणात्मक प्रतिलोम ज्ञात कीजिए
11. $\text{4 - 3i}$
उत्तर: मान लिया, $\text{z = 4 - 3i}$
तब,${\bar{Z} = 4 + 3i}$ और $\text{ }\!\!|\!\!\text{ Z }\!\!|\!\!\text{ = }\sqrt{{{\text{4}}^{\text{2}}}\text{ + }{{\text{3}}^{\text{2}}}}\text{ = }\sqrt{\text{16+9}}$
$\text{ = }\sqrt{\text{25}}\text{ = 5}$
इसलिए ,$\text{z = 4 - 3i}$ का गुणात्मक प्रतिलोम :
${{\text{Z}}^{\text{-1}}}\text{ = }\dfrac{{{\bar{z}}}}{\text{ }\!\!|\!\!\text{ z}{{\text{ }\!\!|\!\!\text{ }}^{\text{2}}}}\text{ = }\dfrac{\text{4 + 3i}}{{{\text{5}}^{\text{2}}}}\text{ = }\dfrac{\text{4 + 3i}}{\text{25}}\text{ = }\dfrac{\text{4}}{\text{25}}\text{ + i}\dfrac{\text{3}}{\text{25}}$
ऊपर दिया गया सारा हल निम्नलिखत ढंग से दिखाया जा सकता हैं
${{\text{Z}}^{\text{-1}}}\text{ = }\dfrac{\text{1}}{\text{4 - 3i}}\text{ = }\dfrac{\text{(4 + 3i)}}{\text{(4 - 3i)(4 + 3i)}}\text{ = }\dfrac{\text{(4 + 3i)}}{{{\text{4}}^{\text{2}}}\text{ - (3i}{{\text{)}}^{\text{2}}}}\text{ = }\dfrac{\text{(4 + 3i)}}{\text{16 + 9}}\text{ =} $
$\dfrac{\text{(4 + 3i)}}{\text{25}}\text{ = }\dfrac{\text{4}}{\text{25}}\text{ + i}\dfrac{\text{3}}{\text{25}}$
12. $\sqrt{\text{5}}\text{ + 3i}$
उत्तर: मान लिया ,$\text{z = }\sqrt{\text{5}}\text{ + 3i}$
तब ,${\bar{Z} = }\sqrt{\text{5}}\text{ - 3i}$ और $\text{ }\!\!|\!\!\text{ Z }\!\!|\!\!\text{ = }\sqrt{{{\sqrt{\text{5}}}^{\text{2}}}\text{ + }{{\text{3}}^{\text{2}}}}\text{ = }\sqrt{\text{5 + 9}}\text{ = }\sqrt{\text{14}}$
इसलिए ,$\text{z = }\sqrt{\text{5}}\text{ + 3i}$ का गुणात्मक प्रतिलोम :
${{\text{Z}}^{\text{-1}}}\text{ = }\dfrac{{{\bar{z}}}}{\text{ }\!\!|\!\!\text{ z}{{\text{ }\!\!|\!\!\text{ }}^{\text{2}}}}\text{ = }\dfrac{\sqrt{\text{5}}\text{ - 3i}}{{{\sqrt{\text{14}}}^{\text{2}}}}\text{ = }\dfrac{\sqrt{\text{5}}\text{ - 3i}}{\text{14}}\text{ = }\dfrac{\sqrt{\text{5}}}{\text{14}}\text{ - i}\dfrac{\text{3}}{\text{14}}$
ऊपर दिया गया सारा हल निम्नलिखत ढंग से दिखाया जा सकता हैं
${{\text{Z}}^{\text{-1}}}\text{ = }\dfrac{\text{1}}{\sqrt{\text{5}}\text{ + 3i}}\text{ = }\dfrac{\sqrt{\text{5 }}\text{- 3i}}{\text{(}\sqrt{\text{5}}\text{ + 3i)(}\sqrt{\text{5 }}\text{- 3i)}}\text{ = }\dfrac{\sqrt{\text{5 }}\text{- 3i}}{{{\sqrt{\text{5}}}^{\text{2}}}\text{ - (3i}{{\text{)}}^{\text{2}}}}\text{ = }\dfrac{\text{(}\sqrt{\text{5 }}\text{- 3i)}}{\text{5 + 9}}$
$\text{= }\dfrac{\text{(}\sqrt{\text{5}}\text{ - 3i)}}{\text{14}}\text{ = }\dfrac{\sqrt{\text{5}}}{\text{14}}\text{ - i}\dfrac{\text{3}}{\text{14}}$
13. $\text{- i}$
उत्तर: मान लिया, $\text{z = 0 - i}$
तब, ${\bar{Z} = 0 + i}$ और $|Z|=\sqrt{{{0}^{2}}+{{1}^{2}}}=\sqrt{0+1}=1$
इसलिए , $\text{z = 0 - i}$ का गुणात्मक प्रतिलोम :
${{\text{Z}}^{\text{-1}}}\text{ = }\dfrac{{{\bar{z}}}}{\text{ }\!\!|\!\!\text{ z}{{\text{ }\!\!|\!\!\text{ }}^{\text{2}}}}\text{ = }\dfrac{\text{0 + i}}{{{\text{1}}^{\text{2}}}}\text{ = }\dfrac{\text{0 + i}}{\text{1}}\text{ = }\dfrac{\text{0}}{\text{1}}\text{ + }\dfrac{\text{i}}{\text{1}}\text{ = i}$
ऊपर दिया गया सारा हल निम्नलिखत ढंग से दिखाया जा सकता हैं
${{\text{Z}}^{\text{-1}}}\text{ = }\dfrac{\text{1}}{\text{0 - i}}\text{ = }\dfrac{\text{0 + i}}{\text{(0 - i)(0 + i)}}\text{ = }\dfrac{\text{0 + i}}{{{\text{0}}^{\text{2}}}\text{ - (i}{{\text{)}}^{\text{2}}}}\text{ = }\dfrac{\text{0 + i}}{\text{0 + 1}}\text{ = }\dfrac{\text{0 + l}}{\text{1}}\text{ = }\dfrac{\text{0}}{\text{1}}\text{ + }\dfrac{\text{l}}{\text{1}}\text{ = i}$
14. निम्नलिखत व्यंजक को $\text{a + ib }$ के रूप मे व्यक्त कीजिए ।
$\dfrac{\text{(3 + i}\sqrt{\text{5}}\text{) (3 - i}\sqrt{\text{5}}\text{)}}{\text{(}\sqrt{\text{3}}\text{ + i}\sqrt{\text{2}}\text{) - (}\sqrt{\text{3 }}\text{- i}\sqrt{\text{2}}\text{)}}$
उत्तर: हमें प्राप्त हैं,
$\dfrac{\text{(3 + i}\sqrt{\text{5}}\text{)(3 - i}\sqrt{\text{5}}\text{)}}{\text{(}\sqrt{\text{3}}\text{ + i }\sqrt{\text{2}}\text{) - (}\sqrt{\text{3}}\text{ - i}\sqrt{\text{2}}\text{)}}\quad $
$\text{ =}\dfrac{{{\text{3}}^{\text{2}}}\text{ - (i}\sqrt{\text{5}}{{\text{)}}^{\text{2}}}}{\sqrt{\text{3}}\text{ + i}\sqrt{\text{2 - }\sqrt{\text{3}}\text{ + i}\sqrt{\text{2}}}}\quad $
$\text{ = }\dfrac{\text{9 - 5}{{\text{i}}^{\text{2}}}}{\text{2}\sqrt{\text{2}}\text{i}}\quad \left[ \text{ }\because \text{, }{{\text{i}}^{\text{2}}}\text{ = - 1} \right]\quad$
$\text{ = }\dfrac{\text{9 + 5}}{\text{2}\sqrt{\text{2}}\text{i}}$
$\text{ = }\dfrac{\text{14}}{\text{2}\sqrt{\text{2}}\text{i}}\text{ = }\dfrac{\text{7}}{\sqrt{\text{2}}\text{i}}\text{ = }\dfrac{\text{7}}{\sqrt{\text{2}}\text{i}}\text{ }\!\!\times\!\!\text{ }\dfrac{\sqrt{\text{2}}\text{i}}{\sqrt{\text{2}}\text{i}}\text{ = i}\dfrac{\text{7}\sqrt{\text{2}}}{\text{2}{{\text{i}}^{\text{2}}}}\text{ = i}\dfrac{\text{7}\sqrt{\text{2}}}{\text{2(-1)}}$
$\text{= - i}\dfrac{\text{7}\sqrt{\text{2}}}{\text{2}}\text{ = 0 - i}\dfrac{\text{7}\sqrt{\text{2}}}{\text{2}}$
प्रश्नावली 5.2
प्रश्न 1 से 2 तक सम्मिश्र संख्याओं में प्रत्येक का मापांक और कोणांकज्ञात कीजिये
1. $\text{z = - 1 - i}\sqrt{\text{3}}$
उत्तर: मान लीजिए कि ,
$\text{z = - 1 - i}\sqrt{\text{3 }}\text{= r(cos }\!\!\theta\!\!\text{ + isin }\!\!\theta\!\!\text{ ) }$
$\text{r cos }\!\!\theta\!\!\text{ = - 1, r sin }\!\!\theta\!\!\text{ = - }\sqrt{\text{3}}$
वर्ग करके जोड़ने पर,
${{r}^{2}}=1+3=4$
$r=2$
$\cos \theta =-\dfrac{1}{\sqrt{2}}=-\cos \dfrac{\pi }{3}$
अतः
$\text{ }\!\!\theta\!\!\text{ = }\!\!\pi\!\!\text{ + }\dfrac{\text{ }\!\!\pi\!\!\text{ }}{\text{3}}\text{ = }\dfrac{\text{4 }\!\!\pi\!\!\text{ }}{\text{3}}$
$\text{ }\!\!\theta\!\!\text{ = }\dfrac{\text{4 }\!\!\pi\!\!\text{ }}{\text{3}}\text{ - 2 }\!\!\pi\!\!\text{ = - }\dfrac{\text{2 }\!\!\pi\!\!\text{ }}{\text{3}}$
$\text{ }\!\!\theta\!\!\text{ = }\dfrac{\text{4 }\!\!\pi\!\!\text{ }}{\text{3}}\text{ - 2 }\!\!\pi\!\!\text{ = - }\dfrac{\text{2 }\!\!\pi\!\!\text{ }}{\text{3}}$
कोंणांक$\text{= - }\dfrac{\text{2 }\!\!\pi\!\!\text{ }}{\text{3}}$ और मापांक $\text{= 2}$
2. $\text{z = - }\sqrt{\text{3}}\text{ + i}$
उत्तर: मान लीजिए कि ,$\text{z = - }\sqrt{\text{3}}\text{ + i = r(cos }\!\!\theta\!\!\text{ + isin }\!\!\theta\!\!\text{ )}$
$\text{r cos }\!\!\theta\!\!\text{ = - }\sqrt{\text{3}}\text{, r sin }\!\!\theta\!\!\text{ = 1}$
वर्ग करके जोड़ने पर
${{\text{r}}^{\text{2}}}\text{ = 3 + 1 = 4}$
$\text{r = 2}$
$\dfrac{\text{r sin }\!\!\theta\!\!\text{ }}{\text{r cos }\!\!\theta\!\!\text{ }}\text{ = }\dfrac{\text{1}}{\text{- }\sqrt{\text{3}}}\text{ = - }\dfrac{\text{1}}{\sqrt{\text{3}}}$
$\text{- }\dfrac{\text{1}}{\sqrt{\text{3}}}\text{ = tan}\left( \text{ }\!\!\pi\!\!\text{ - }\dfrac{\text{ }\!\!\pi\!\!\text{ }}{\text{6}} \right)$
$\text{= tan}\dfrac{\text{5 }\!\!\pi\!\!\text{ }}{\text{6}}$
$\text{ }\!\!\theta\!\!\text{ = }\dfrac{\text{5 }\!\!\pi\!\!\text{ }}{\text{6}}$
प्रश्न 3 से 8 तक सम्मिश्र संख्याओं में प्रत्येक को ध्रुवीय रूप में रूपांतररत किजीये:
3. $\text{1 - i}$
उत्तर: मान लीजिए कि,$\text{z = 1 - i = r}\left( \text{cos }\!\!\theta\!\!\text{ + i sin }\!\!\theta\!\!\text{ } \right)$
$\text{r cos }\!\!\theta\!\!\text{ = 1, r sin }\!\!\theta\!\!\text{ = - 1}$
वर्ग करके जोड़ने पर,
${{\text{r}}^{\text{2}}}\text{= 1+1 = 2}$
$\text{r = }\sqrt{\text{2}}$
$\text{tan }\!\!\theta\!\!\text{ = }\dfrac{\text{- 1}}{\text{1}}\text{ = - 1}$
$\text{= tan}\left( \text{2 }\!\!\pi\!\!\text{ - }\dfrac{\text{ }\!\!\pi\!\!\text{ }}{\text{4}} \right)$
$\text{= tan}\left( \dfrac{\text{ }\!\!\pi\!\!\text{ }}{\text{4}} \right)$
$\text{ }\!\!\theta\!\!\text{ = - }\dfrac{\text{ }\!\!\pi\!\!\text{ }}{\text{4}}$
$\text{z = }\sqrt{\text{2}}\left( \text{cos}\dfrac{\text{- }\!\!\pi\!\!\text{ }}{\text{4}}\text{ + i sin}\dfrac{\text{- }\!\!\pi\!\!\text{ }}{\text{4}} \right)$
4. $\text{z = - 1 + i}$
उत्तर: मान लीजिए कि, $\text{z = - 1 + i = r}\left( \text{cos }\!\!\theta\!\!\text{ + i sin }\!\!\theta\!\!\text{ } \right)$
$\text{r cos }\!\!\theta\!\!\text{ = - 1, r sin }\!\!\theta\!\!\text{ = 1}$
वर्ग करके जोड़ने पर,
${{\text{r}}^{\text{2}}}\text{ = 1 + 1 = 2}$
$\text{r =}\sqrt{\text{2}}$
$\dfrac{\text{r sin }\!\!\theta\!\!\text{ }}{\text{r cos }\!\!\theta\!\!\text{ }}\text{ = tan }\!\!\theta\!\!\text{ = - 1}$
$\text{= tan}\left( \text{ }\!\!\pi\!\!\text{ - }\dfrac{\text{ }\!\!\pi\!\!\text{ }}{\text{4}} \right)$
$\text{= tan}\dfrac{\text{3 }\!\!\pi\!\!\text{ }}{\text{4}}$
$\text{z = }\sqrt{\text{2}}\left( \text{cos}\dfrac{\text{3 }\!\!\pi\!\!\text{ }}{\text{4}}\text{ + i sin}\dfrac{\text{3 }\!\!\pi\!\!\text{ }}{\text{4}} \right)$
5. $\text{- 1 - i}$
उत्तर: मान लीजिए कि, $\text{z = - 1 - i = r}\left( \text{cos }\!\!\theta\!\!\text{ + i sin }\!\!\theta\!\!\text{ } \right)$
$\text{r cos }\!\!\theta\!\!\text{ = - 1,}\ \text{r sin }\!\!\theta\!\!\text{ = - 1}$
वर्ग करके जोड़ने पर
$\text{z = }\sqrt{\text{2}}\left( \text{cos }\dfrac{\text{- 3 }\!\!\pi\!\!\text{ }}{\text{4}}\text{ + i sin}\dfrac{\text{ - 3 }\!\!\pi\!\!\text{ }}{\text{4}} \right)$ ${{\text{r}}^{\text{2}}}\text{ = (- 1}{{\text{)}}^{\text{2}}}\text{ + (- 1}{{\text{)}}^{\text{2}}}\text{ = 2}$
$\text{r = }\sqrt{\text{2 }}$
$\dfrac{\text{r sin }\!\!\theta\!\!\text{ }}{\text{r cos }\!\!\theta\!\!\text{ }}\text{ = tan }\!\!\theta\!\!\text{ = }\dfrac{\text{- 1}}{\text{- 1}}\text{ = 1}$
$\text{= tan}\dfrac{\text{ }\!\!\pi\!\!\text{ }}{\text{4}}$
$\text{= tan}\left( \text{ }\!\!\pi\!\!\text{ + }\dfrac{\text{ }\!\!\pi\!\!\text{ }}{\text{4}} \right)$
$\text{= tan}\dfrac{\text{5 }\!\!\pi\!\!\text{ }}{\text{4}}\text{ = tan}\left( \dfrac{\text{- 3 }\!\!\pi\!\!\text{ }}{\text{4}} \right)$
$\text{ }\!\!\theta\!\!\text{ = }\dfrac{\text{5 }\!\!\pi\!\!\text{ }}{\text{4}}$ या $\dfrac{\text{- 3 }\!\!\pi\!\!\text{ }}{\text{4}}$
$\text{z = }\sqrt{\text{2}}\left( \text{cos}\dfrac{\text{5 }\!\!\pi\!\!\text{ }}{\text{4}}\text{ + i sin}\dfrac{\text{5 }\!\!\pi\!\!\text{ }}{\text{4}} \right)$
या
$\text{z = }\sqrt{\text{2}}\left( \text{cos }\dfrac{\text{- 3 }\!\!\pi\!\!\text{ }}{\text{4}}\text{ + i sin}\dfrac{\text{ - 3 }\!\!\pi\!\!\text{ }}{\text{4}} \right)$
6. $\text{z = - 3 = r(cos }\!\!\theta\!\!\text{ + i sin }\!\!\theta\!\!\text{ )}$
उत्तर: मान लीजिए कि,$\text{z = - 3 = r(cos }\!\!\theta\!\!\text{ + i sin }\!\!\theta\!\!\text{ )}$
$\text{r cos }\!\!\theta\!\!\text{ = - 3, r sin }\!\!\theta\!\!\text{ = 0}$
वर्ग करके जोड़ने पर,
${{\text{r}}^{\text{2}}}\text{ = 9}$
$\text{r = 3}$
$\dfrac{\text{r sin }\!\!\theta\!\!\text{ }}{\text{r cos }\!\!\theta\!\!\text{ }}\text{ = }\dfrac{\text{0}}{\text{- 3}}\text{ = 0}$
$\text{ }\!\!\theta\!\!\text{ = }\!\!\pi\!\!\text{ }$
$\text{z = 3}\left( \text{cos }\!\!\pi\!\!\text{ + i sin }\!\!\pi\!\!\text{ } \right)$
7. $\text{z = }\sqrt{\text{3}}\text{ + i = r(cos }\!\!\theta\!\!\text{ + i sin }\!\!\theta\!\!\text{ )}$
उत्तर: मान लीजिए कि, $\text{z = }\sqrt{\text{3}}\text{ + i = r(cos }\!\!\theta\!\!\text{ + i sin }\!\!\theta\!\!\text{ )}$
$\text{r cos }\!\!\theta\!\!\text{ = }\sqrt{\text{3}}\text{, r sin }\!\!\theta\!\!\text{ = 1}$
वर्ग करके जोड़ने पर,
${{\text{r}}^{\text{2}}}\text{ = 4}$
$\text{r = 2}$
$\text{cos }\!\!\theta\!\!\text{ = }\dfrac{\sqrt{\text{3}}}{\text{2}}\text{, sin }\!\!\theta\!\!\text{ = }\dfrac{\text{1}}{\text{2}}$
$\dfrac{\text{r sin }\!\!\theta\!\!\text{ }}{\text{r cos }\!\!\theta\!\!\text{ }}\text{ = }\dfrac{\text{1}}{\sqrt{\text{3}}}$
$\text{tan }\!\!\theta\!\!\text{ = }\dfrac{\text{1}}{\sqrt{\text{3}}}\text{ = tan}\dfrac{\text{ }\!\!\pi\!\!\text{ }}{\text{6}}$
$\text{z = 2}\left( \text{cos}\dfrac{\text{ }\!\!\pi\!\!\text{ }}{\text{6}}\text{ + i sin}\dfrac{\text{ }\!\!\pi\!\!\text{ }}{\text{6}} \right)$
8. $\text{z = i}$
उत्तर: मान लीजिए कि, $\text{z = i = r}\left( \text{cos }\!\!\theta\!\!\text{ + i sin }\!\!\theta\!\!\text{ } \right)$
$\text{r cos }\!\!\theta\!\!\text{ = 0, r sin }\!\!\theta\!\!\text{ = 1}$
वर्ग करके जोड़ने पर,
${{\text{r}}^{\text{2}}}\text{ = 0 + 1 = 1}$
$\text{r = 1}$
$\text{cos }\!\!\theta\!\!\text{ = 0, sin }\!\!\theta\!\!\text{ = 1}$
$\text{ }\!\!\theta\!\!\text{ = }\dfrac{\text{ }\!\!\pi\!\!\text{ }}{\text{2}}$
$\text{z = }\left( \text{cos}\dfrac{\text{ }\!\!\pi\!\!\text{ }}{\text{2}}\text{ + i sin}\dfrac{\text{ }\!\!\pi\!\!\text{ }}{\text{2}} \right)$
प्रश्नावली 5.3
1. निम्नलिखत समीकरणो को हल करें ${{\text{x}}^{\text{2}}}\text{ + 3 = 0}$
उत्तर: इसकी तुलना $\text{a}{{\text{x}}^{\text{2}}}\text{ + bx + c = 0}$ से करने पर,$\text{a = 1, b = 0 }\!\!\And\!\!\text{ c = 3}$
इसीलिए समीकरण का वीविक्तकार,
${\text{D = }}{{\text{b}}^{\text{2}}}{\text{ - 4ac}}$
${\text{ = }}{{\text{0}}^{\text{2}}}{{ - 4 \times 1 \times 3 = - 12}}$
इसलिए, समीकरण के लिए समाधान है,${\text{x = }}\dfrac{{{{ - b \pm }}\sqrt {\text{D}} }}{{{\text{2a}}}}$
${\text{ = }}\dfrac{{{{ - 0 \pm }}\sqrt {{\text{ - 12}}} }}{{{\text{2x1}}}}{\text{ = }}\dfrac{{{{ \pm 2}}\sqrt {\text{3}} {{ \times }}\sqrt {{\text{ - 1}}} }}{{\text{2}}}{{ = \pm }}\sqrt {\text{3}} {\text{i}}\quad {\text{\{ }}\sqrt {{\text{ - 1}}} {\text{ = i\} }}$
2. निम्नलिखत समीकरणो को हल करें, ${\text{2}}{{\text{x}}^{\text{2}}}{\text{ + x + 1 = 0}}$
उत्तर: इसकी तुलना ${\text{a}}{{\text{x}}^{\text{2}}}{\text{ + bx + c = 0}}$ से करने पर,${\text{a = 2, b = 1} \& \text{c = 1}}$
इसीलिए समीकरण का वीविक्तकार,
${\text{D = }}{{\text{b}}^{\text{2}}}{\text{ - 4ac}}$
${\text{ = }}{{\text{1}}^{\text{2}}}{{ - 4 \times 2 \times 1 = - 7}}$
इसलिए, समीकरण के लिए समाधान है,${\text{x = }}\dfrac{{{{ - b \pm }}\sqrt {\text{D}} }}{{{\text{2a}}}}$
${\text{ = }}\dfrac{{{{ - 1 \pm }}\sqrt {{\text{ - 7}}} }}{{{\text{2 x 2}}}}{\text{ = }}\dfrac{{{{ - 1 \pm }}\sqrt {\text{7}} {{ \times }}\sqrt {{\text{ - 1}}} }}{4}{\text{ = }}\dfrac{{{\text{ - 1}}}}{{\text{4}}}{{ \pm }}\dfrac{{\sqrt {\text{7}} }}{{\text{4}}}{\text{i}}\quad \;\;\;\;\;\;\;\;{\text{\{ }}\sqrt {{\text{ - 1}}} {\text{ = i\} }}$
3. निम्नलिखत समीकरणो को हल करें, ${{\text{x}}^{\text{2}}}{\text{ + 3x + 9 = 0}}$
उत्तर: इसकी तुलना ${\text{a}}{{\text{x}}^{\text{2}}}{\text{ + bx + c = 0}}$ से करने पर, ${\text{a = 1, b = 3 \& c = 9}}$
इसीलिए समीकरण का वीविक्तकार, ${\text{D = }}{{\text{b}}^{\text{2}}}{\text{ - 4ac}}$
${\text{ = }}{{\text{3}}^{\text{2}}}{{ - 4 \times 1 \times 9 = - 27}}$
इसलिए, समीकरण के लिए समाधान है,${\text{x = }}\dfrac{{{{ - b \pm }}\sqrt {\text{D}} }}{{{\text{2a}}}}$
${\text{ = }}\dfrac{{{{ - 3 \pm }}\sqrt {{\text{ - 27}}} }}{{{\text{2 x 1}}}}{\text{ = }}\dfrac{{{{ - 3 \pm }}\sqrt {{\text{27}}} {{ \times }}\sqrt {{\text{ - 1}}} }}{{\text{2}}}{\text{ = }}\dfrac{{{{ - 3 \pm 3}}\sqrt {\text{3}} }}{{\text{2}}}\quad \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,{\text{\{ }}\sqrt {{\text{ - 1}}} {\text{ = i\} }}$
4. निम्नलिखत समीकरणो को हल करें, ${\text{ - }}\;{{\text{x}}^{\text{2}}}{\text{ + x - 2 = 0}}$
उत्तर: दिया गया द्विघात है, ${\text{ - }}\;{{\text{x}}^{\text{2}}}{\text{ + x - 2 = 0}}$
इसकी तुलना ${\text{a}}{{\text{x}}^{\text{2}}}{\text{ + bx + c = 0}}$ से करने पर,${\text{a = - 1, b = 1 & c = - 2}}$
इसीलिए समीकरण का वीविक्तकार, ${\text{D = }}{{\text{b}}^{\text{2}}}{\text{ - 4ac}}$
${\text{ = }}{{\text{1}}^{\text{2}}}{{ - 4 \times - 1 \times - 2 = - 7}}$
इसलिए, समीकरण के लिए समाधान है,${\text{x = }}\dfrac{{{{ - b \pm }}\sqrt {\text{D}} }}{{{\text{2a}}}}$
${\text{ = }}\dfrac{{{{ - 1 \pm }}\sqrt {{\text{ - 7}}} }}{{{\text{2 x - 1}}}}{\text{ = }}\dfrac{{{{ - 1 \pm }}\sqrt {\text{7}} {{ \times }}\sqrt {{\text{ - 1}}} }}{{{\text{ - 2}}}}{\text{ = }}\dfrac{{{\text{ - 1}}}}{{\text{2}}}{{ \pm }}\dfrac{{\sqrt {\text{7}} }}{{\text{2}}}{\text{i}}\quad \;\;\;\;\;\;{\text{\{ }}\sqrt {{\text{ - 1}}} {\text{ = i\} }}$
5. निम्नलिखत समीकरणो को हल करें, ${{\text{x}}^{\text{2}}}{\text{ + 3x + 5 = 0}}$
उत्तर: दिया गया द्विघात है, ${{\text{x}}^{\text{2}}}{\text{ + 3x + 5 = 0}}$
इसकी तुलना ${\text{a}}{{\text{x}}^{\text{2}}}{\text{ + bx + c = 0}}$ से करने पर,${\text{a = 1, b = 3 & c = 5}}$
इसीलिए समीकरण का वीविक्तकार, ${\text{D = }}{{\text{b}}^{\text{2}}}{\text{ - 4ac}}$
${\text{ = }}{{\text{3}}^{\text{2}}}{{ - 4 \times 1 \times 5 = - 11}}$
इसलिए, समीकरण के लिए समाधान है,${\text{x = }}\dfrac{{{{ - b \pm }}\sqrt {\text{D}} }}{{{\text{2a}}}}$
${\text{ = }}\dfrac{{{{ - 3 \pm }}\sqrt {{\text{ - 11}}} }}{{{\text{2 x 1}}}}{\text{ = }}\dfrac{{{{ - 3 \pm }}\sqrt {{\text{11}}} {{ \times }}\sqrt {{\text{ - 1}}} }}{{\text{2}}}{\text{ = }}\dfrac{{{\text{ - 3}}}}{{\text{2}}}{{ \pm }}\dfrac{{\sqrt {\text{11}} }}{{\text{2}}}{\text{i}}\quad \;\;\;\;\;\;{\text{\{ }}\sqrt {{\text{ - 1}}} {\text{ = i\} }}$
6. निम्नलिखत समीकरणो को हल करें, ${{\text{x}}^{\text{2}}}{\text{ - x + 2 = 0}}$
उत्तर:
दिया गया द्विघात है, ${{\text{x}}^{\text{2}}}{\text{ - x + 2 = 0}}$
इसकी तुलना ${\text{a}}{{\text{x}}^{\text{2}}}{\text{ + bx + c = 0}}$ से करने पर,${\text{a = 1, b = - 1 & c = 2}}$
इसीलिए समीकरण का वीविक्तकार,
${\text{D = }}{{\text{b}}^{\text{2}}}{\text{ - 4ac}}$
${\text{ = }}{\left( {{\text{ - 1}}} \right)^{\text{2}}}{{ - 4 \times 1 \times 2 = - 7}}$
इसलिए, समीकरण के लिए समाधान है,${\text{x = }}\dfrac{{{{ - b \pm }}\sqrt {\text{D}} }}{{{\text{2a}}}}$
${\text{ = }}\dfrac{{{\text{ - }}\left( {\;{\text{ - }}\;{\text{1}}} \right){{ \pm }}\sqrt {{\text{ - 7}}} }}{{{\text{2 x 1}}}}{\text{ = }}\dfrac{{{{ 1 \pm }}\sqrt {\text{7}} {{ \times }}\sqrt {{\text{ - 1}}} }}{{\text{2}}}{\text{ = }}\dfrac{{{\text{1}}\;{{ \pm }}\;\sqrt {\text{7}} }}{{\text{2}}}{\text{i}}\quad \;\;\;\;\;\;{\text{\{ }}\sqrt {{\text{ - 1}}} {\text{ = i\} }}$
7. निम्नलिखत समीकरणो को हल करें,
$\sqrt {\text{2}} {{\text{x}}^{\text{2}}}{\text{ + x + }}\sqrt {\text{2}} {\text{ = 0}}$
उत्तर: दिया गया द्विघात है, $\sqrt {\text{2}} {{\text{x}}^{\text{2}}}{\text{ + x + }}\sqrt {\text{2}} {\text{ = 0}}$
इसकी तुलना ${\text{a}}{{\text{x}}^{\text{2}}}{\text{ + bx + c = 0}}$ से करने पर,${\text{a = }}\sqrt {\text{2}} {\text{, b = 1 & c = }}\sqrt {\text{2}} $
इसीलिए समीकरण का वीविक्तकार, ${\text{D = }}{{\text{b}}^{\text{2}}}{\text{ - 4ac}}$
${\text{ = }}{{\text{1}}^{\text{2}}}{{ - 4 \times }}\sqrt {\text{2}} {{ \times }}\sqrt {\text{2}} {\text{ = - 7}}$
इसलिए, समीकरण के लिए समाधान है,${\text{x = }}\dfrac{{{{ - b \pm }}\sqrt {\text{D}} }}{{{\text{2a}}}}$
${\text{ = }}\dfrac{{{{ - 1 \pm }}\sqrt {{\text{ - 7}}} }}{{{\text{2 x }}\sqrt {\text{2}} }}{\text{ = }}\dfrac{{{{ - 1 \pm }}\sqrt {\text{7}} {{ \times }}\sqrt {{\text{ - 1}}} }}{{{\text{2}}\sqrt {\text{2}} }}{\text{ = }}\dfrac{{{{ - 1 \pm }}\sqrt {\text{7}} }}{{{\text{2}}\sqrt {\text{2}} }}{\text{i}}\quad \;\;\;\;\;\;{\text{\{ }}\sqrt {{\text{ - 1}}} {\text{ = i\} }}$
8. निम्नलिखत समीकरणो को हल करें, $\sqrt 3 {{\text{x}}^{\text{2}}}{\text{ - }}\sqrt 2 {\text{x + 3}}\sqrt 3 {\text{ = 0}}$
उत्तर: दिया गया द्विघात है, $\sqrt {\text{3}} {{\text{x}}^{\text{2}}}{\text{ - }}\sqrt {\text{2}} {\text{x + 3}}\sqrt {\text{3}} {\text{ = 0}}$
इसकी तुलना ${\text{a}}{{\text{x}}^{\text{2}}}{\text{ + bx + c = 0}}$ से करने पर,${\text{a = }}\sqrt 3 {\text{, b = }}\sqrt 2 {\text{ & c = 3}}\sqrt 3 $
इसीलिए समीकरण का वीविक्तकार, ${\text{D = }}{{\text{b}}^{\text{2}}}{\text{ - 4ac}}$
${\text{ = }}{\left( {\sqrt {\text{2}} } \right)^{\text{2}}}{{ - 4 \times }}\sqrt {\text{3}} {{ \times 3}}\sqrt {\text{3}} {\text{ = 2 - 36 = - 34}}$
इसलिए, समीकरण के लिए समाधान है,${\text{x = }}\dfrac{{{{ - b \pm }}\sqrt {\text{D}} }}{{{\text{2a}}}}$
${\text{ = }}\dfrac{{{\text{ - ( - }}\sqrt {\text{2}} {{) \pm }}\sqrt {{\text{ - 34}}} }}{{{\text{2 x }}\sqrt {\text{3}} }}{\text{ = }}\dfrac{{\sqrt {\text{2}} {{ \pm }}\sqrt {{\text{34}}} \sqrt {{\text{ - 1}}} }}{{{\text{2}}\sqrt {\text{3}} }}{\text{ = }}\dfrac{{\sqrt {{\text{2 }}} {{ \pm }}\sqrt {{\text{34}}} }}{{{\text{2}}\sqrt {\text{3}} }}{\text{i}}\quad \;\;\;\;{\text{\{ }}\sqrt {{\text{ - 1}}} {\text{ = i\} }}$
9. निम्नलिखत समीकरणो को हल करें, ${{\text{x}}^{\text{2}}}{\text{ + x + }}\dfrac{{\text{1}}}{{\sqrt {\text{2}} }}{\text{ = 0 = > }}\sqrt {\text{2}} {{\text{x}}^{\text{2}}}{\text{ + }}\sqrt {\text{2}} {\text{x + 1 = 0}}$
उत्तर: दिया गया द्विघात है, ${{\text{x}}^{\text{2}}}{\text{ + x + }}\dfrac{{\text{1}}}{{\sqrt {\text{2}} }}{\text{ = 0 = > }}\sqrt {\text{2}} {{\text{x}}^{\text{2}}}{\text{ + }}\sqrt {\text{2}} {\text{x + 1 = 0}}$
इसकी तुलना ${\text{a}}{{\text{x}}^{\text{2}}}{\text{ + bx + c = 0}}$ से करने पर,${\text{a = }}\sqrt {\text{2}} {\text{, b = }}\sqrt {\text{2}} {\text{ \& c = 1}}$
इसीलिए समीकरण का वीविक्तकार, ${\text{D = }}{{\text{b}}^{\text{2}}}{\text{ - 4ac}}$
${\text{ = }}{\left( {\sqrt {\text{2}} } \right)^{\text{2}}}{{ - 4 \times }}\sqrt {\text{2}} {{ \times 1 = 2 - 4}}\sqrt {\text{2}} {\text{ = - 2}}\left( {{\text{2}}\sqrt {\text{2}} {\text{ - 1}}} \right)$
इसलिए, समीकरण के लिए समाधान है,${\text{x = }}\dfrac{{{{ - b \pm }}\sqrt {\text{D}} }}{{{\text{2a}}}}$
${\text{ = }}\dfrac{{{\text{ - (}}\sqrt {\text{2}} {{) \pm }}\sqrt {{\text{ - 2}}\left( {{\text{2}}\sqrt {\text{2}} {\text{ - 1}}} \right)} }}{{{\text{2 x }}\sqrt {\text{2}} }}{\text{ = }}\dfrac{{{\text{ - }}\sqrt {\text{2}} {{ \pm }}\sqrt {{\text{2}}\left( {{\text{2}}\sqrt {\text{2}} {\text{ - 1}}} \right)} \sqrt {{\text{ - 1}}} }}{{{\text{2}}\sqrt {\text{2}} }}{\text{ = }}\dfrac{{\sqrt {{\text{2 }}} {{ \pm }}\sqrt {{\text{34}}} }}{{{\text{2}}\sqrt {\text{2}} }}{\text{i}}\quad \;\;\;\;{\text{\{ }}\sqrt {{\text{ - 1}}} {\text{ = i\} }}$
10. निम्नलिखत समीकरणो को हल करें, ${{\text{x}}^{\text{2}}}{\text{ + }}\dfrac{{\text{x}}}{{\sqrt {\text{2}} }}{\text{ + 1 = 0 = > }}\sqrt {\text{2}} {{\text{x}}^{\text{2}}}{\text{ + x + }}\sqrt {\text{2}} {\text{ = 0}}$
उत्तर: इसकी तुलना ${\text{a}}{{\text{x}}^{\text{2}}}{\text{ + bx + c = 0}}$ से करने पर,${\text{a = }}\sqrt {\text{2}} {\text{, b = 1 & c = }}\sqrt 2 $
इसीलिए समीकरण का वीविक्तकार, ${\text{D = }}{{\text{b}}^{\text{2}}}{\text{ - 4ac}}$
${\text{ = }}{\left( {\text{1}} \right)^{\text{2}}}{{ - 4 \times }}\sqrt {\text{2}} {{ \times }}\sqrt {\text{2}} {\text{ = 2 - 4}}\sqrt {\text{2}} {\text{ = 1 - 8 = - 7}}$
इसलिए, समीकरण के लिए समाधान है,${\text{x = }}\dfrac{{{{ - b \pm }}\sqrt {\text{D}} }}{{{\text{2a}}}}$
${\text{ = }}\dfrac{{{{ - 1 \pm }}\sqrt {{\text{ - 7}}} }}{{{\text{2 x }}\sqrt {\text{2}} }}{\text{ = }}\dfrac{{{{ - 1 \pm }}\sqrt {\text{7}} \sqrt {{\text{ - 1}}} }}{{{\text{2}}\sqrt {\text{2}} }}{\text{ = }}\dfrac{{{{ - 1 \pm }}\sqrt {\text{7}} }}{{{\text{2}}\sqrt {\text{2}} }}{\text{i}}\quad \;\;\;\;{\text{\{ }}\sqrt {{\text{ - 1}}} {\text{ = i\} }}$
प्रश्नावली A5
1. ${\left[ {{{\text{i}}^{{\text{18}}}}{\text{ + }}{{\left( {\dfrac{{\text{1}}}{{\text{i}}}} \right)}^{{\text{25}}}}} \right]^{\text{3}}}$ का मान ज्ञात कीजिए
उत्तर: ${\left[ {{{\text{i}}^{{\text{18}}}}{\text{ + }}{{\left( {\dfrac{{\text{1}}}{{\text{i}}}} \right)}^{{\text{25}}}}} \right]^{\text{3}}}{\text{ = }}{\left[ {{{\left( {{{\text{i}}^{\text{4}}}} \right)}^{\text{4}}}{{ \times }}{{\text{i}}^{\text{2}}}{\text{ + }}\left\{ {\dfrac{{\text{1}}}{{{{\left( {{{\text{i}}^{\text{4}}}} \right)}^{\text{6}}}{\text{.i}}}}} \right\}} \right]^{\text{3}}}$
${\text{ = }}{\left[ {{{\text{i}}^{\text{2}}}{\text{ + }}\left\{ {\dfrac{{\text{1}}}{{\text{i}}}} \right\}} \right]^{\text{3}}}\quad \;\;\;\;\;\;\;\;\;\left[ {\because {\text{, }}{{\text{i}}^{\text{4}}}{\text{ = 1}}} \right]\quad$
${\text{ = [ - 1 + ( - i)}}{{\text{]}}^{\text{3}}}\quad \;\;\;\;\;\;\;\;\;{\text{[}}\because {\text{, }}{{\text{i}}^{\text{2}}}{\text{ = - 1 }}\;\&\;\dfrac{{\text{1}}}{{\text{i}}}{\text{ = - i ]}}$
2. किन्हीं दो सम्मिश्र संख्याओं ${{\text{z}}_{\text{1}}}$ और ${{\text{z}}_{\text{2}}}$ के लिए, सिद्ध कीजिए:
${\text{Re}}\left( {{{\text{z}}_{\text{1}}}{\text{ }}{{\text{z}}_{\text{2}}}} \right){\text{ = Re}}{{\text{z}}_{\text{1}}}{\text{ Re}}{{\text{z}}_{\text{2}}}{\text{ - }}\left| {{\text{m}}{{\text{z}}_{\text{1}}}} \right|{\text{ m}}{{\text{z}}_{\text{2}}}$
उत्तर: ${{\text{z}}_{\text{1}}}{\text{ = }}{{\text{a}}_{_{\text{1}}}}{\text{ + i}}{{\text{b}}_{\text{1}}}$
और ${{\text{z}}_{\text{2}}}{\text{ = }}{{\text{a}}_{{\text{2 }}}}{\text{ + i}}{{\text{b}}_{\text{2}}}$
इसलिए,
${{\text{z}}_{\text{1}}}{{\text{z}}_{\text{2}}}{\text{ = }}\left( {{{\text{a}}_{\text{1}}}{\text{ + i}}{{\text{b}}_{\text{1}}}} \right){\text{ * }}\left( {{{\text{a}}_{\text{2}}}{\text{ + i}}{{\text{b}}_{\text{2}}}} \right)$
${{\text{z}}_{\text{1}}}{{\text{z}}_{\text{2}}}{\text{ = }}{{\text{a}}_{\text{1}}}{{\text{a}}_{\text{2}}}{\text{ + i}}{{\text{b}}_{\text{1}}}{{\text{a}}_{\text{2}}}{\text{ + i}}{{\text{a}}_{\text{1}}}{{\text{b}}_{\text{2}}}{\text{ - }}{{\text{b}}_{\text{1}}}{{\text{b}}_{\text{2}}}$
${{\text{z}}_{\text{1}}}{{\text{z}}_{\text{2}}}{\text{ = }}\left( {{{\text{a}}_{\text{1}}}{{\text{a}}_{\text{2}}}{\text{ - }}{{\text{b}}_{\text{1}}}{{\text{b}}_{\text{2}}}} \right){\text{ + i}}\left( {{{\text{b}}_{\text{1}}}{{\text{a}}_{\text{2}}}{\text{ + }}{{\text{a}}_{\text{1}}}{{\text{b}}_{\text{2}}}} \right)$
${\text{Re}}\left( {{{\text{z}}_{\text{1}}}{{\text{z}}_{\text{2}}}} \right){\text{ = }}\left( {{{\text{a}}_{\text{1}}}{{\text{a}}_{\text{2}}}{\text{ - }}{{\text{b}}_{\text{1}}}{{\text{b}}_{\text{2}}}} \right)$
अतः, ${\text{Re}}\left( {{{\text{z}}_{\text{1}}}{{\text{z}}_{\text{2}}}} \right){\text{ = Re}}{{\text{z}}_{\text{1}}}{\text{Re}}{{\text{z}}_{\text{2}}}{\text{ - Im}}{{\text{z}}_{\text{1}}}\mid {\text{m}}{{\text{z}}_{\text{2}}}$
3. $\left( {\dfrac{{\text{1}}}{{{\text{1 - 4i}}}}{\text{ - }}\dfrac{{\text{2}}}{{{\text{1 + i}}}}} \right)\left( {\dfrac{{{\text{3 - 4i}}}}{{{\text{5 + i}}}}} \right)$ को मानक के रूप में परिवर्तित कीजिये
उत्तर: $\left( {\dfrac{{\text{1}}}{{{\text{1 - 4i}}}}{\text{ - }}\dfrac{{\text{2}}}{{{\text{1 + i}}}}} \right)\left( {\dfrac{{{\text{3 - 4i}}}}{{{\text{5 + i}}}}} \right)$
${\text{ = }}\left( {\dfrac{{{\text{1 + i - 2(1 - 4i)}}}}{{{\text{(1 - 4i)(1 + i)}}}}} \right)\left( {\dfrac{{{\text{3 - 4i}}}}{{{\text{5 + i}}}}} \right)$
${\text{ = }}\left( {\dfrac{{{\text{ - 1 + 9i}}}}{{{\text{(1 - 4i)(1 + i)}}}}} \right)\left( {\dfrac{{{\text{3 - 4i}}}}{{{\text{5 + i}}}}} \right)$
${\text{ = }}\left( {\dfrac{{{\text{ - 1 + 9i}}}}{{{\text{1 - 3i - 4}}{{\text{i}}^{\text{2}}}}}} \right)\left( {\dfrac{{{\text{3 - 4i}}}}{{{\text{5 + i}}}}} \right)$
${\text{ = }}\left( {\dfrac{{{\text{ - 3 + 4i + 27i - 36}}{{\text{i}}^{\text{2}}}}}{{{\text{25 + 5i - 15i - 3}}{{\text{i}}^{\text{2}}}}}} \right)$
${\text{ = }}\left( {\dfrac{{{\text{33 + 31i}}}}{{{\text{28 - 10 i}}}}} \right)$
${\text{ = }}\left( {\dfrac{{{\text{33 + 31i}}}}{{{\text{28 - 10 i}}}}} \right)\left( {\dfrac{{{\text{28 + 10i}}}}{{{\text{28 + 10i}}}}} \right){\text{307}}$
${\text{ = }}\left( {\dfrac{{{\text{307 + 599i}}}}{{{\text{2}}{{\text{8}}^{\text{2}}}{\text{ + 1}}{{\text{0}}^{\text{2}}}}}} \right)$
${\text{ = }}\left( {\dfrac{{{\text{307 + 599i}}}}{{{\text{442}}}}} \right)$
$= \;\left( {\dfrac{{{\text{307}}}}{{{\text{442}}}}{\text{ + }}\dfrac{{{\text{599i}}}}{{{\text{442}}}}} \right)$
4. ${\text{x - iy = }}\sqrt {\dfrac{{{\text{a - ib}}}}{{{\text{c - id}}}}} $ सिद्ध कीजिए कि ${{\text{x}}^{\text{2}}}{\text{ + }}{{\text{y}}^{\text{2}}}{\text{ = }}\dfrac{{{{\text{a}}^{\text{2}}}{\text{ + }}{{\text{b}}^{\text{2}}}}}{{{{\text{c}}^{\text{2}}}{\text{ + }}{{\text{d}}^{\text{2}}}}}$
उत्तर: ${\text{x - iy = }}\sqrt {\dfrac{{{\text{a - ib}}}}{{{\text{c - id}}}}} $
${\text{x - iy = }}\sqrt {\dfrac{{{\text{a - ib}}}}{{{\text{c - id}}}}{\text{ \times }}\dfrac{{{\text{c + id}}}}{{{\text{c + id}}}}} $
${\text{x - iy = }}\sqrt {\dfrac{{{\text{ac + bd + i}}\left( {{\text{ad - bc}}} \right)}}{{{{\text{c}}^{\text{2}}}{\text{ + }}{{\text{d}}^{\text{2}}}}}} $
दोनों ओर वर्ग करने पर
${\left( {{\text{x - iy}}} \right)^{\text{2}}}{\text{ = }}\dfrac{{{\text{ac + bd + i}}\left( {{\text{ad - bc}}} \right)}}{{{{\text{c}}^{\text{2}}}{\text{ + }}{{\text{d}}^{\text{2}}}}}$
${{\text{x}}^{\text{2}}}{\text{ - }}{{\text{y}}^{\text{2}}}{\text{ - i2xy = }}\dfrac{{{\text{ac + bd + i}}\left( {{\text{ad - bc}}} \right)}}{{{{\text{c}}^{\text{2}}}{\text{ + }}{{\text{d}}^{\text{2}}}}}$
तुलना करने पर
${{\text{x}}^{\text{2}}}{\text{ - }}{{\text{y}}^{\text{2}}}{\text{ = }}\dfrac{{{\text{ac + bd}}}}{{{{\text{c}}^{\text{2}}}{\text{ + }}{{\text{d}}^{\text{2}}}}}$
${\text{ - 2xy = }}\dfrac{{{\text{(ad - bc)}}}}{{{{\text{c}}^{\text{2}}}{\text{ + }}{{\text{d}}^{\text{2}}}}}$
$\because {\text{, }}{\left( {{{\text{x}}^{\text{2}}}{\text{ + }}{{\text{y}}^{\text{2}}}} \right)^{\text{2}}}{\text{ = }}{\left( {{{\text{x}}^{\text{2}}}{\text{ - }}{{\text{y}}^{\text{2}}}} \right)^{\text{2}}}{\text{ + 4}}{{\text{x}}^{\text{2}}}{{\text{y}}^{\text{2}}}$
${\left( {{{\text{x}}^{\text{2}}}{\text{ + }}{{\text{y}}^{\text{2}}}} \right)^{\text{2}}}{\text{ = }}{\left( {\dfrac{{{\text{ac + bd}}}}{{{{\text{c}}^{\text{2}}}{\text{ + }}{{\text{d}}^{\text{2}}}}}} \right)^{\text{2}}}{\text{ + }}{\left( {\dfrac{{{\text{(ad - bc)}}}}{{{{\text{c}}^{\text{2}}}{\text{ + }}{{\text{d}}^{\text{2}}}}}} \right)^{\text{2}}}$
${\left( {{{\text{x}}^{\text{2}}}{\text{ + }}{{\text{y}}^{\text{2}}}} \right)^{\text{2}}}{\text{ = }}\dfrac{{{{\text{a}}^{\text{2}}}{\text{ + }}{{\text{b}}^{\text{2}}}}}{{{{\text{c}}^{\text{2}}}{\text{ + }}{{\text{d}}^{\text{2}}}}}s$
5. निम्नलिखित को ध्रुवीय रूप में परिवर्तित:
$\left( {\text{i}} \right)$$\dfrac{{{\text{1 + 7i}}}}{{{{\left( {{\text{2 - i}}} \right)}^{\text{2}}}}}$ $\left( {{\text{ii}}} \right)$ $\dfrac{{{\text{1 + 3i}}}}{{{\text{1 - 2i}}}}$
उत्तर: $\left( {\text{i}} \right)$$\dfrac{{{\text{1 + 7i}}}}{{{{\left( {{\text{2 - i}}} \right)}^{\text{2}}}}}$ ${\text{ = }}\dfrac{{{\text{1 + 7i}}}}{{{\text{4 + }}{{\text{i}}^{\text{2}}}{\text{ - 4i}}}}{\text{ = }}\dfrac{{{\text{1 + 7i}}}}{{{\text{4 - 1 - 4i}}}}\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\left[ {{{\text{i}}^{\text{2}}}{\text{ = - 1}}} \right]$
${\text{ = }}\dfrac{{{\text{1 + 7i}}}}{{{\text{3 - 4i}}}}$
${\text{ = }}\dfrac{{{\text{1 + 7i}}}}{{{\text{3 - 4i}}}}{{ \times }}\dfrac{{{\text{3 + 4i}}}}{{{\text{3 + 4i}}}}$
${\text{ = }}\dfrac{{{\text{ - 25 + 25i}}}}{{{\text{25}}}}$
${\text{ = - 1 + i}}$
${{\text{r}}^{\text{2}}}{\text{ = - 1 + i}}$
मापांक ${\text{r = }}\sqrt{\text{2}} $
${\theta \text{ = ta}}{{\text{n}}^{{\text{ - 1}}}}\left( {\dfrac{{\text{1}}}{{{\text{ - 1}}}}} \right)$
कोणांक ${\theta \text{ = - 4}}{{\text{5}}^{\text{0}}}$
से, यह स्पष्ट है कि दूसरे चतुरथनस में स्थित हैं
उत्तर: $\left( {{\text{ii}}} \right)$
$\dfrac{{{\text{1 + 3i}}}}{{{\text{1 - 2i}}}}$
${\text{ = }}\dfrac{{{\text{1 + 3i}}}}{{{\text{1 - 2i}}}}{{ \times }}\dfrac{{{\text{1 + 2i}}}}{{{\text{1 + 2i}}}}$
${\text{ = }}\dfrac{{{\text{1 + 2i + 3i - 6}}}}{{{\text{1 + 4}}}}$
${\text{ = - 1 + i}}$
${{\text{r}}^{\text{2}}}{\text{ = ( - 1}}{{\text{)}}^{\text{2}}}{\text{ + (i}}{{\text{)}}^{\text{2}}}$
मापांक ${\text{r = }}\sqrt {\text{2}} $
$\theta{\text{= ta}}{{\text{n}}^{{\text{ - 1}}}}\left( {\dfrac{{\text{1}}}{{{\text{ - 1}}}}} \right)$
कोणांक $\theta {\text{= - 4}}{{\text{5}}^{{^\circ }}}$
से, यह स्पष्ट है कि दूसरे चतुरथनस में स्थित हैं
6. निम्नलिखत समीकरण को हल करें, ${\text{3}}{{\text{x}}^{\text{2}}}{\text{ - 4x + }}\dfrac{{{\text{20}}}}{{\text{3}}}{\text{ = 0}}$
उत्तर: दिया गया द्विघात है, ${\text{3}}{{\text{x}}^{\text{2}}}{\text{ - 4 x + }}\dfrac{{{\text{20}}}}{{\text{3}}}{\text{ = 0}}$
इसकी तुलना ${\text{a}}{{\text{x}}^{\text{2}}}{\text{ + bx + c = 0}}$ से करने पर,${\text{a = 3 , b = - 4 & c = }}\dfrac{{{\text{20}}}}{{\text{3}}}$
इसीलिए समीकरण का वीविक्तकार,
${\text{D = }}{{\text{b}}^{\text{2}}}{\text{ - 4ac}}$
${\text{ = }}{\left( {{\text{ - 4}}} \right)^{\text{2}}}{{ \times - 4 \times 3 \times }}\dfrac{{{\text{20}}}}{{\text{3}}}{\text{ = 16 - 80 = - 64 }}$
इसलिए, समीकरण के लिए समाधान है,${\text{x = }}\dfrac{{{{ - b \pm }}\sqrt {\text{D}} }}{{{\text{2a}}}}$
${\text{x = }}\dfrac{{{{ - b \pm }}\sqrt {\text{D}} }}{{{\text{2a}}}}$
${\text{ = }}\dfrac{{{{4 \pm }}\sqrt {{\text{ - 64}}} }}{{\text{6}}}$
${\text{x = }}\dfrac{{{\text{4 + 8i}}}}{{\text{6}}}{\text{, x = }}\dfrac{{{\text{4 - 8i}}}}{{\text{6}}}$
${\text{x = }}\dfrac{{{\text{2 + 4i}}}}{{\text{3}}}{\text{, x = }}\dfrac{{{\text{2 - 4i}}}}{{\text{3}}}$
7. निम्नलिखत समीकरण को हल करें,
${{\text{x}}^{\text{2}}}{\text{ - 2x + }}\dfrac{3}{2}{\text{ = 0}}$
उत्तर: दिया गया द्विघात है, ${{\text{x}}^{\text{2}}}{\text{ - 2x + }}\dfrac{3}{2}{\text{ = 0}}$
इसकी तुलना ${\text{a}}{{\text{x}}^{\text{2}}}{\text{ + bx + c = 0}}$ से करने पर,${\text{a = 1, b = - 2 & c = }}\dfrac{3}{2}$
इसीलिए समीकरण का वीविक्तकार, ${\text{D = }}{{\text{b}}^{\text{2}}}{\text{ - 4ac}}$
${\text{ = }}{\left( {{\text{ - 2}}} \right)^{\text{2}}}{{ \times - 4 \times 1 \times }}\dfrac{3}{2}{\text{ = 4 - 6 = - 2}}$
इसलिए, समीकरण के लिए समाधान है,${\text{x = }}\dfrac{{{{ - b \pm }}\sqrt {\text{D}} }}{{{\text{2a}}}}$
${\text{x = }}\dfrac{{{{ - b \pm }}\sqrt {\text{D}} }}{{{\text{2a}}}}$
${\text{ = }}\dfrac{{{{2 \pm }}\sqrt {{\text{ - 2}}} }}{2}$
${\text{x = }}\dfrac{{{\text{2 + i}}\sqrt 2 }}{2}{\text{, x = }}\dfrac{{{\text{2 - i}}\sqrt 2 }}{2}$
${\text{x = }}\dfrac{{{\text{2 + i}}\sqrt 2 }}{2}{\text{, x = }}\dfrac{{{\text{2 - i}}\sqrt 2 }}{2}$
8. निम्नलिखत समीकरण को हल करें,
${\text{27}}{{\text{x}}^{\text{2}}}{\text{ - 10x + 1 = 0}}$
उत्तर: दिया गया द्विघात है, $\text{27}{{\text{x}}^{\text{2}}}\text{ - 10x + 1 = 0}$
इसकी तुलना $\text{a}{{\text{x}}^{\text{2}}}\text{ + bx + c = 0}$ से करने पर,$\text{a = 27, b = - 10 }\!\!\And\!\!\text{ c = 1}$
इसीलिए समीकरण का वीविक्तकार,
$\text{D = }{{\text{b}}^{\text{2}}}\text{ - 4ac}$
$\text{= }{{\left( \text{ - 10} \right)}^{\text{2}}}\text{ - 4 }\!\!\times\!\!\text{ 27 }\!\!\times\!\!\text{ 1 = 100 - 108 = - 8}$
इसलिए, समीकरण के लिए समाधान है,$\text{x = }\dfrac{\text{- b }\!\!\pm\!\!\text{ }\sqrt{\text{D}}}{\text{2a}}$
$\text{x = }\dfrac{\text{- b }\!\!\pm\!\!\text{ }\sqrt{\text{D}}}{\text{2a}}$
$\text{= }\dfrac{\text{10 }\!\!\pm\!\!\text{ }\sqrt{\text{ - 8}}}{54}$
$\text{x = }\dfrac{\text{28 + i2}\sqrt{2}}{54}\text{, x = }\dfrac{\text{28 - i2}\sqrt{2}}{54}$
$\text{x = }\dfrac{\text{5 + i}\sqrt{2}}{27}\text{, x = }\dfrac{\text{5 - i}\sqrt{2}}{27}$
9. निम्नलिखत समीकरण को हल करें,
$\text{21}{{\text{x}}^{\text{2}}}\text{ - 28x + 10 = 0}$
उत्तर: दिया गया द्विघात है, $\text{21}{{\text{x}}^{\text{2}}}\text{ - 28x + 10 = 0}$
इसकी तुलना $\text{a}{{\text{x}}^{\text{2}}}\text{ + bx + c = 0}$ से करने पर,$\text{a = 21, b = - 28 }\!\!\And\!\!\text{ c = 10}$
इसीलिए समीकरण का वीविक्तकार,
$\text{D = }{{\text{b}}^{\text{2}}}\text{ - 4ac}$
$\text{= }{{\left( \text{ - 28s} \right)}^{\text{2}}}\text{ - 4 }\!\!\times\!\!\text{ 21 }\!\!\times\!\!\text{ 10 = 784 - 840 = - 56}$
इसलिए, समीकरण के लिए समाधान है,$\text{x = }\dfrac{\text{- b }\!\!\pm\!\!\text{ }\sqrt{\text{D}}}{\text{2a}}$
$\text{x = }\dfrac{\text{- b }\!\!\pm\!\!\text{ }\sqrt{\text{D}}}{\text{2a}}$
$\text{= }\dfrac{\text{28 }\!\!\pm\!\!\text{ }\sqrt{\text{ - 56}}}{42}$
$\text{x = }\dfrac{\text{28 + i2}\sqrt{14}}{42}\text{, x = }\dfrac{\text{28 - i2}\sqrt{14}}{42}$
$\text{x = }\dfrac{\text{14 + i}\sqrt{14}}{21}\text{, x = }\dfrac{\text{14 - i}\sqrt{14}}{21}$
10. यदि${{\text{z}}_{\text{1}}}\text{ = 2 - i, }{{\text{z}}_{\text{2}}}\text{ = 1 + i; }\left| \dfrac{{{\text{z}}_{\text{1}}}\text{ + }{{\text{z}}_{\text{2}}}\text{ + 1}}{{{\text{z}}_{\text{1}}}\text{ -}{{\text{z}}_{\text{2}}}\text{ + 1}} \right|$ का मान ज्ञात कीजिए
उत्तर: $\text{= }\left| \dfrac{\left( \text{2 - i} \right)\text{ + }\left( \text{1 + i} \right)\text{ + 1}}{\left( \text{2 - i} \right)\text{ - }\left( \text{1 + i} \right)\text{ + 1}} \right|$
$\text{= }\left| \dfrac{\text{4}}{\text{2 - 2i}} \right|$
$\text{=}\left| \dfrac{\text{2}}{\text{1 - i}}\text{ }\!\!\times\!\!\text{ }\dfrac{\text{1 + i}}{\text{1 + i}} \right|$
$\text{= }\left| \dfrac{\text{2 (1 + i)}}{\text{1 + 1}} \right|$
$\text{= }\!\!|\!\!\text{ (1 + i) }\!\!|\!\!\text{ }$
$\text{= }\sqrt{\text{2}}$
11. $\text{a + ib = }\dfrac{{{\left( \text{x + i} \right)}^{\text{2}}}}{\text{2}{{\text{x}}^{\text{2}}}\text{ + 1}}$, सिद्ध कीजिए कि, ${{\text{a}}^{\text{2}}}\text{ + }{{\text{b}}^{\text{2}}}\text{ = }\dfrac{{{\left( {{\text{x}}^{\text{2}}}\text{ + 1} \right)}^{\text{2}}}}{{{\left( \text{2}{{\text{x}}^{\text{2}}}\text{ + 1} \right)}^{\text{2}}}}$
उत्तर: $\text{a + ib = }\dfrac{{{\left( \text{x + i} \right)}^{\text{2}}}}{\text{2}{{\text{x}}^{\text{2}}}\text{ + 1}}$
$\text{a + ib = }\dfrac{{{\text{x}}^{\text{2}}}\text{ + }{{\text{i}}^{\text{2}}}\text{ + i2x}}{\text{2}{{\text{x}}^{\text{2}}}\text{ + 1}}$
$\text{a + ib = }\dfrac{{{\text{x}}^{\text{2}}}\text{ - 1}}{\text{2}{{\text{x}}^{\text{2}}}\text{ + 1}}\text{ + i}\dfrac{\text{2x}}{\text{2}{{\text{x}}^{\text{2}}}\text{ + 1}}$
तुलना करने पर
$\text{a = }\dfrac{{{\text{x}}^{\text{2}}}\text{ - 1}}{\text{2}{{\text{x}}^{\text{2}}}\text{ + 1}}$
$\text{b = }\dfrac{\text{2x}}{\text{2}{{\text{x}}^{\text{2}}}\text{ + 1}}$
अब,
${{\text{a}}^{\text{2}}}\text{ + }{{\text{b}}^{\text{2}}}\text{ = }{{\left( \dfrac{{{\text{x}}^{\text{2}}}\text{ - 1}}{\text{2}{{\text{x}}^{\text{2}}}\text{ + 1}} \right)}^{\text{2}}}\text{ + }{{\left( \dfrac{\text{2x}}{\text{2}{{\text{x}}^{\text{2}}}\text{ + 1}} \right)}^{\text{2}}}$
${{\text{a}}^{\text{2}}}\text{ + }{{\text{b}}^{\text{2}}}\text{ = }\dfrac{{{\text{x}}^{\text{4}}}\text{ - 2}{{\text{x}}^{\text{2}}}\text{ + 1}}{{{\left( \text{2}{{\text{x}}^{\text{2}}}\text{ + 1} \right)}^{\text{2}}}}\text{ + }\dfrac{\text{4}{{\text{x}}^{\text{2}}}}{{{\left( \text{2}{{\text{x}}^{\text{2}}}\text{ + 1} \right)}^{\text{2}}}}$
${{\text{a}}^{\text{2}}}\text{ + }{{\text{b}}^{\text{2}}}\text{ = }\dfrac{{{\text{x}}^{\text{4}}}\text{ - 2}{{\text{x}}^{\text{2}}}\text{ +1 + 4}{{\text{x}}^{\text{2}}}}{{{\left( \text{2}{{\text{x}}^{\text{2}}}\text{ + 1} \right)}^{\text{2}}}}$
${{\text{a}}^{\text{2}}}\text{ + }{{\text{b}}^{\text{2}}}\text{ = }\dfrac{{{\text{x}}^{\text{4}}}\text{ + 2}{{\text{x}}^{\text{2}}}\text{ + 1}}{{{\left( \text{2}{{\text{x}}^{\text{2}}}\text{ + 1} \right)}^{\text{2}}}}$
${{\text{a}}^{\text{2}}}\text{ + }{{\text{b}}^{\text{2}}}\text{ = }{{\left( \dfrac{{{\text{x}}^{\text{2}}}\text{ + 1}}{\text{2}{{\text{x}}^{\text{2}}}\text{ + 1}} \right)}^{\text{2}}}$
12. माना ${{\text{z}}_{\text{1}}}\text{ = 2 - i, }{{\text{z}}_{\text{2}}}\text{ = - 2 + i}$ निम्न का मान निकालिए
$\text{(i) Re}\left( \dfrac{{{\text{z}}_{\text{1}}}{{\text{z}}_{\text{2}}}}{\overline{{{\text{z}}_{\text{1}}}}} \right)$ $\text{(ii) Im}\left( \dfrac{\text{1}}{{{\text{z}}_{\text{1}}}\overline{{{\text{z}}_{\text{1}}}}} \right)$
उत्तर: $\text{(i) Re}\left( \dfrac{{{\text{z}}_{\text{1}}}{{\text{z}}_{\text{2}}}}{\overline{{{\text{z}}_{\text{1}}}}} \right)$
$\left( \dfrac{{{\text{z}}_{\text{1}}}{{\text{z}}_{\text{2}}}}{\overline{{{\text{z}}_{\text{1}}}}} \right)$
$\text{= }\dfrac{\text{(2 - i)(- 2 + i)}}{\text{(2 + i)}}$
$\text{= }\dfrac{\text{- 3 + 4i}}{\text{(2 + i)}}$
$\text{= }\dfrac{\text{- 3 + 4i}}{\text{(2 + i)}}\text{ }\!\!\times\!\!\text{ }\dfrac{\text{2 - i}}{\text{2 - i}}\text{ = }\dfrac{\text{- 6 + 3i + 8i - 4}{{\text{i}}^{\text{2}}}}{{{\text{2}}^{\text{2}}}\text{ + }{{\text{i}}^{\text{2}}}}$
$\text{= }\dfrac{\text{- 2 + 11i}}{\text{5}}$
$\text{= }\dfrac{\text{- 2}}{\text{5}}\text{ + }\dfrac{\text{11i}}{\text{5}}$
अब,
$\text{Re}\left( \dfrac{{{\text{z}}_{\text{1}}}{{\text{z}}_{\text{2}}}}{\overline{{{\text{z}}_{\text{1}}}}} \right)\text{ = - }\dfrac{\text{2}}{\text{5}}$
उत्तर: $\text{(ii) Im}\left( \dfrac{\text{1}}{{{\text{z}}_{\text{1}}}\overline{{{\text{z}}_{\text{1}}}}} \right)$
$\left( \dfrac{\text{1}}{{{\text{z}}_{\text{1}}}\overline{{{\text{z}}_{\text{1}}}}} \right)$
$\text{= }\dfrac{\text{1}}{\text{(2 - i)(2 + i)}}$
$\text{= }\dfrac{\text{1}}{{{\text{2}}^{\text{2}}}\text{ - }{{\text{i}}^{\text{2}}}}$
$\text{= }\dfrac{\text{1}}{\text{5}}$
$\text{= }\dfrac{\text{1}}{\text{5}}\text{ + i0 }$
अब,
$\text{Im}\left( \dfrac{\text{1}}{{{\text{z}}_{\text{1}}}\overline{{{\text{z}}_{\text{1}}}}} \right)\text{ = 0}$
13. सम्मिश्र संख्या $\dfrac{\text{1 + 2i}}{\text{1 - 3i}}$का मापांक और कोणांक ज्ञात कीजिए
उत्तर: $\dfrac{\text{1 + 2i}}{\text{1 - 3i}}$
$\text{= }\dfrac{\text{1 + 2i}}{\text{1 - 3i}}\text{ }\!\!\times\!\!\text{ }\dfrac{\text{1 + 3i}}{\text{1 + 3i}}$
$\text{= }\dfrac{\text{1 + 3i + 2i + 6}{{\text{i}}^{\text{2}}}}{{{\text{1}}^{\text{2}}}\text{ + (3}{{\text{)}}^{\text{2}}}}$
$\text{= }\dfrac{\text{- 5 + 5i}}{\text{10}}$
$\text{= - }\dfrac{\text{1}}{\text{2}}\text{ + }\dfrac{\text{i1}}{\text{2}}$
${{\text{r}}^{\text{2}}}\text{ = }{{\left( \text{- }\dfrac{\text{1}}{\text{2}} \right)}^{\text{2}}}\text{ + }{{\left( \dfrac{\text{1}}{\text{2}} \right)}^{\text{2}}}$
मापांक $\text{r=}\dfrac{\text{1}}{\sqrt{\text{2}}}$
$\text{ }\!\!\theta\!\!\text{ = ta}{{\text{n}}^{\text{-1}}}\left( \dfrac{\text{- }\dfrac{\text{1}}{\text{2}}}{\dfrac{\text{1}}{\text{2}}} \right)$
कोणांक $\text{ }\!\!\theta\!\!\text{ = - 4}{{\text{5}}^{\text{ }\!\!{}^\circ\!\!\text{ }}}$
से, यह स्पष्ट है कक तीसरे चतुर्तांश में स्थित है
14. $\text{ale}\left( \text{x - iy} \right)\left( \text{3 + 5i} \right)\text{, - 6 - 24i}$ की सयुग्मी है तो वास्तविक संखिए $\text{x}$ और $\text{y}$ ज्ञात कीजिए
उत्तर: दिया है: $\left( \text{x - iy} \right)\left( \text{3 + 5i} \right)\text{, - 6 - 24i}$ की संयुग्मी है
$\text{(x - iy)( 3 + 5i) = - 6 + 24i }$
$\text{3x + i5x - i3y + 5y = - 6 + 24 i }$
$\text{3x + 5y + i(5x - 3y) = -6 + 24 i }$
तुलना करने पर
$\text{3x + 5y = - 6}\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ .....\left( \text{1} \right)$
$\text{5x - 3y = 24}\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \,\,\,\ .....\left( \text{2} \right)$
समीकरण (1) को 3 से, व समीकरण (2) को 5 से गुणा करने पर और जोड़ने पर
$\text{3}\left( \text{3x + 5y = - 6} \right)\text{+5}\left( \text{5x - 3y = 24} \right)$
$\ \ \ \ \text{34x = 102}$
$\ \ \ \ \ \ \text{x = 3}$
$\text{x}$ का मान समीकरण $\left( \text{1} \right)$ में रखने पर
$\text{y = - 3}$
15. $\dfrac{\text{1 + i}}{\text{1 - i}}\text{ - }\dfrac{\text{1 - i}}{\text{1 + i}}$ का मापांक ज्ञात कीजिए।
उत्तर: $\dfrac{\text{1 + i}}{\text{1 - i}}\text{ - }\dfrac{\text{1 - i}}{\text{1 + i}}$
$\text{= }\dfrac{{{\left( \text{1 + i} \right)}^{\text{2}}}\text{ - }{{\left( \text{1 - i} \right)}^{\text{2}}}}{\left( \text{1 - i} \right)\left( \text{1 + i} \right)}$
$\text{= }\dfrac{\text{4i}}{\text{2}}$
$\text{= 2i}$
इसलिए,
$\left| \text{ 2i } \right|\text{ = 2}$
16. $\text{afe (x + iy}{{\text{)}}^{\text{3}}}\text{ = u + iy}$ तो दर्शाये कि $\dfrac{\text{u}}{\text{x}}\text{ + }\dfrac{\text{v}}{\text{y}}\text{ = 4}\left( {{\text{x}}^{\text{2}}}\text{ - }{{\text{y}}^{\text{2}}} \right)$
उत्तर: ${{\text{x}}^{\text{3}}}\text{ + (iy}{{\text{)}}^{\text{3}}}\text{ + 3}{{\text{x}}^{\text{2}}}\text{(iy) + 3x(iy}{{\text{)}}^{\text{2}}}\text{ = u + iv}$
${{\text{x}}^{\text{3}}}\text{ - i}{{\text{y}}^{\text{3}}}\text{ + 3}{{\text{x}}^{\text{2}}}\text{(iy) - 3x(y}{{\text{)}}^{\text{2}}}\text{ = u + iv}$
${{\text{x}}^{\text{3}}}\text{ - 3x}{{\text{y}}^{\text{2}}}\text{ - i}\left( {{\text{y}}^{\text{3}}}\text{ + 3}{{\text{x}}^{\text{2}}}\text{y} \right)\text{ = u + iv}$
तुलना करने पर
$\text{u = }{{\text{x}}^{\text{3}}}\text{ - 3x}{{\text{y}}^{\text{2}}}$
$\text{v = 3}{{\text{x}}^{\text{2}}}\text{y - }{{\text{y}}^{\text{3}}}$
$\dfrac{\text{u}}{\text{x}}\text{ = }{{\text{x}}^{\text{2}}}\text{ - 3}{{\text{y}}^{\text{2}}}$
$\dfrac{\text{v}}{\text{y}}\text{ = 3}{{\text{x}}^{\text{2}}}\text{ - }{{\text{y}}^{\text{2}}}$
$\dfrac{\text{u}}{\text{x}}\text{ + }\dfrac{\text{v}}{\text{y}}\text{ = 4}\left( {{\text{x}}^{\text{2}}}\text{ - }{{\text{y}}^{\text{2}}} \right)$
17. यदि $\text{ } \!\alpha \!\text{ }$ और $\text{ } \!\beta \!\text{ }$ भिन्न सम्मिश्र संख्याएँ हैं जहाँ $\left| \text{ } \!\beta \!\text{ } \right|\text{ + 1,}$ तब $\left| \dfrac{\text{ } \!\beta \!\text{ - } \!\alpha \!\text{ }}{\text{1 - }\overline{\text{ } \!\alpha \!\text{ }}\text{ } \!\beta \!\text{ }} \right|$ का मान ज्ञात कीजिए
उत्तर: ${{\left| \dfrac{\text{ } \!\beta \!\text{ - } \!\alpha \!\text{ }}{{1 - \bar{ } \!\alpha \!\text{ } } \!\beta \!\text{ }} \right|}^{\text{2}}}\text{ = }\left( \dfrac{\text{ } \!\beta \!\text{ - } \!\alpha \!\text{ }}{{1 - \bar{ } \!\alpha \!\text{ } } \!\beta \!\text{ }} \right)\overline{\left( \dfrac{\text{ } \!\beta \!\text{ - } \!\alpha \!\text{ }}{{1-\bar{ } \!\alpha \!\text{ } } \!\beta \!\text{ }} \right)}$
${{\left| \dfrac{\text{ }\!\beta\!\text{ - }\!\alpha\!\text{ }}{{1 - \bar{ }\!\alpha\!\text{ } }\!\beta\!\text{ }} \right|}^{\text{2}}}\text{ = }\left( \dfrac{\text{ }\!\beta\!\text{ - }\!\alpha\!\text{ }}{{1 - \bar{ }\!\alpha\!\text{ } }\!\beta\!\text{ }} \right)\left( \dfrac{{\bar{ }\!\beta\!\text{ } - \bar{ }\!\alpha\!\text{ }}}{\text{1 - }\!\alpha\!{ \bar{ }\!\beta\!\text{ }}} \right)$
$\text{= }\left( \dfrac{\text{ }\!\beta\!{ \bar{ }\!\beta\!\text{ } - \bar{ }\!\alpha\!\text{ } }\!\beta\!\text{ - }\!\alpha\!{ \bar{ }\!\beta\!\text{ } + }\!\alpha\!{ \bar{ }\!\alpha\!\text{ }}}{\text{1 - }\!\alpha\!{ \bar{ }\!\beta\!\text{ } - \bar{ }\!\alpha\!\text{ } }\!\beta\!\text{ + }\!\alpha\!{ \bar{ }\!\alpha\!\text{ } }\!\beta\!{ \bar{ }\!\beta\!\text{ }}} \right)\quad$
$\text{= }\left( \dfrac{{1 - \bar{ }\!\alpha\!\text{ } }\!\beta\!\text{ - }\!\alpha\!{ \bar{ }\!\beta\!\text{ } + }\!|\!\text{ }\!\alpha\!\text{ }{{\text{ }\!|\!\text{ }}^{\text{2}}}}{\text{1 - }\!\alpha\!{ \bar{ }\!\beta\!\text{ } - \bar{ }\!\alpha\!\text{ } }\!\beta\!\text{ + }\!|\!\text{ a}{{\text{ }\!|\!\text{ }}^{\text{2}}}} \right)$
$\text{= 1}$
18. समीकरण ${{\left| \text{1 - i} \right|}^{\text{x}}}\text{ = }{{\text{2}}^{\text{x}}}$ के शान्यतेर पूर्णांक मूलों कि संख्या ज्ञात कीजिए
उत्तर: $\left( \sqrt{{{\text{1}}^{\text{2}}}\text{ + }{{\text{1}}^{\text{2}}}} \right)\text{ = }{{\text{2}}^{\text{x}}}$
${{\left( \sqrt{\text{2}} \right)}^{\text{x}}}\text{ - }{{\text{2}}^{\text{x}}}$
${\text{2}}^{\dfrac{\text{x}}{\text{2}}}\text{ = }{{\text{2}}^{\text{x}}}$
$\dfrac{\text{x}}{\text{2}}\text{ = x}$
$\text{x = 0}$
इस प्रकार, समीकरण का केवल एक ही मूल है जो कि$\text{ 0}$ है|
19. $\text{ale}\left( \text{a + ib} \right)\left( \text{c + id} \right)\left( \text{e + if} \right)\left( \text{g + ih} \right)\text{ = A + iB}$ तो दर्शाइए कि
$\left( {{\text{a}}^{\text{2}}}\text{+ }{{\text{b}}^{\text{2}}} \right)\left( {{\text{c}}^{\text{2}}}\text{ + }{{\text{d}}^{\text{2}}} \right)\left( {{\text{e}}^{\text{2}}}\text{ + }{{\text{f}}^{\text{2}}} \right)\left( {{\text{g}}^{\text{2}}}\text{ + }{{\text{h}}^{\text{2}}} \right)\text{ = }{{\text{A}}^{\text{2}}}\text{ + }{{\text{B}}^{\text{2}}}$
उत्तर: $\text{ale}\left( \text{a + ib} \right)\left( \text{c + id} \right)\left( \text{e + if} \right)\left( \text{g + ih} \right)\text{ = A + iB}$
$\left| \left( \text{a + ib} \right)\left( \text{c + id} \right)\left( \text{e + if} \right)\left( \text{g + ih} \right) \right|\text{ = A + iB}$
$\left| \text{a + ib} \right|\left| \text{c + id} \right|\left| \text{e + if} \right|\left| \text{g + ih} \right|\text{ = }\left| \text{A + iB} \right|$
$\sqrt{{{\text{a}}^{\text{2}}}\text{ + }{{\text{b}}^{\text{2}}}}\text{.}\sqrt{{{\text{c}}^{\text{2}}}\text{ + }{{\text{d}}^{\text{2}}}}\text{.}\sqrt{{{\text{e}}^{\text{2}}}\text{ + }{{\text{f}}^{\text{2}}}}\text{.}\sqrt{{{\text{g}}^{\text{2}}}\text{ + }{{\text{h}}^{\text{2}}}}\text{ = }\sqrt{{{\text{A}}^{\text{2}}}\text{ + }{{\text{B}}^{\text{2}}}}$
दोनों तरफ वर्ग करने पर
$\left( {{\text{a}}^{\text{2}}}\text{ + }{{\text{b}}^{\text{2}}} \right)\text{.}\left( {{\text{c}}^{\text{2}}}\text{ + }{{\text{d}}^{\text{2}}} \right)\text{.}\left( {{\text{e}}^{\text{2}}}\text{ + }{{\text{f}}^{\text{2}}} \right)\text{.}\left( {{\text{g}}^{\text{2}}}\text{ + }{{\text{h}}^{\text{2}}} \right)\text{ = }\left( {{\text{A}}^{\text{2}}}\text{ + }{{\text{B}}^{\text{2}}} \right)$
20. यदि${{\left( \dfrac{\text{1 + i}}{\text{1 - i}} \right)}^{\text{m}}}\text{ = 1, m}$ कीजिए
उत्तर: ${{\left( \dfrac{\text{1 + i}}{\text{1 - i}} \right)}^{\text{m}}}\text{ = 1}$
${{\left( \dfrac{\text{1 + i}}{\text{1 - i}}\text{ }\!\!\times\!\!\text{ }\dfrac{\text{1 + i}}{\text{1 + i}} \right)}^{\text{m}}}\text{ = 1}$
${{\left( \dfrac{\text{2i}}{\text{2}} \right)}^{\text{m}}}\text{ = 1}$
${{\text{i}}^{\text{m}}}\text{ = 1}$
$\text{m = 4,8,12}......\text{ }$
अतः, का न्यूनतम पूर्णांक मान $\text{4}$ है|
NCERT Solutions for Class 11 Maths Chapter 5 Complex Numbers and Quadratic Equations in Hindi
Chapter-wise NCERT Solutions are provided everywhere on the internet with an aim to help the students to gain a comprehensive understanding. Class 11 Maths Chapter 5 solution Hindi mediums are created by our in-house experts keeping the understanding ability of all types of candidates in mind. NCERT textbooks and solutions are built to give a strong foundation to every concept. These NCERT Solutions for Class 11 Maths Chapter 5 in Hindi ensure a smooth understanding of all the concepts including the advanced concepts covered in the textbook.
NCERT Solutions for Class 11 Maths Chapter 5 in Hindi medium PDF download are easily available on our official website (vedantu.com). Upon visiting the website, you have to register on the website with your phone number and email address. Then you will be able to download all the study materials of your preference in a click. You can also download the Class 11 Maths Complex Numbers and Quadratic Equations solution Hindi medium from Vedantu app as well by following the similar procedures, but you have to download the app from Google play store before doing that.
NCERT Solutions in Hindi medium have been created keeping those students in mind who are studying in a Hindi medium school. These NCERT Solutions for Class 11 Maths Complex Numbers and Quadratic Equations in Hindi medium pdf download have innumerable benefits as these are created in simple and easy-to-understand language. The best feature of these solutions is a free download option. Students of Class 11 can download these solutions at any time as per their convenience for self-study purpose.
These solutions are nothing but a compilation of all the answers to the questions of the textbook exercises. The answers/ solutions are given in a stepwise format and very well researched by the subject matter experts who have relevant experience in this field. Relevant diagrams, graphs, illustrations are provided along with the answers wherever required. In nutshell, NCERT Solutions for Class 11 Maths in Hindi come really handy in exam preparation and quick revision as well prior to the final examinations.