Courses
Courses for Kids
Free study material
Offline Centres
More
Store Icon
Store

NCERT Solutions for Class 12 Maths Chapter 11 Three Dimensional Geometry

ffImage
banner

Class 12 Maths Chapter 11 Three Dimensional Geometry NCERT Solution - FREE PDF Download

NCERT Solutions for Class 12 Maths Chapter 11 - Three Dimensional Geometry by is crucial as it covers fundamental concepts such as direction cosines, direction ratios, equations of lines and planes, and the angle between two lines. These topics are essential for understanding spatial relationships and their applications in various fields.

toc-symbolTable of Content
toggle-arrow


In this chapter, pay special attention to the formulas and their derivations. Understanding the geometric interpretations will help you grasp the concepts better. Focus on solving the exercises as they are designed to build a strong foundation in three-dimensional geometry, preparing you well for exams.


Glance on Maths Chapter 11 Class 12 - Three Dimensional Geometry

  • Chapter 11 three dimensional geometry class 12  Maths deals with study of Direction cosines and direction ratios of a line joining two points and also  about the equations of lines and planes.

  • Represent and manipulate planes using equations, finding the angle between two planes, and identifying the intersection line.

  • Analyzing relationships between lines and planes, finding the distance between a point and a plane.

  • Develop spatial visualization skills to imagine and work with 3D objects.

  • Applying geometric concepts to solve real-world problems involving 3D objects.

  • This article contains chapter notes, important questions, exemplar solutions, exercises and video links for ch 11 maths class 12 - Three Dimensional Geometry, which you can download as PDFs.

  • There are three exercises (36 fully solved questions) in 3d geometry class 12 ncert solutions.

Access Exercise wise NCERT Solutions for Chapter 11 Maths Class 12

Courses
Competitive Exams after 12th Science
More Free Study Material for Three - Dimensional Geometry
icons
Revision notes
icons
Important questions
icons
Ncert books

Exercises Under NCERT Solutions for Class 12 Maths Chapter 11 - Three Dimensional Geometry

  • Exercise 11.1: This exercise focuses on the basic concepts of direction cosines and direction ratios. It includes problems that require students to find the direction cosines and direction ratios given specific conditions. Important topics include the calculation of direction cosines from given coordinates, understanding the relationship between direction cosines and direction ratios, and applying these concepts in various geometric problems.


  • Exercise 11.2:

  • Equation of a Line in Space: This part of the exercise involves finding the vector and Cartesian equations of lines in space. This part of the exercise involves problems such as deriving the equation of a line passing through a given point and parallel to a given vector, and finding the equation of a line given two points in space.

  • Angle between Two Lines: This section focuses on determining the angle between two lines using their direction ratios or cosines. Problems typically involve calculating the cosine of the angle between two given lines. Using the dot product of direction vectors to find the angle.

  • Shortest Distance between Two Lines: Problems in this section deal with finding the shortest distance between two skew lines. Important concepts include using vector algebra to derive the formula for the shortest distance and solving problems using the derived formula.


  • Miscellaneous Exercise on Chapter 11: This exercise includes a variety of problems that encompass all the concepts covered in the chapter. Typically, it consists of 5 diverse questions that require comprehensive understanding and application of the chapter's topics. The questions may involve multiple concepts, such as combining direction cosines, equations of lines, angles, and distances in a single problem.


Overall, this chapter is essential for students who want to pursue higher education in Mathematics and Physics. It provides a solid foundation for students to understand the concepts of three-dimensional geometry and their applications in real-world problems.


Access NCERT Solutions for Class 12 Maths  Chapter 11 - Three-Dimensional Geometry

Exercise 11.1

1.if a line makes angles 90o,135o,45o with x,y and z axes respectively,find its direction cosines.

Ans: Let us consider l,m and nbe the direction cosines of line

Then, 

l=cos90o=0,

m=cos135o

=cos(90o+45o)

=sin45o

=12

And,

n=cos45o=12

Therefore, the direction cosines of the line are 0,-12 and 12.


2. Find the direction cosines of the line which makes equal angles with the coordinate axes.

Ans: Let us consider that the line makes an angle  α  with coordinate axes

Which means l=cos α ,m=cos α ,n=cos α 

Now, we know that 

l2+m2+n2cos2 α +cos2 α +cos2 α 

3cos2 α =1

cos2 α =13cos α = ± 13

Therefore, the direction cosines of the line are  ± 13± 13± 13.

 

3.If a line has the direction ratios -18,12,-4, then what are its direction cosines?

Ans: We have the direction ratios as -18,12,-4,

Now, the direction cosines will be as

l=-18(-18)2+(12)2+(-4)2,m=12(-18)2+(12)2+(-4)2,n=-4(-18)2+(12)2+(-4)2

-1822,1222,-422-911,611,-211

Therefore, direction cosines of the line are -911,611 and -211.

 

4. Show that (2,3,4),(-1,-2,1),(5,8,7) are collinear.

Ans: Let us consider the points be A(2,3,4),B(-1,-2,1) and C(5,8,7).

Now, as we know that direction cosines can be found by (x2-x1),(y2-y1), and (z2-z1)

Therefore,

Direction ratios of AB and BC be -3,-5,-3 and 6,10,6 respectively

As we can see that AB and BC are proportional, we get that AB is parallel to BC.


seo images


Therefore, the points are collinear.


5. Find the direction cosines of the sides of the triangle whose vertices  are (3,5,-4),(-1,1,2),(-5,-5,-2).

Ans: Let us consider the points be A(3,5,-4),B(-1,1,2) and C(-5,-5,-2),


seo images

Now, the direction ratios of AB will be -4,-4 and 6,

We get

(-4)2+(-4)2+(6)2=68217

Now, 

l=-4(-4)2+(-4)2+(6)2,m=-4(-4)2+(-4)2+(6)2,n=6(-4)2+(-4)2+(6)2

l=-217,m=-217,n=317

Therefore, the direction cosines of AB are -217,-217,317

Similarly, the direction ratios of side BC will be -4,-6 and -4.

Now,

l=-4(-4)2+(-6)2+(-4)2,m=-6(-4)2+(-6)2+(-4)2,n=-4(-4)2+(-6)2+(-4)2

l=-4217,m=-6217,n=-4217

Therefore, the direction cosines of BC is -217,-317,-217

Similarly, the direction ratios of CA will be-8,-10 and 2.

Now,

l=-8(-8)2+(10)2+(2)2,m=10(-8)2+(10)2+(2)2,n=2(-8)2+(10)2+(2)2

l=-8242,m=-10242,n=2242.

Therefore, the direction cosines of CAis -442,-542,142 


Exercise 11.2 

1. Show that the three lines with direction cosines 1213,-313,-413;413,1213,313;313,-413,1213 are mutually perpendicular,


seo images

Ans: As we know, if l1l2+m1m2+n1n2=0, the lines are perpendicular

(i)Now, from direction cosines 1213,-313,-413 and 413,1213,313, we get

l1l2+m1m2+n1n2=1213 × 413+(-313) × 1213+(-413) × 313

48169-36169-12169

0

Therefore, the lines are perpendicular.

(ii)Similarly, if we take 413,1213,313 and 1213,-313,-413, we get

l1l2+m1m2+n1n2=413 × 313+(1213) × (-413)+313 × (1213)

12169-48169-36169=0

Therefore, the lines are perpendicular.

(iii)Again, if we consider -313,-413,1213 and 1213,-313,-413, we get

l1l2+m1m2+n1n2=313 × 1213+(-413) × (-413)+1213 × (-413)

36169-12169-48169=0

Therefore, the lines are perpendicular.

Therefore, we can say that all the lines are mutually perpendicular.

 

2.show that the line passing through the points (1,-1,2)(3,4,-2) is perpendicular to the line through the points (0,3,2) and (3,5,6)?

Ans: Let us consider that AB and CD are the lines that pass through the points, (1,1,-2), (3,4,-2) and (0,3,2), (3,5,6), respectively.


seo images

Now, we have  a1=(2),b1=(5),c1=(-4) and a2=(3),b2=(2),c2=(4)

As we know that if ABCD then a1a2+b1b2+c1c2=0

Now, 

a1a2+b1b2+c1c2=2 × 3+5 × 2+(-4) × 4

× 3+5 × 2-4 × 4=6+10-16

0

Therefore, AB and CD are perpendicular to each other.

 

3. Show that the line through the points (4,7,8)(2,3,4) is parallel to the line through the points (1,-2,1)(1,2,5).

Ans: Let us consider the lines AB and CD that pass through points (4,7,8), (2,3,4), and(-1,-2,1), (1,2,5) respectively.


seo images

Now, we get

a1=(2-4),b1=(3-7),c1=(4-8) and a2=(1+1),b2=(2+2),c2=(5-1)

a1=(-2),b1=(-4),c1=(-4) and a2=(2),b2=(4),c2=(4)

Now, we know that if ABCD then a1a2=b1b2=c1c2,

Now,

a1a2=-22-1,b1b2=-44-1,c1c2=-44=-1

We got a1a2=b1b2=c1c2

Therefore, AB is parallel to CD.

 

4. Find the equation of the line which passes through point (1,2,3) and parallel to the vector 3i+2j-2k .

Ans: Now, let us consider the position vector A be a=i+2j+3k and let b=3i^+2j^2k^

Now, we know that the line passes through A and is parallel to b,

As we know r=a+λb where λ is a constant

r=i^+2j^+3k^+λ(3i^+2j^2k^)

Therefore, the equation of the line is r=i^+2j^+3k^+λ (3i^+2j^2k^)


5. Find the equation of the line in vector and in Cartesian form that passes through the point with positive vector 2i^j^4k^ and is in the direction i^+2j^k^.

Ans: We know that the line passes through the point with positive vector

Now, let us consider a=2i^j^+4k^ and b=i^+2j^k^

Now, line passes through point A and parallel to b, we get

r=2i^j^+4k^+λ (i^+2j^k^) 

Therefore, the equation of the line in vector form is r=2i^j^+4k^+λ (i^+2j^k^).

Now, we know

r=xi^yj^+zk^xi^yj^+zk^=( λ +2)i^+(λ -1)j^+(λ +4)k^

Therefore, the equation of the line in cartesian form will be x-21=y+12=z-4-1.


6. find the Cartesian equation of the line which passes through the point (-2,4,-5) and parallel to the line given by x+33=y-45=z+86.

Ans: We know that the line passes through point (-2,4,-5) and also parallel to  x+33=y-45=z+86

Now, as we can see the direction ratios of the line are 3,5 and 6.

As we know the required line is parallel to x+33=y-45=z+86

Therefore, the direction ratios will be 3k,5k and 6k

As we know that the equation of the line through the point and with direction ratio is shown in form x-x1a=y-y1b=z-z1c

Therefore, the equation of the line x+23=y-45=z+56=k.


seo images

 

7.The Cartesian equation of a line is x-53=y+47=z-62 Write its vector form.

Ans: As we can see the cartesian equation of the line, we can tell that the line is passing through (5,4,-6), and he direction ratios are 3,7 and 2.

Now, we got the position vector a=5i^4j^+6k^

From this we got the direction of the vector be b=3i^+7j^+2k^

Therefore, the vector form of the line will be r=5i^4j^+6k^+λ (3i^+7j^+2k^)


8. Find the angle between the following pair of lines

(i) r=2i^5j^+k^+λ(3i^+2j^+6k^). and r=7i^6k^+μ (i^+2j^+2k^)

(ii)r=3i^+j^2k^+λ (i^j^2k^) and r=2i^j^56k^+μ (3i^5j^4k^)

(i) Ans:  (i) let us consider the angle be  θ ,

As we know that the angle between the lines can be found by cos θ =|b1b2|b1||b2||

As the lines are parallel to b1=3i^+2j^+6k^ and b2=i^+2j^+2k^, we got

|b1|=32+22+62=7, |b2|=12+22+22=3 and b1b2=(3i^+2j^+6k^)(i^+2j^+2k^)=19

Therefore, the angle between the lines will be 

cos θ =19× 3

 θ =cos-11921

(ii) r=3i+j2k+λ(ij2k) and r=2ij56k+μ(3i5j4k) 

As the lines are parallel to the vectors b1=i^j^2k^ and b2=3i^5j^+4k^, we get

|b1|=12+(-1)2+(-2)2=6, |b2|=32+(-5)2+(-2)2=52 and b1b2=(i^j^2k^)(3i^5j^+4k^)=16

Therefore, the angle between them will be,

cos θ =16103

cos θ =853

 θ =cos-1853


9. Find the angle between the following pair of lines

(i)x-22=y-15=z+3-3 and x+2-1=y-48=z54

(ii)x2=y2=z1 and x-54=y-21=z-38

Ans: (i) Let us take b1 and b2be the vectors parallel to the lines, we get

b1=2i^+5j^3k^  and b2=i^+8j^+4k^

Now |b1|=22+52+(-3)2=38, |b2|=(-1)2+82+42=9 

And,

b1b2=(2i^+5j^3k^)(i^+8j^+4k^)

=2(-1)+5(8)+4(-3)

=26

We can find the angle by using cos θ =|b1b2|b1||b2||

Therefore, 

cos θ =26938

 θ =cos-1(26938)

Therefore, the angle will be cos-1(26938)


ii)

Ans:(ii) Similarly let us consider b1 and b2be the vectors parallel to lines, we get

b1=2i^+2j^+k^  and b2=4i^+j^+8k^

Now, |b1|=22+22+(1)2=3, |b2|=42+12+82=9 and 

b1b2=(2i^+2j^+1k^).(4i^+j^+8k^)

=2(4)+2(1)+1(8)

=18

As we know the angle can be found by cos θ =|b1b2|b1||b2||

Therefore,

cos θ =1827=23

 θ =cos-1(23)

Therefore, the angle is cos-1(23).


10.Find the values of p so the line 1-x3=7y-142p=z-32and7-7x3p=y-51=6-z2 are at right angles.

Ans: As we know that the correct form of the equation is as follows,

x-1-3=y-22p7=z-32andx-1-3p7=y-51=z-6-5

From this we get the direction ratios as 

a1=-3,b1=2p7,c1=2 and a2=-3p7,b2=1,c2=-5

As we know the lines are perpendicular, we get

a1a2+b1b2+c1c2=0

9p7+2p7=10

11p=70

p=7011

Therefore, the value of p is 7011.


11:show that the lines x-57=y+2-5=z1andx1=y2=z3 are perpendicular to each other.

Ans: From the given equation, we get the direction ratios as,

a1=7, b1=-5, c1=1, a2=1 ,b2=2 ,c2=3

As we know, if a1a2+b1b2+c1c2=0, the lines are perpendicular to each other

Now,

7(1)+(-5)2+1(3)7-10+3=0


seo images

Therefore, the lines are perpendicular.

 

12. find the shortest distance between the lines are r=i^+2j^+k^+λ (i^j^+k^) and r=2i^j^k^+μ (2\hat{i}+\hat{j}+2\hat{k}).

Ans: We have been given lines, r=i^+2j^+k^+λ(i^j^k^) and r=2i^j^k^+μ (2i^+j^+2k^)

As we know that the shortest distance can be found as d=|(b1 × b2)(a2-a1)|b1 × b2||

Now, from the given lines we get that

a1=i^+2j^+k^,

b1=i^j^k^

a2=2i^j^k^,

b2=2i^+j^+2k^

 a2a1=(2i^j^k^)-(i^+2j^+k^)

=i^3j^2k^,

b1 × b2=|i^j^k^1-32231|

b1 × b2=3i^+3k^.

Then, |b1 × b2|=(-3)2+32=32

Now, if we put all the values in theirs places, we get

d=|(3i^+3k^)(i^3j^2k^)32|d=|-3(1)+3(2)32|

d=|-932|d=322

Therefore, the shortest distance between the lines is 322 units.

 

13. Find the shortest distance between the lines

x+17=y+1-6=z+11 and x-31=y-5-2=z-71

Ans: As we know that the shortest distance can be found by,

d=|x2x1y2y1z2z1a1b1c1a2b2c2|(b1c2b2c1)2+(c1a2c2a1)2+(a1b2a2b1)2

Now, from the given lines we got that

x1=-1,y1=-1,z1=-1,a1=7,b1=-6,c1=1

x2=3,y2=5,z2=7,a2=1,b2=-2,c2=1

And,

|x2-x1y2-y1z2-z1a1b1c1a2b2c2|=|4687-611-21|

=4(-6+2)-6(1+7)+8(-14+6)

=-16-36-64

=116

And,

(b1c2-b2c1)2+(c1a2-c2a1)2+(a1b2-a2b1)2=(-6+2)2+(1+7)2+(-14+6)2

(b1c2-b2c1)2+(c1a2-c2a1)2+(a1b2-a2b1)2=229

Putting all the values, we get

d=-116229

d=-5829-582929

d=-5829|d|=229

Therefore, the distance between the lines is 229 units.

 

14. Find the shortest distance between the lines whose vector equations are r=i^+2j^+3k^+λ (i^3j^+2k^) and r=4i^+5j^+6k^+μ (2i^+3j^+k^)

Ans: We have been given lines r=i^+2j^+3k^+λ (i^3j^+2k^) and r=4i^+5j^+6k^+μ (2i^+3j^+k^)

As we know that the shortest distance between the lines can be found by,

d=|(b1 × b2)(a2-a1)|b1 × b2||

Now, from the given lines, we got

a1=i^+2j^+3k^,b1=i^3j^+2k^

a2=4i^+5j^+6k^,b2=2i^+3j^+k^

a2-a1=(4i^+5j^+6k^)-(i^+2j^+3k^)

=3i^+3j^+3k^

b1 × b2=|i^j^k^1-32231|

b1 × b2=9i^+3j^+9k^

|b1 × b2|=(-9)2+32+92=319

Now, putting all the values, we get

d=|9319|=319

Therefore, the shortest distance between the lines is 319 units.


15. Find the shortest distance between the lines whose vector equations are r=(1-t)i^+(t-2)j^+(3-2t)k^ and r=(s+1)i^+(2s-1)j^(2s+1)k^.

Ans: We have been given lines r=(1-t)i^+(t-2)j^+(3-2t)k^ and r=(s+1)i^+(2s-1)j^(2s+1)k^

r=i^2j^+3k^+t(i^+j^2k^) and r=i^j^+k^+s(i^+2j^2k^)

Now, the shortest distance can be found by,

d=|(b1 × b2)(a2-a1)|b1 × b2||

Now, from the given lines we got,

a1=i^2j^+3k^,b1=i^+j^2k^,

a2=i^j^k^,b2=i^+2j^2k^

a2-a1=(i^j^k^)-(i^+2j^+3k^)=j^4k^,

b1 × b2=|i^j^k^-11-212-2|

b1×b2=2i^4j^3k^,,

|b1 × b2|=(2)2+(4)2+(3)2=29

(b1×b2)×(a2×a1)=(2i^4j^3k^)(j^4k^)

=4+12

=8

Putting all the values, we get

d=|829|=829

Therefore, the shortest distance between the lines is 829 units.


Miscellaneous Exercise

1.  find the angle between the lines whose  direction ratios are a,b,c and b-c, c-a, a-b, .

Ans: As we know that, for any angle  θ , with direction cosines, a,b,c and b-c, c-a, a-b can be found by,

cos θ =|a(b-c)+b(b-c)+c(c-a)a2+b2+c2+(b-c)2+(c-a)2+(a-b)2|

Solving this we get, cos θ =0

 θ =cos-10

 θ =90

Therefore, the angle between the two lines will be 90.

 

2. Find the equation of a line parallel to  x-axis  line passing through the origin.

Ans: As it is given that the line is passing through the origin and is also parallel to x-axis is x-axis,

Now,

Let us consider a point on x-axis be A 

So, the coordinates of A will be (a,0,0)

Now, the direction ratios of OA will be,

(a-0)=a,0,0

The equation of OAx-0a=y-00=z-00x1=y0=z0=a

Therefore, the equation of the line passing through origin and parallel to x-axis is x1=y0=z0.

  

3.if the lines x-13k=y-11=z-6-5and x-1-3=y-22k=z-32 are perpendicular Find the value of k

Ans: From the given equation we can say that a1=-3,b1=2k,c1=2and a2=3k,b2=1,c2=-5.

We know that the two lines are perpendicular, if a1a2+b1b2+c1c2=0

-3(3k)+2k × 1+2(-5)=0

-9k+2k-10=0

7k=-10

k=-107

Therefore, the value of kis -107

 

4. Find the shortest distance between these two lines r=6i^+2j^+2k^+λ(2i^2j^+2k^)

r=4i^k^+μ(3i^2j^2k^)

Ans: According to the question, we need to find the distance between the lines,

r=6i^+2j^+2k^+λ(2i^2j^+2k^)

r=4i^k^+μ(3i^2j^2k^)

As we know we can find the shortest distance by,

d=|(b1×b2).(a1a2)|b1×b2||

Now, from the equation of lines we get

a1=6i^+2j^+2k^

b1=i^2j^+2k^

a2=4i^k^

b2=3i^2j^2k^

a20a1=(4i^k^)0(6i^+2j^+2k^)=10i^2j^3k^

b1 × b2=|i^j^k^1-223-2-2|=(4+4)i^(-2-6)j^+(-2+6)k^

(b1 × b2).(a20a1)=(8i^+8j^+4k^).(10i^2j^3k^)

=-80-16-12

=-108

Now, putting these values in d=|(b1×b2).(a1a2)|b1×b2||, we get

d=|-10812|=9

Therefore, the shortest distance between the above two lines is of 9 units.

 

5. Find the vector equation of the line passing through the points (1,2,-4) and perpendicular to the two lines x-83=y+19-16=z-107 and x-153=y-298=z-5-5

Ans: According to the question, we get that b=b1i^+b2j^+b3k^ and a=i^+2j^4k^

We know that the equation of the line passing through point and also parallel to vector, we get

r=i^+2j^4k^+λ (b1i^+b2j^+b3k^)(1)

Now, the equation of the two lines will be 

x-83=y+19-16=z-107(2)

x-153=y-298=z-5-5(3)

As we know that line (1) and (2) are perpendicular to each other, we get

3b1-16b2+7b3=0(4)

Also, we know that the line (1) and (3) are perpendicular to each other, we get

3b1+8b2-5b3=0(5)

Now, from equation (4) and (5) we get that

b1(-16)(-5)-8(7)=b27(3)-3(-5)=b33(8)-3(-16)

b124=b236=b372b12=b23=b36

Therefore, direction ratios of b are 2,3,6

Which means b=2i^+3j^+6k^

Putting b=2i^+3j^+6k^ in equation (1), we get

r=(i^+2j^4k^)λ (2i^+3j^+6k^)


Chapter 11 – Three-Dimensional Geometry  

11.1 Introduction

The CH 11 Maths Class 12 will take you on a revision tour about Analytical Geometry in two dimensions and the three-dimensional geometry and uses of Cartesian methods. This chapter will talk about and also revisit basic concepts of vectors and how to use vector algebra to three-dimensional geometry. You will also study the direction, e-direction cosines and direction ratios of a line joining two points. Also, the chapter will help you learn the equations of lines and planes in space under different conditions, the angle between two lines, two planes, a line and a plane, the shortest distance between two skew lines and distance of a point from a plane.


11.2 Direction Cosines and Direction Ratios of a Line

In Chapter 11 Class 12 Maths, you will learn and observe direction cosines and direction ratios of a line by an example in the beginning. Moving on, you will also understand how the line in space does not pass through the origin, and then, to find its direction cosines, a line is drawn through the origin and parallel to the given line.


Further, into the 3D Geometry Class 12 NCERT Solutions, you will study the relationship between the direction cosines of a line which will require you to observe the example provided in this section for better understanding. You will also study the direction cosines of a line passing through two points. This too will require you to observe the example provided to understand the concept. This section will be full of relatable examples of different types to help you follow all the ideas.


11.3 Equation of a Line Space

In the 3D Geometry Class 12 Solutions, you will study vector and cartesian equations of a line in space. You will explore how a line is uniquely determined if it passes through a given point and has given direction or it passes through two given points. Further, in this section, you will learn about the equation of a line through a given point and parallel to a given vector. You will study how to derive a cartesian form from vector form. You will be given some examples to understand the concept in detail. Then you will learn about the equation of lines, passing through two given points. You will learn how to derive cartesian form from vector form under this study. You will be given several more examples to understand this concept. 


11.4 Angle between Two Lines

In this NCERT Solutions Class 12 Maths Chapter 11, you will be given an example even before you start on with the concept of the angle between two lines in three-dimensional geometry. This section does have a lot of theoretical concepts in it, but you will have to look deeply into the examples provided in this section to grasp these concepts. 


11.5 Shortest Distance between Two Lines

In this 3 Dimensional Geometry Class 12, you will study and understand how if two lines in space are parallel, the shortest distance between them will be the perpendicular distance, that is, the length of the perpendicular drawn from a point on one line onto the other line. Further, you will also study how and why the shortest distance between two lines, which means we mean the join of a point in one line with one point on the other line so that the length of the segment obtained is the smallest.


You will also study how for skew lines, the line of the shortest distance will be perpendicular to both the lines. You will learn more about the distance between two skew lines and the distance between parallel lines. You will be given several examples related to these concepts, and these examples will help you understand.


11.6 Plane

In this Three Dimensional Geometry Class 12 NCERT PDF download, you will study planes and how a plane is uniquely determined if at all by the normal to the plane and its distance from the origin. You will understand the equation of a plane in a standard form, or it passes through a point and is perpendicular to a given direction, or even it passes through three given non-collinear points. You will further study the equation of a plane in normal form and then you will study the examples provided to understand the concept appropriately. Later, in this section, you will study the equation of the plane perpendicular to a given vector and passing through a given point. You will also study the equation of a plane passing through three non-collinear points. Again, you will go through the examples to understand the concept in and out and how to apply them. You will also learn about the intercept form of the equation of a plane, and you will be required to go through the examples before you start solving the exercise. You will also learn about a plane passing through the intersection of two given planes and some more examples to understand this.


11.7 Coplanarity of Two Lines  

In NCERT Solutions for Class 12 Maths Chapter 11 PDF Download, you will study the coplanarity of two lines in three-dimensional geometry. Again, this section does have a lot of theoretical concepts in it, but you will have to look deeply into the examples provided in this section to grasp these concepts. This is more of a concept which will help you understand the next section and its concepts.


11.8 Angle between Two Planes

In this Class 12 Maths Chapter 11 Solutions, at first, you will study a new definition which is, the angle between two planes is defined as the angle between their normal—followed by several examples for you to understand and hold on to the definition. This section helps you in better understanding of the questions so that it becomes easier for you to solve them.

 

11.9 Distance of a Point from a Plane

In this Class 12th Maths Chapter 11, like the previous section, you will study the distance of a point from a plane both from a vector form as well as cartesian form. You will be given examples for both of these forms. You will be given many examples for you to understand this concept. Without these concepts, it will get tricky for you to grasp these concepts.


11.10 Angle between a Line and a Plane

In this section, you will learn another definition which is, the angle between a line and a plane is the complement of the angle between the line and normal to the plane. You will be given a figure to understand this definition followed by few examples on how to apply this definition in three-dimensional geometry. You will study this definition and concept from vector form followed by another example to grasp this concept. 


Summary of Three Dimensional Geometry

  • Direction cosines of a line are the cosines of the angles made by the lime with the positive directions of the coordinate axes

  • If l,mn are the direction cosines of a line, then l2+m2+n21.

  • Direction cosines of a line joining two points P(x1,y1,z1) and Q(x2,y2,z2) are x1x1PQ,y1y1PQ,z2z1PQ.

where PQ=(x1x1)2+(y2y1)2+(z2z1)2

  • Direction ratios of a lime are the numbers which are proportional to the direction cosines of a line

  • If l,m,n are the direction cosines and ab,c are the direction ratios of a line then l=aa2+b2+c2;m=ba+b2+c2;n=ca2+b2+c2

  • Skew lines are lines in space which are neither parallel nor intersecting They lie in different planes

  • Angle between skew lines is the angle between two intersecting lines drawn from any point (preferably through the origin) parallel to each of the skew lines cosθ|l1+m1m2+n1n1|

  • Vector equation of a line that passes through the given point whose position vector is a˙ and parallel to a given vector b is f=a+2b.

  • Equation of a line through a point (x1,y1,z1) and having disction cosines l,mn is xx1l=yy1m=zz1n.

  • The vector equation of a line which passes through two points whose position vectors are a and b is f=d+z(bd).

  • Cartesian equation of a line that passes through two points (x1,y1,z1) and (x2,y2,z1) is xx1x1x1=yy1y2y1=zz1z2z1.

- If xx1l1=yy1m1=zz1n1 and xx1l1=yy1m2=zz1n1 are the equations of two lines, then the acute angle between the two limes is given by cosθ|k1+m1m2+n1n2|

  • Shortest distance between two skew lines is the line segment perpendicular to both the lines

  • Shortest distance between f=a1+2b1 and f=b1+μ2 is |(b1×b1)(a2a1)|b1×b2||.

  • Shortest distance between the lines: xx1a1=yy1b1=zz1c1 and xx1a1=yy2b1=zz1c2 is

|c1x1y2y1z2z1a1b1c1a1b1c2|(bc2b2c1)2+(ca2c2a1)2+(a1b2a2b1)2

  • Distance between parallel lines t=a¯+2b and t=a2+μb is |b×(daa1)|b||.

  • In the vector form, the equation of a plane which is at a distance d from the origin, and d is the unit vector normal to the plane through the origin is γk=d.

  • Equation of a plane which is at a distance of d from the origin and the direction cosines of the normal to the plane as l,m,n is ix+my+nz=d.

  • The equation of a plane through a point whose position vector is a and perpendicular to the vector N^ is (td¯)N^0.

  • Equation of a plane perpendicular to a given line with direction ratios A,B,C and passing through a given point (x1,y1,z1) is A(xx1)+B(yy1)+C(zz1)=0

  • Equation of a plane passing through three noncollinear points (x1,y1,z1)(x2,y1,z2) and (x2,y3,z1) is |xx1yy1zz1x2x1y2y1z2z1x1x1y2y1z2z1|=0.

  • Vectors equation of a plane that contains three noncollinear points having position vectors d,b and b˙ is (fa)[(bd)×(cd)]=0

  • Equation of a plane that cuts the coordinates axes at (a,0,0),(0,b,0) and (0,0,c) is xa+yb+zc=1.

  • Vector equation of a plane that passes through the intersection of planes rn1d1 and n2=d2 is r(n1+2n2)=d+2d1, where 2 is any nonzero constant

  • Cartesian equation of a plane that passes through the intersection of two given planes (Ax+B1y+C1zd1)

+2(A2x+B2y+C2zd2)=0

  • Two line t=a1+2b1 and t=b1+μb1 are coplanar if (a1a1)(b1×b1)=0.

  • In the cartesian form two lines xx1a1=yy1b1=zz1c1 and xx1a2=yy2b1=zz2c2 are coplanar if

|x1x1y2y1z2z1a1b1c1a1b1c2|=0.

  • In the vector form, if θ is the angle between the two planes, tn1d1 and tn2d1, then θcos1|n1n2||x1||n2|

  • The angle ϕ between the line fd+2b and the plane fb=d is sinϕ|bh|b||a^||.

  • The angle θ between the planes Ax+B1y+C1z+D=0 and A2x+B2y+C2z+D2=0 is given by cosθ=|AA1+BB1+CC2C1A12+B12+C12A12+B22+C22|

  • The distance of a point whose position vector is a from the plane γAd is |aay^| The distance from a point (x1,y1,z) to the plane Ax+By+Cz+D0 is |Ax1+By1+Cz+DA+B2+C2|


Overview of Deleted Syllabus for CBSE Class 12 Maths-Three Dimensional Geometry

Chapter

Dropped Topics

Three Dimensional Geometry


1.2.1 Relation between the Direction Cosines of a Line

11.3.2 Equation of a Line Passing through Two Given Points

11.6 Plane

11.7 Coplanarity of Two Lines

11.8 Angle between Two Planes

11.9 Distance of a Point from a Line

11.10 Angle between a Line and a Plane


Class 12 Maths Chapter 11 : Exercises Breakdown

Exercises

Number of Questions

Exercise 11.1

5 Questions & Solutions

Exercise 11.2

15 Questions & Solutions


Conclusion

In NCERT Solutions for chapter 11 maths class 12  by Vedantu, students explore the fundamental concepts of spatial geometry. The importance lies in understanding Cartesian coordinates, equations of lines and planes, and the angle between lines and planes. Focus on mastering the distance formula, direction cosines, and the cross product of vectors for accurate problem-solving. Previous year question papers typically include 8-10 questions, emphasizing the application of these concepts in real-world scenarios. By grasping these fundamentals, students lay a strong foundation for advanced topics in mathematics and its practical applications in various fields.


Other Study Material for CBSE Class 12  Maths  Chapter 11-Three Dimensional Geometry



NCERT Solutions for Class 12 Maths | Chapter-wise List

Given below are the chapter-wise NCERT 12 Maths solutions PDF. Using these chapter-wise class 12th maths ncert solutions, you can get clear understanding of the concepts from all chapters.




Explore these essential links for NCERT Class 12 Maths in Hindi, providing detailed solutions, explanations, and study resources to help students excel in their mathematics exams.




WhatsApp Banner

FAQs on NCERT Solutions for Class 12 Maths Chapter 11 Three Dimensional Geometry

1. What is 3D geometry?

3D geometry or three-dimensional geometry refers to the branch of Mathematics that deals with the study of points, lines, or solid shapes in three-dimensional coordinate systems. This branch of Mathematics will introduce the concept of z-coordinate along with the x and y coordinates for finding the exact location of a point in the 3D coordinate plane.


It is one of the most fundamental theories that have applications in higher Mathematics and other sciences. The concept of trigonometric ratios has an application in three-dimensional geometry. A sound understanding of 3D geometry will help you to understand the concepts of vector quantities as well.

2. What are the important topics covered in the chapter of 3D geometry in Class 12 Mathematics?

As students have an idea of two-planar coordinate systems, the concepts of 3D geometry happen to be new and more interesting for them. The important topics covered in this chapter are listed below for the reference of students. 

  • Direction Cosines and Direction Ratios of a Line.

  • The relation between the direction cosines of a Line.

  • Direction Cosines of a line passing through two points.

  • Equation of a line passing through a given point and parallel to a vector.

  • The shortest distance between two lines.

  • Distance between two skew lines.

  • Distance between parallel lines.

  • Equation of a plane passing through a given point and perpendicular to a given vector.

  • Equation of a plane passing through three non-collinear points.

  • Coplanarity of two lines.

  • The angle between a line and a plane.

3. Is 3D geometry a difficult chapter for Class 12?

No. 3D geometry is not a very difficult chapter for Class 12 students. As the concepts of z-plane and its applications are still somewhat new for them, the chapter of 3D geometry is a little time-consuming. For a better understanding of the topics in this chapter, it is important to refer to the respective graphical representations. Proper practice will help you get along with the concepts such as a measure of the angle and distance between skew lines, that between lines and planes, points and vectors, more conveniently.

4. Will the NCERT Solutions for Class 12 Maths Chapter 11 help score better in the 12th board Maths paper?

Yes, the NCERT Solutions for Class 12 Maths Chapter 11 will definitely help you to score better in the 12th board Maths paper. These solutions are highly recommended by teachers for their logical explanations. The in-house team of subject matter experts at Vedantu have come up with these stepwise solutions, to facilitate a better understanding among students. Every sum is worked out in a step by step manner following the latest CBSE guidelines for Class 12 Maths.


Therefore, you can also compare the solutions worked out by you with these NCERT solutions for 3D geometry, to verify the accuracy of your solutions. With a clear idea and proper practice of all the sums of 3D geometry, you will be able to score good marks from this section in your 12th board Maths paper.


You can download these solutions for free of cost on your tablets, smartphones, or laptops, and access it anytime, anywhere.

5. What is Chapter 11 of the Class 12 Maths textbook?

Chapter 11 of Class 12th Maths Textbook is titled Three Dimensional Geometry. The chapter also consists of certain vector equations that you studied in Chapter 10. The chapter includes cosines, directions ratios, the equation of lines, and how the vector form of the equation can be converted into the cartesian plane. You will learn how to find the angle and shortest distance between two lines. You will also learn about the angle that exists between two planes and the distance between planes and a point.  

6. Is Chapter 11 of the Class 12th Maths textbook difficult?

The title of the chapter is Three Dimensional Geometry. Maths is a subject that is interesting if you love to play with numbers. But it also can be a nightmare if your basics are not clear. Geometry is a fun section of the entire Maths universe. It is only difficult if your basics are not clear or are strong enough. You will also pay a price if you are too confident in the section and don’t give it sufficient time. So, all you have to do is understand the concept, practise various equations and questions. 

7. How can I study chapter 11 of the Class 12th Maths textbook?

The chapter belongs to the Geometry section and it is important not only for school exams but also for competitive exams. The first step should be to be familiar with the concepts of the chapter. Pay attention to the class and get your doubts clear at the earliest. Make your own notes, figures, and equations. Give ample time to practise what you have learned. Go through your notes again and again and check how strong your basics are by practising several questions of different types. 

8. Where can I find Class 12th Maths solutions for Chapter 11?

Before going online and surfing the internet trying to find solutions, practise solving the questions yourself. Copy-pasting the solution might help you with your homework and you sure will save some extra minutes to play games. But it will not bear you any fruit in the long run. Practise four to five questions daily. Find solutions online only if you want to check whether the answer is right or if you want to recheck the steps you have used to answer it. Solving the questions yourself will also improve your ability of critical thinking and help you score high marks in exams. Refer to Vedantu’s NCERT solutions for Class 12 Maths Chapter 11 for doubts. These solutions are available at free of cost on the Vedantu app and on the Vedantu website. 

9. Is Chapter 11 of the Class 12th textbook important for the board exams?

The marks obtained in your board exams may not represent the knowledge you have gained. However, it will also not be right to undermine the value and the respect that the board exams hold. Answers in Maths are either right or they are not. If you have practised and invested significantly in your geometry questions, you will be able to correctly answer the numerous questions that will be asked in the exam. It will not be wise for you to miss even one question that you know you could have solved. Prepare for the battle before the day of the battle. 

10. What are direction cosines in 3d class 12 Geometry?

Direction cosines are the cosines of the angles that a line makes with the positive x-axis, positive y-axis, and positive z-axis. They help in determining the direction of a line in three-dimensional space.

11. How do you find the equation of a plane in Three-Dimensional Geometry?

The equation of a plane in three-dimensional space can be found using various methods, such as given a point and a normal vector, given three non-collinear points, or given intercepts on the axes.​

12. How do you find the shortest distance between two skew lines in 3 dimensional geometry class 12 ?

The shortest distance between two skew lines can be found by taking the cross product of their direction vectors and dividing it by the magnitude of the cross product of the direction vectors of one of the lines.

13. What is the significance of three dimensional geometry class 12 in real life?

Three-Dimensional Geometry plays a crucial role in various fields such as architecture, engineering, computer graphics, and physics. It helps in designing structures, analyzing spatial relationships, and simulating real-world scenarios.

14. How does 3d geometry class 12 relate to vectors?

Three-Dimensional Geometry is closely related to vectors, as vectors can represent directed line segments in three-dimensional space. Concepts such as direction cosines, equations of lines and planes, and angle between lines and planes are often expressed using vector notation.