NCERT Solutions for Class 12 Maths Chapter 2 Miscellaneous Exercise - Free PDF Download
NCERT Solutions for Class 12 Maths Chapter 2 Inverse Trigonometric Functions includes solutions to all Miscellaneous Exercise problems. Inverse Trigonometric Functions Class 12 NCERT Solutions Miscellaneous Exercises are based on the ideas presented in Maths Chapter 2. This activity is crucial for both the CBSE Board examinations and competitive tests. To perform well on the board exam, download the NCERT Solutions for Class 12 Maths Inverse Trigonometric Functions Miscellaneous Exercise in PDF format and practice them offline.
Access NCERT Class 12 Maths Chapter 2 Inverse Trigonometric Functions Miscellaneous Exercise
Miscellaneous Solutions
1. Evaluate \[\text{co}{{\text{s}}^{\text{-1}}}\left( \text{cos}\dfrac{\text{13 }\!\!\pi\!\!\text{ }}{\text{6}} \right)\]
Ans: Consider $\text{cos}\dfrac{\text{13 }\!\!\pi\!\!\text{ }}{\text{6}}$
$ \text{cos}\dfrac{\text{13 }\!\!\pi\!\!\text{ }}{\text{6}} $
$ \text{=cos}\left( \text{2 }\!\!\pi\!\!\text{ +}\dfrac{\text{ }\!\!\pi\!\!\text{ }}{\text{6}} \right) $
$ \text{=cos}\left( \dfrac{\text{ }\!\!\pi\!\!\text{ }}{\text{6}} \right) $
Further solving,
$ \text{co}{{\text{s}}^{\text{-1}}}\left( \text{cos}\dfrac{\text{13 }\!\!\pi\!\!\text{ }}{\text{6}} \right) $
$ \text{=co}{{\text{s}}^{\text{-1}}}\left( \text{cos}\left( \dfrac{\text{ }\!\!\pi\!\!\text{ }}{\text{6}} \right) \right) $
$\text{=}\dfrac{\text{ }\!\!\pi\!\!\text{ }}{\text{6}} $
Therefore, $\text{co}{{\text{s}}^{\text{-1}}}\left( \text{cos}\dfrac{\text{13 }\!\!\pi\!\!\text{ }}{\text{6}} \right)\text{=}\dfrac{\text{ }\!\!\pi\!\!\text{ }}{\text{6}}$
2. Evaluate \[\text{ta}{{\text{n}}^{\text{-1}}}\left( \text{tan}\dfrac{\text{7 }\!\!\pi\!\!\text{ }}{\text{6}} \right)\]
Ans: Consider $\text{tan}\dfrac{\text{7 }\!\!\pi\!\!\text{ }}{\text{6}}$
$ \text{tan}\dfrac{\text{7 }\!\!\pi\!\!\text{ }}{\text{6}} $
$ \text{=tan}\left( \text{ }\!\!\pi\!\!\text{ +}\dfrac{\text{ }\!\!\pi\!\!\text{ }}{\text{6}} \right) $
$ \text{=tan}\left( \dfrac{\text{ }\!\!\pi\!\!\text{ }}{\text{6}} \right) $
Further solving,
$ \text{ta}{{\text{n}}^{\text{-1}}}\left( \text{tan}\dfrac{\text{7 }\!\!\pi\!\!\text{ }}{\text{6}} \right) $
$ \text{=ta}{{\text{n}}^{\text{-1}}}\left( \text{tan}\left( \dfrac{\text{ }\!\!\pi\!\!\text{ }}{\text{6}} \right) \right) $
$ \text{=}\dfrac{\text{ }\!\!\pi\!\!\text{ }}{\text{6}} $
Therefore, $\text{ta}{{\text{n}}^{\text{-1}}}\left( \text{tan}\dfrac{\text{7 }\!\!\pi\!\!\text{ }}{\text{6}} \right)\text{=}\dfrac{\text{ }\!\!\pi\!\!\text{ }}{\text{6}}$
3. Using inverse trigonometric identities, prove that $\text{2si}{{\text{n}}^{\text{-1}}}\dfrac{\text{3}}{\text{5}}\text{=ta}{{\text{n}}^{\text{-1}}}\dfrac{\text{24}}{\text{7}}$
Ans: Assuming \[\text{2si}{{\text{n}}^{\text{-1}}}\dfrac{\text{3}}{\text{5}}\text{= }\!\!\alpha\!\!\text{ }\] ----(1)
$ \text{sin}\dfrac{\text{ }\!\!\alpha\!\!\text{ }}{\text{2}}\text{=}\dfrac{\text{3}}{\text{5}} $
$ \text{cos}\dfrac{\text{ }\!\!\alpha\!\!\text{ }}{\text{2}}\text{=}\sqrt{\text{1-}{{\left( \dfrac{\text{3}}{\text{5}} \right)}^{\text{2}}}} $
$ \text{cos}\dfrac{\text{ }\!\!\alpha\!\!\text{ }}{\text{2}}\text{=}\dfrac{\text{4}}{\text{5}} $
Hence,
$ \text{sin }\!\!\alpha\!\!\text{ =2}\left( \dfrac{\text{3}}{\text{5}} \right)\left( \dfrac{\text{4}}{\text{5}} \right) $
$ \text{sin }\!\!\alpha\!\!\text{ =}\dfrac{\text{24}}{\text{25}} $
$ \text{cos }\!\!\alpha\!\!\text{ =}\sqrt{\text{1-}{{\left( \dfrac{\text{24}}{\text{25}} \right)}^{\text{2}}}} $
$ \text{cos }\!\!\alpha\!\!\text{ =}\dfrac{\text{7}}{\text{25}} $
Therefore,
\[\text{tan }\!\!\alpha\!\!\text{ =}\dfrac{\text{24}}{\text{7}}\]
\[\text{ }\!\!\alpha\!\!\text{ =ta}{{\text{n}}^{\text{-1}}}\left( \dfrac{\text{24}}{\text{7}} \right)\]
From Equation (1), it is proved that
\[\text{2si}{{\text{n}}^{\text{-1}}}\dfrac{\text{3}}{\text{5}}\text{=ta}{{\text{n}}^{\text{-1}}}\left( \dfrac{\text{24}}{\text{7}} \right)\]
4. Using inverse trigonometric identities, prove that $\text{si}{{\text{n}}^{\text{-1}}}\dfrac{\text{8}}{\text{17}}\text{+si}{{\text{n}}^{\text{-1}}}\dfrac{\text{3}}{\text{5}}\text{=ta}{{\text{n}}^{\text{-1}}}\dfrac{\text{77}}{\text{36}}$
Ans: Assuming \[\text{si}{{\text{n}}^{\text{-1}}}\dfrac{\text{8}}{\text{17}}\text{= }\!\!\alpha\!\!\text{ }\]
$\text{sin }\!\!\alpha\!\!\text{ =}\dfrac{\text{8}}{\text{17}} $
$ \text{cos }\!\!\alpha\!\!\text{ =}\sqrt{\text{1-}{{\left( \dfrac{\text{8}}{\text{17}} \right)}^{\text{2}}}} $
$ \text{cos }\!\!\alpha\!\!\text{ =}\dfrac{\text{15}}{\text{17}} $
Hence,
Therefore,
$ \text{tan }\!\!\alpha\!\!\text{ =}\dfrac{\text{8}}{\text{15}} $
$ \text{ }\!\!\alpha\!\!\text{ =ta}{{\text{n}}^{\text{-1}}}\left( \dfrac{\text{8}}{\text{15}} \right) $
\[\text{si}{{\text{n}}^{\text{-1}}}\left( \dfrac{\text{8}}{\text{17}} \right)\text{=ta}{{\text{n}}^{\text{-1}}}\left( \dfrac{\text{8}}{\text{15}} \right)\] ----(1)
Assuming that \[\text{si}{{\text{n}}^{\text{-1}}}\frac{\text{3}}{\text{5}}\text{= }\!\!\beta\!\!\text{ }\]
$ \text{sin }\!\!\beta\!\!\text{ =}\dfrac{\text{3}}{\text{5}} $
$ \text{cos }\!\!\beta\!\!\text{ =}\sqrt{\text{1-}{{\left( \dfrac{\text{3}}{\text{5}} \right)}^{\text{2}}}} $
$\text{cos }\!\!\beta\!\!\text{ =}\dfrac{\text{4}}{\text{5}} $
Therefore,
$ \text{tan }\!\!\beta\!\!\text{ =}\dfrac{\text{3}}{\text{4}} $
$ \text{ }\!\!\beta\!\!\text{ =ta}{{\text{n}}^{\text{-1}}}\left( \dfrac{\text{3}}{\text{4}} \right) $
\[\text{si}{{\text{n}}^{\text{-1}}}\left( \dfrac{\text{3}}{\text{5}} \right)\text{=ta}{{\text{n}}^{\text{-1}}}\left( \dfrac{\text{3}}{\text{4}} \right)\] ----(2)
Consider
\[\text{si}{{\text{n}}^{\text{-1}}}\left( \dfrac{\text{8}}{\text{17}} \right)\text{+si}{{\text{n}}^{\text{-1}}}\left( \dfrac{\text{3}}{\text{5}} \right)\]
From Equations (1) and (2),
$ \text{si}{{\text{n}}^{\text{-1}}}\left( \dfrac{\text{8}}{\text{17}} \right)\text{+si}{{\text{n}}^{\text{-1}}}\left( \dfrac{\text{3}}{\text{5}} \right) $
$ \text{=ta}{{\text{n}}^{\text{-1}}}\left( \dfrac{\text{8}}{\text{15}} \right)\text{+ta}{{\text{n}}^{\text{-1}}}\left( \dfrac{\text{3}}{\text{4}} \right) $
$ \text{=ta}{{\text{n}}^{\text{-1}}}\left( \dfrac{\dfrac{\text{8}}{\text{15}}\text{+}\dfrac{\text{3}}{\text{4}}}{\text{1-}\left( \dfrac{\text{8}}{\text{15}}\text{ }\!\!\times\!\!\text{ }\dfrac{\text{3}}{\text{4}} \right)} \right) $
$ \text{=ta}{{\text{n}}^{\text{-1}}}\left( \dfrac{\text{77}}{\text{36}} \right) $
Hence, it is proved that \[\text{si}{{\text{n}}^{\text{-1}}}\dfrac{\text{8}}{\text{17}}\text{+si}{{\text{n}}^{\text{-1}}}\dfrac{\text{3}}{\text{5}}\text{=ta}{{\text{n}}^{\text{-1}}}\dfrac{\text{77}}{\text{36}}\]
5. Using inverse trigonometric identities, prove that $\text{co}{{\text{s}}^{\text{-1}}}\dfrac{\text{4}}{\text{5}}\text{+co}{{\text{s}}^{\text{-1}}}\dfrac{\text{12}}{\text{13}}\text{=co}{{\text{s}}^{\text{-1}}}\dfrac{\text{33}}{\text{65}}$
Ans: Assuming \[\text{co}{{\text{s}}^{\text{-1}}}\dfrac{\text{4}}{\text{5}}\text{= }\!\!\alpha\!\!\text{ }\]
$\text{cos }\!\!\alpha\!\!\text{ =}\dfrac{\text{4}}{\text{5}} $
$ \text{sin }\!\!\alpha\!\!\text{ =}\sqrt{\text{1-}{{\left( \dfrac{\text{4}}{\text{5}} \right)}^{\text{2}}}} $
$ \text{sin }\!\!\alpha\!\!\text{ =}\dfrac{\text{3}}{\text{5}} $
Therefore,
$ \text{tan }\!\!\alpha\!\!\text{ =}\dfrac{\text{3}}{\text{4}} $
$ \text{ }\!\!\alpha\!\!\text{ =ta}{{\text{n}}^{\text{-1}}}\left( \dfrac{\text{3}}{\text{4}} \right) $
\[\text{co}{{\text{s}}^{\text{-1}}}\left( \dfrac{\text{4}}{\text{5}} \right)\text{=ta}{{\text{n}}^{\text{-1}}}\left( \dfrac{\text{3}}{\text{4}} \right)\] ----(1)
Assuming that \[\text{co}{{\text{s}}^{\text{-1}}}\dfrac{\text{12}}{\text{13}}\text{= }\!\!\beta\!\!\text{ }\]
$ \text{cos }\!\!\beta\!\!\text{ =}\dfrac{\text{12}}{\text{13}} $
$ \text{sin }\!\!\beta\!\!\text{ =}\sqrt{\text{1-}{{\left( \dfrac{\text{12}}{\text{13}} \right)}^{\text{2}}}} $
$ \text{sin }\!\!\beta\!\!\text{ =}\dfrac{\text{5}}{\text{13}} $
Therefore,
$ \text{tan }\!\!\beta\!\!\text{ =}\dfrac{\text{5}}{\text{12}} $
$ \text{ }\!\!\beta\!\!\text{ =ta}{{\text{n}}^{\text{-1}}}\left( \dfrac{\text{5}}{\text{12}} \right) $
\[\text{co}{{\text{s}}^{\text{-1}}}\left( \dfrac{\text{12}}{\text{13}} \right)\text{=ta}{{\text{n}}^{\text{-1}}}\left( \dfrac{\text{5}}{\text{12}} \right)\] ----(2)
Consider
\[\text{co}{{\text{s}}^{\text{-1}}}\left( \dfrac{\text{4}}{\text{5}} \right)\text{+co}{{\text{s}}^{\text{-1}}}\left( \dfrac{\text{12}}{\text{13}} \right)\]
From Equations (1) and (2),
$\text{co}{{\text{s}}^{\text{-1}}}\left( \dfrac{\text{4}}{\text{5}} \right)\text{+co}{{\text{s}}^{\text{-1}}}\left( \dfrac{\text{12}}{\text{13}} \right) $
$ \text{=ta}{{\text{n}}^{\text{-1}}}\left( \dfrac{\text{3}}{\text{4}} \right)\text{+ta}{{\text{n}}^{\text{-1}}}\left( \dfrac{\text{5}}{\text{12}} \right) $
$ \text{=ta}{{\text{n}}^{\text{-1}}}\left( \dfrac{\dfrac{\text{3}}{\text{4}}\text{+}\dfrac{\text{5}}{\text{12}}}{\text{1-}\left( \dfrac{\text{3}}{\text{4}}\text{ }\!\!\times\!\!\text{ }\dfrac{\text{5}}{\text{12}} \right)} \right) $
$ \text{=ta}{{\text{n}}^{\text{-1}}}\left( \dfrac{\text{56}}{\text{33}} \right) $
$ \text{=co}{{\text{s}}^{\text{-1}}}\left( \dfrac{\text{33}}{\text{65}} \right) $
Hence, it is proved that \[\text{co}{{\text{s}}^{\text{-1}}}\dfrac{\text{4}}{\text{5}}\text{+co}{{\text{s}}^{\text{-1}}}\dfrac{\text{12}}{\text{13}}\text{=co}{{\text{s}}^{\text{-1}}}\dfrac{\text{33}}{\text{65}}\]
6. Using inverse trigonometric identities, prove that $\text{co}{{\text{s}}^{\text{-1}}}\dfrac{\text{12}}{\text{13}}\text{+si}{{\text{n}}^{\text{-1}}}\dfrac{\text{3}}{\text{5}}\text{=si}{{\text{n}}^{\text{-1}}}\dfrac{\text{56}}{\text{65}}$
Ans: Assuming \[\text{co}{{\text{s}}^{\text{-1}}}\dfrac{\text{12}}{\text{13}}\text{= }\!\!\alpha\!\!\text{ }\]
$ \text{cos }\!\!\alpha\!\!\text{ =}\dfrac{\text{12}}{\text{13}} $
$ \text{sin }\!\!\alpha\!\!\text{ =}\sqrt{\text{1-}{{\left( \dfrac{\text{12}}{\text{13}} \right)}^{\text{2}}}} $
$\text{sin }\!\!\alpha\!\!\text{ =}\frac{\text{5}}{\text{13}} $
Therefore,
$ \text{tan }\!\!\alpha\!\!\text{ =}\frac{\text{5}}{\text{12}} $
$ \text{ }\!\!\alpha\!\!\text{ =ta}{{\text{n}}^{\text{-1}}}\left( \frac{\text{5}}{\text{12}} \right) $
\[\text{co}{{\text{s}}^{\text{-1}}}\left( \frac{\text{12}}{\text{13}} \right)\text{=ta}{{\text{n}}^{\text{-1}}}\left( \frac{\text{5}}{\text{12}} \right)\] ----(1)
Assuming that \[\text{si}{{\text{n}}^{\text{-1}}}\frac{\text{3}}{\text{5}}\text{= }\!\!\beta\!\!\text{ }\]
$\text{sin }\!\!\beta\!\!\text{ =}\frac{\text{3}}{\text{5}} $
$ \text{cos }\!\!\beta\!\!\text{ =}\sqrt{\text{1-}{{\left( \frac{\text{3}}{\text{5}} \right)}^{\text{2}}}} $
$ \text{cos }\!\!\beta\!\!\text{ =}\frac{\text{4}}{\text{5}} $
Therefore,
$\text{tan }\!\!\beta\!\!\text{ =}\frac{\text{3}}{\text{4}} $
$ \text{ }\!\!\beta\!\!\text{ =ta}{{\text{n}}^{\text{-1}}}\left( \frac{\text{3}}{\text{4}} \right) $
\[\text{si}{{\text{n}}^{\text{-1}}}\left( \frac{\text{3}}{\text{5}} \right)\text{=ta}{{\text{n}}^{\text{-1}}}\left( \frac{\text{3}}{\text{4}} \right)\] ----(2)
Consider
\[\text{co}{{\text{s}}^{\text{-1}}}\left( \frac{\text{12}}{\text{13}} \right)\text{+si}{{\text{n}}^{\text{-1}}}\left( \frac{\text{3}}{\text{5}} \right)\]
From Equations (1) and (2),
$ \text{co}{{\text{s}}^{\text{-1}}}\left( \frac{\text{12}}{\text{13}} \right)\text{+si}{{\text{n}}^{\text{-1}}}\left( \frac{\text{3}}{\text{5}} \right) $
$ \text{=ta}{{\text{n}}^{\text{-1}}}\left( \frac{\text{5}}{\text{12}} \right)\text{+ta}{{\text{n}}^{\text{-1}}}\left( \frac{\text{3}}{\text{4}} \right) $
$ \text{=ta}{{\text{n}}^{\text{-1}}}\left( \frac{\frac{\text{3}}{\text{4}}\text{+}\frac{\text{5}}{\text{12}}}{\text{1-}\left( \frac{\text{3}}{\text{4}}\text{ }\!\!\times\!\!\text{ }\frac{\text{5}}{\text{12}} \right)} \right) $
$ \text{=ta}{{\text{n}}^{\text{-1}}}\left( \frac{\text{56}}{\text{33}} \right) $
$ \text{=si}{{\text{n}}^{\text{-1}}}\left( \frac{\text{56}}{\text{65}} \right) $
Hence, it is proved that \[\text{co}{{\text{s}}^{\text{-1}}}\frac{\text{12}}{\text{13}}\text{+si}{{\text{n}}^{\text{-1}}}\frac{\text{3}}{\text{5}}\text{=si}{{\text{n}}^{\text{-1}}}\frac{\text{56}}{\text{65}}\]
7. Using inverse trigonometric identities, prove that $\text{ta}{{\text{n}}^{\text{-1}}}\frac{\text{63}}{\text{16}}\text{=si}{{\text{n}}^{\text{-1}}}\frac{\text{5}}{\text{13}}\text{+co}{{\text{s}}^{\text{-1}}}\frac{\text{3}}{\text{5}}$
Ans: Assuming \[\text{si}{{\text{n}}^{\text{-1}}}\frac{\text{5}}{\text{13}}\text{= }\!\!\alpha\!\!\text{ }\]
$ \text{sin }\!\!\alpha\!\!\text{ =}\frac{\text{5}}{\text{13}} $
$ \text{cos }\!\!\alpha\!\!\text{ =}\sqrt{\text{1-}{{\left( \frac{\text{5}}{\text{13}} \right)}^{\text{2}}}} $
$ \text{cos }\!\!\alpha\!\!\text{ =}\frac{\text{12}}{\text{13}} $
Therefore,
$ \text{tan }\!\!\alpha\!\!\text{ =}\frac{\text{5}}{\text{12}} $
$ \text{ }\!\!\alpha\!\!\text{ =ta}{{\text{n}}^{\text{-1}}}\left( \frac{\text{5}}{\text{12}} \right) $
\[\text{si}{{\text{n}}^{\text{-1}}}\left( \frac{\text{5}}{\text{13}} \right)\text{=ta}{{\text{n}}^{\text{-1}}}\left( \frac{\text{5}}{\text{12}} \right)\] ----(1)
Assuming that \[\text{co}{{\text{s}}^{\text{-1}}}\frac{\text{3}}{\text{5}}\text{= }\!\!\beta\!\!\text{ }\]
$ \text{cos }\!\!\beta\!\!\text{ =}\frac{\text{3}}{\text{5}} $
$ \text{sin }\!\!\beta\!\!\text{ =}\sqrt{\text{1-}{{\left( \frac{\text{3}}{\text{5}} \right)}^{\text{2}}}} $
$ \text{sin }\!\!\beta\!\!\text{ =}\frac{\text{4}}{\text{5}} $
Therefore,
$\text{tan }\!\!\beta\!\!\text{ =}\frac{\text{4}}{\text{3}} $
$\text{ }\!\!\beta\!\!\text{ =ta}{{\text{n}}^{\text{-1}}}\left( \frac{\text{4}}{\text{3}} \right) $
\[\text{co}{{\text{s}}^{\text{-1}}}\left( \frac{\text{3}}{\text{5}} \right)\text{=ta}{{\text{n}}^{\text{-1}}}\left( \frac{\text{4}}{\text{3}} \right)\] ----(2)
Consider
\[\text{si}{{\text{n}}^{\text{-1}}}\left( \frac{\text{5}}{\text{13}} \right)\text{+co}{{\text{s}}^{\text{-1}}}\left( \frac{\text{3}}{\text{5}} \right)\]
From Equations (1) and (2),
$ \text{si}{{\text{n}}^{\text{-1}}}\left( \frac{\text{5}}{\text{13}} \right)\text{+co}{{\text{s}}^{\text{-1}}}\left( \frac{\text{3}}{\text{5}} \right) $
$ \text{=ta}{{\text{n}}^{\text{-1}}}\left( \frac{\text{5}}{\text{12}} \right)\text{+ta}{{\text{n}}^{\text{-1}}}\left( \frac{\text{4}}{\text{3}} \right) $
$ \text{=ta}{{\text{n}}^{\text{-1}}}\left( \frac{\frac{\text{4}}{\text{3}}\text{+}\frac{\text{5}}{\text{12}}}{\text{1-}\left( \frac{\text{4}}{\text{3}}\text{ }\!\!\times\!\!\text{ }\frac{\text{5}}{\text{12}} \right)} \right) $
$ \text{=ta}{{\text{n}}^{\text{-1}}}\left( \frac{\text{63}}{\text{16}} \right) $
Hence, it is proved that \[\text{ta}{{\text{n}}^{\text{-1}}}\frac{\text{63}}{\text{16}}\text{=si}{{\text{n}}^{\text{-1}}}\frac{\text{5}}{\text{13}}\text{+co}{{\text{s}}^{\text{-1}}}\frac{\text{3}}{\text{5}}\]
8. Using inverse trigonometric identities, prove that ${{\tan }^{-1}}\sqrt{x}=\frac{1}{2}{{\cos }^{-1}}\left( \frac{1-x}{1+x} \right),x\in \left[ 0,1 \right]$
Ans: Assuming \[\text{x=ta}{{\text{n}}^{\text{2}}}\text{ }\!\!\alpha\!\!\text{ }\]
Consider
$\text{ta}{{\text{n}}^{\text{-1}}}\sqrt{\text{x}} $
$ \text{=ta}{{\text{n}}^{\text{-1}}}\sqrt{\text{ta}{{\text{n}}^{\text{2}}}\text{ }\!\!\alpha\!\!\text{ }} $
$ \text{=ta}{{\text{n}}^{\text{-1}}}\text{tan }\!\!\alpha\!\!\text{ } $
$\text{= }\!\!\alpha\!\!\text{ } $
\[\text{ta}{{\text{n}}^{\text{-1}}}\sqrt{\text{x}}\text{= }\!\!\alpha\!\!\text{ }\]----(1)
Consider
$\frac{\text{1}}{\text{2}}\text{co}{{\text{s}}^{\text{-1}}}\left( \frac{\text{1-x}}{\text{1+x}} \right) $
$ \text{=}\frac{\text{1}}{\text{2}}\text{co}{{\text{s}}^{\text{-1}}}\left( \frac{\text{1-ta}{{\text{n}}^{\text{2}}}\text{ }\!\!\alpha\!\!\text{ }}{\text{1+ta}{{\text{n}}^{\text{2}}}\text{ }\!\!\alpha\!\!\text{ }} \right) $
$ \text{=}\frac{\text{1}}{\text{2}}\text{co}{{\text{s}}^{\text{-1}}}\text{cos2 }\!\!\alpha\!\!\text{ } $
$ \text{= }\!\!\alpha\!\!\text{ } $
\[\frac{\text{1}}{\text{2}}\text{co}{{\text{s}}^{\text{-1}}}\left( \frac{\text{1-x}}{\text{1+x}} \right)\text{= }\!\!\alpha\!\!\text{ }\] -----(2)
From Equations (1) and (2),
It is proved that \[\text{ta}{{\text{n}}^{\text{-1}}}\sqrt{\text{x}}\text{=}\frac{\text{1}}{\text{2}}\text{co}{{\text{s}}^{\text{-1}}}\left( \frac{\text{1-x}}{\text{1+x}} \right)\]
9. Using inverse trigonometric identities, prove that ${{\cot }^{-1}}\left( \frac{\sqrt{1+\sin x}+\sqrt{1-\sin x}}{\sqrt{1+\sin x}-\sqrt{1-\sin x}} \right)=\frac{x}{2},x\in \left( 0,\frac{\pi }{4} \right)$
Ans: We know that
$\sqrt{\text{1+sin x}}\text{=cos}\frac{\text{x}}{\text{2}}\text{+sin}\frac{\text{x}}{\text{2}} $
$ \sqrt{\text{1-sin x}}\text{=cos}\frac{\text{x}}{\text{2}}\text{-sin}\frac{\text{x}}{\text{2}} $
Consider
$\text{co}{{\text{t}}^{\text{-1}}}\left( \frac{\sqrt{\text{1+sin x}}\text{+}\sqrt{\text{1-sin x}}}{\sqrt{\text{1+sin x}}\text{-}\sqrt{\text{1-sin x}}} \right) $
$ \text{=co}{{\text{t}}^{\text{-1}}}\left( \frac{\left( \text{cos}\frac{\text{x}}{\text{2}}\text{+sin}\frac{\text{x}}{\text{2}} \right)\text{+}\left( \text{cos}\frac{\text{x}}{\text{2}}\text{-sin}\frac{\text{x}}{\text{2}} \right)}{\left( \text{cos}\frac{\text{x}}{\text{2}}\text{+sin}\frac{\text{x}}{\text{2}} \right)\text{-}\left( \text{cos}\frac{\text{x}}{\text{2}}\text{-sin}\frac{\text{x}}{\text{2}} \right)} \right) $
$ \text{co}{{\text{t}}^{\text{-1}}}\left( \text{cot}\dfrac{\text{x}}{\text{2}} \right) $
$ \text{=}\dfrac{\text{x}}{\text{2}} $
It is proved that \[\text{co}{{\text{t}}^{\text{-1}}}\left( \dfrac{\sqrt{\text{1+sin x}}\text{+}\sqrt{\text{1-sin x}}}{\sqrt{\text{1+sin x}}\text{-}\sqrt{\text{1-sin x}}} \right)\text{=}\dfrac{\text{x}}{\text{2}}\]
10. Using inverse trigonometric identities, prove that ${{\tan }^{-1}}\left( \dfrac{\sqrt{1+x}-\sqrt{1-x}}{\sqrt{1+x}+\sqrt{1-x}} \right)=\dfrac{\pi }{4}-\dfrac{1}{2}{{\cos }^{-1}}x,-\dfrac{1}{\sqrt{2}}\le x\le 1$
Ans: Assuming
$\text{x=cos2 }\!\!\beta\!\!\text{ } $
$ \sqrt{\text{1+x}} $
$ \text{=}\sqrt{\text{1+cos2 }\!\!\beta\!\!\text{ }} $
$ \text{=}\sqrt{\text{2}}\text{cos }\!\!\beta\!\!\text{ } $
$ \sqrt{\text{1-x}} $
$ \text{=}\sqrt{\text{1-cos2 }\!\!\beta\!\!\text{ }} $
$ \text{=}\sqrt{\text{2}}\text{sin }\!\!\beta\!\!\text{ } $
Consider
$\text{ta}{{\text{n}}^{\text{-1}}}\left( \dfrac{\sqrt{\text{1+x}}\text{-}\sqrt{\text{1-x}}}{\sqrt{\text{1+x}}\text{+}\sqrt{\text{1-x}}} \right) $
$\text{=ta}{{\text{n}}^{\text{-1}}}\left( \dfrac{\sqrt{\text{2}}\text{cos }\!\!\beta\!\!\text{ -}\sqrt{\text{2}}\text{sin }\!\!\beta\!\!\text{ }}{\sqrt{\text{2}}\text{cos }\!\!\beta\!\!\text{ +}\sqrt{\text{2}}\text{sin }\!\!\beta\!\!\text{ }} \right) $
$ \text{=ta}{{\text{n}}^{\text{-1}}}\left( \dfrac{\text{1-tan }\!\!\beta\!\!\text{ }}{\text{1+tan }\!\!\beta\!\!\text{ }} \right) $
$ \text{=ta}{{\text{n}}^{\text{-1}}}\left( \text{tan}\left( \dfrac{\text{ }\!\!\pi\!\!\text{ }}{\text{4}}\text{- }\!\!\beta\!\!\text{ } \right) \right) $
$\text{=}\dfrac{\text{ }\!\!\pi\!\!\text{ }}{\text{4}}\text{- }\!\!\beta\!\!\text{ } $
$ \text{=}\dfrac{\text{ }\!\!\pi\!\!\text{ }}{\text{4}}\text{-}\dfrac{\text{1}}{\text{2}}\text{co}{{\text{s}}^{\text{-1}}}\text{x} $
It is proved that \[\text{ta}{{\text{n}}^{\text{-1}}}\left( \dfrac{\sqrt{\text{1+x}}\text{-}\sqrt{\text{1-x}}}{\sqrt{\text{1+x}}\text{+}\sqrt{\text{1-x}}} \right)\text{=}\dfrac{\text{ }\!\!\pi\!\!\text{ }}{\text{4}}\text{-}\dfrac{\text{1}}{\text{2}}\text{co}{{\text{s}}^{\text{-1}}}\text{x}\]
11. For what value of $x$ does the equation $\text{2ta}{{\text{n}}^{\text{-1}}}\left( \text{cos x} \right)\text{=ta}{{\text{n}}^{\text{-1}}}\left( \text{2cosecx} \right)$ satisfy?
Ans: Consider \[\text{2ta}{{\text{n}}^{\text{-1}}}\left( \text{cos x} \right)\text{=ta}{{\text{n}}^{\text{-1}}}\left( \text{2cosecx} \right)\]
$ \text{ta}{{\text{n}}^{\text{-1}}}\left( \dfrac{\text{2cos x}}{\text{1-co}{{\text{s}}^{\text{2}}}\text{x}} \right)\text{=ta}{{\text{n}}^{\text{-1}}}\left( \text{2cosecx} \right) $
$ \dfrac{\text{2cos x}}{\text{1-co}{{\text{s}}^{\text{2}}}\text{x}}\text{=2cosecx} $
$ \text{sin xcos x=si}{{\text{n}}^{\text{2}}}\text{x} $
$ \text{sin x}\left( \text{cos x-sin x} \right)\text{=0} $
$ \text{sin x=0,cos x-sin x=0} $
$ \text{x=0,}\dfrac{\text{ }\!\!\pi\!\!\text{ }}{\text{4}} $
Therefore, \[\text{2ta}{{\text{n}}^{\text{-1}}}\left( \text{cos x} \right)\text{=ta}{{\text{n}}^{\text{-1}}}\left( \text{2cosecx} \right)\] is satisfied for \[\text{x=0,}\dfrac{\text{ }\!\!\pi\!\!\text{ }}{\text{4}}\]
12. For what value of $x$ does the equation $\text{ta}{{\text{n}}^{\text{-1}}}\dfrac{\text{1-x}}{\text{1+x}}\text{=}\dfrac{\text{1}}{\text{2}}\text{ta}{{\text{n}}^{\text{-1}}}\text{x,}\left( \text{x > 0} \right)$ satisfy?
Ans: Consider \[\text{ta}{{\text{n}}^{\text{-1}}}\dfrac{\text{1-x}}{\text{1+x}}\text{=}\dfrac{\text{1}}{\text{2}}\text{ta}{{\text{n}}^{\text{-1}}}\text{x}\]
$ \text{ta}{{\text{n}}^{\text{-1}}}\left( \text{tan}\left( \dfrac{\text{ }\!\!\pi\!\!\text{ }}{\text{4}}\text{-ta}{{\text{n}}^{\text{-1}}}\text{x} \right) \right)\text{=}\dfrac{\text{1}}{\text{2}}\text{ta}{{\text{n}}^{\text{-1}}}\text{x} $
$ \dfrac{\text{ }\!\!\pi\!\!\text{ }}{\text{4}}\text{-ta}{{\text{n}}^{\text{-1}}}\text{x=}\dfrac{\text{1}}{\text{2}}\text{ta}{{\text{n}}^{\text{-1}}}\text{x} $
$ \dfrac{\text{ }\!\!\pi\!\!\text{ }}{\text{4}}\text{=}\dfrac{\text{3}}{\text{2}}\text{ta}{{\text{n}}^{\text{-1}}}\text{x} $
$ \text{ta}{{\text{n}}^{\text{-1}}}\text{x=}\dfrac{\text{ }\!\!\pi\!\!\text{ }}{\text{6}} $
$ \text{x=}\dfrac{\text{1}}{\sqrt{\text{3}}} $
Therefore, \[\text{ta}{{\text{n}}^{\text{-1}}}\dfrac{\text{1-x}}{\text{1+x}}\text{=}\dfrac{\text{1}}{\text{2}}\text{ta}{{\text{n}}^{\text{-1}}}\text{x}\] is satisfied for \[\text{x=}\dfrac{\text{1}}{\sqrt{\text{3}}}\]
13. The expression $\text{sin}\left( \text{ta}{{\text{n}}^{\text{-1}}}\text{x} \right)\text{,}\left| \text{x} \right| < \text{1}$ is equal to
(A) $\dfrac{\text{x}}{\sqrt{\text{1-}{{\text{x}}^{\text{2}}}}}$
(B) $\dfrac{\text{1}}{\sqrt{\text{1-}{{\text{x}}^{\text{2}}}}}$
(C) $\dfrac{\text{1}}{\sqrt{\text{1+}{{\text{x}}^{\text{2}}}}}$
(D) $\dfrac{\text{x}}{\sqrt{\text{1+}{{\text{x}}^{\text{2}}}}}$
Ans: Assuming
$ \text{x=tan }\!\!\beta\!\!\text{ } $
$ \text{ }\!\!\beta\!\!\text{ =ta}{{\text{n}}^{\text{-1}}}\text{x} $
$ \text{sin}\left( \text{ta}{{\text{n}}^{\text{-1}}}\text{x} \right) $
$ \text{=sin }\!\!\beta\!\!\text{ } $
$ \text{=}\dfrac{\text{x}}{\sqrt{\text{1+}{{\text{x}}^{\text{2}}}}} $
Hence, \[\text{sin}\left( \text{ta}{{\text{n}}^{\text{-1}}}\text{x} \right)\text{=}\dfrac{\text{x}}{\sqrt{\text{1+}{{\text{x}}^{\text{2}}}}}\]
Therefore, the correct option is option D
14. For what value of $x$ does the equation $\text{si}{{\text{n}}^{\text{-1}}}\left( \text{1-x} \right)\text{-2si}{{\text{n}}^{\text{-1}}}\text{x=}\dfrac{\text{ }\!\!\pi\!\!\text{ }}{\text{2}}$ satisfy?
(A) $\text{0,}\dfrac{\text{1}}{\text{2}}$
(B) \[\text{1,}\dfrac{\text{1}}{\text{2}}\]
(C) \[0\]
(D) \[\dfrac{\text{1}}{\text{2}}\]
Ans: Consider
$ \text{si}{{\text{n}}^{\text{-1}}}\left( \text{1-x} \right)\text{-2si}{{\text{n}}^{\text{-1}}}\text{x=}\dfrac{\text{ }\!\!\pi\!\!\text{ }}{\text{2}} $
$\text{-2si}{{\text{n}}^{\text{-1}}}\text{x=}\dfrac{\text{ }\!\!\pi\!\!\text{ }}{\text{2}}\text{-si}{{\text{n}}^{\text{-1}}}\left( \text{1-x} \right) $
\[\text{-2si}{{\text{n}}^{\text{-1}}}\text{x=co}{{\text{s}}^{\text{-1}}}\left( \text{1-x} \right)\] -----(1)
Assuming
$ \text{co}{{\text{s}}^{\text{-1}}}\left( \text{1-x} \right)\text{= }\!\!\beta\!\!\text{ } $
$ \text{cos }\!\!\beta\!\!\text{ =1-x} $
$ \text{sin }\!\!\beta\!\!\text{ =}\sqrt{\text{1-}{{\left( \text{1-x} \right)}^{\text{2}}}} $
$ \text{sin }\!\!\beta\!\!\text{ =}\sqrt{\text{2x-}{{\text{x}}^{\text{2}}}} $
$ \text{ }\!\!\beta\!\!\text{ =si}{{\text{n}}^{\text{-1}}}\sqrt{\text{2x-}{{\text{x}}^{\text{2}}}} $
\[\text{co}{{\text{s}}^{\text{-1}}}\text{1-x=si}{{\text{n}}^{\text{-1}}}\sqrt{\text{2x-}{{\text{x}}^{\text{2}}}}\] -----(2)
Substituting Equation (2) in (1)
$\text{-2si}{{\text{n}}^{\text{-1}}}\text{x=si}{{\text{n}}^{\text{-1}}}\sqrt{\text{2x-}{{\text{x}}^{\text{2}}}} $
$ \text{si}{{\text{n}}^{\text{-1}}}\left( \text{-2x}\sqrt{\text{1-}{{\text{x}}^{\text{2}}}} \right)\text{=si}{{\text{n}}^{\text{-1}}}\sqrt{\text{2x-}{{\text{x}}^{\text{2}}}} $
$\text{-2x}\sqrt{\text{1-}{{\text{x}}^{\text{2}}}}\text{=}\sqrt{\text{2x-}{{\text{x}}^{\text{2}}}} $
$\text{4}{{\text{x}}^{\text{2}}}\text{-4}{{\text{x}}^{\text{4}}}\text{=2x-}{{\text{x}}^{\text{2}}} $
$ \text{4}{{\text{x}}^{\text{4}}}\text{-5}{{\text{x}}^{\text{2}}}\text{+2x=0} $
$ \text{x=0,}\dfrac{\text{1}}{\text{2}}\text{,}\dfrac{\text{-1 }\!\!\pm\!\!\text{ }\sqrt{\text{17}}}{\text{4}} $
But considering the given options and also when \[\text{x=}\dfrac{\text{1}}{\text{2}}\], the equation \[\text{si}{{\text{n}}^{\text{-1}}}\left( \text{1-x} \right)\text{-2si}{{\text{n}}^{\text{-1}}}\text{x=}\dfrac{\text{ }\!\!\pi\!\!\text{ }}{\text{2}}\] doesn’t satisfy
Thus, $\text{x=0}$ is the only solution.
Hence the correct option is C
Conclusion
Miscellaneous Exercise in Class 12 Maths Chapter 2 is crucial for understanding various concepts thoroughly. It covers diverse problems that require the application of multiple formulas and techniques. It's important to focus on understanding the underlying principles behind each question rather than just memorizing solutions. Remember to understand the theory behind each concept, practice regularly, and refer to solved examples to master this exercise effectively.
Class 12 Maths Chapter 2: Exercises Breakdown
Exercise | Number of Questions |
14 Questions and Solutions | |
15 Questions and Solutions |
CBSE Class 12 Maths Chapter 2 Other Study Materials
S. No | Important Links for Chapter 2 Inverse Trigonometric Functions |
1 | |
2 | Class 12 Inverse Trigonometric Functions Important Questions |
3 | |
4 | Class 12 Inverse Trigonometric Functions NCERT Exemplar Solution |
5 | Class 12 Inverse Trigonometric Functions RD Sharma Solutions |
6 | Class 12 Inverse Trigonometric Functions RS Aggarwal Solutions |
Chapter-Specific NCERT Solutions for Class 12 Maths
Given below are the chapter-wise NCERT Solutions for Class 12 Maths. Go through these chapter-wise solutions to be thoroughly familiar with the concepts.
NCERT Solutions Class 12 Maths Chapter-wise List |
FAQs on NCERT Solutions for Class 12 Maths Miscellaneous Exercise Chapter 2- Inverse Trigonometric Functions
1. Can you give an example of how to use the NCERT solutions for a typical problem?
While I cannot provide specific solutions due to copyright, I can explain the approach using a general example. Suppose a question asks for the value of $\sin^{-1}$ (1/2). Here, you'd use the concept of the inverse sine function to find the angle whose sine value is 1/2. Referring to the unit circle in your NCERT book, you'll find that the angle whose sine is 1/2 is π/6. The solutions would guide you through this process.
2. How can I solve problems involving functions like $\cos^{-1}$ (-√3/2)?
Similar to the previous question, you'll use the inverse cosine function to find the angle whose cosine is -√3/2. The solutions will provide guidance, but remember that cosine repeats every 2π. This means there might be multiple solutions.The principal value range (0 to π) for $\cos^{-1}$ (-√3/2) is 5π/6, but depending on the context, other answers like 7π/6 might also be valid.
3. Can the NCERT solutions help me solve for $\tan^{-1}$ (1)?
Yes, the solutions can definitely help. The inverse tangent function $\tan^{-1}$ gives the angle whose tangent is the given value. The solutions would guide you towards finding the answer, which is π/4 for $\tan^{-1}$ (1).
4. What approach should I take for problems involving trigonometric identities?
The NCERT Solutions often use trigonometric identities to simplify expressions before applying inverse trigonometric functions. It's important to have a strong understanding of these identities. Revisit the relevant sections in your NCERT book to solidify your grasp on these identities before tackling such problems in the solutions.
5. Where can I find solutions to other problems in the miscellaneous exercise?
The NCERT textbook itself provides solutions to some problems within the miscellaneous exercise section. Additionally, Vedantu offers various online resources for comprehensive solutions. You can find them through a web search using terms like "NCERT Solutions Class 12 Maths Chapter 2 Miscellaneous Exercise".
By understanding these approaches and utilizing the NCERT solutions along with other resources, you'll be well-equipped to conquer the challenges presented in the miscellaneous exercise section of Chapter 2 on Inverse Trigonometric Functions.