NCERT Solutions for Class 12 Maths Chapter 3 Matrices in Hindi PDF Download
Download the Class 12 Maths NCERT Solutions in Hindi medium and English medium as well offered by the leading e-learning platform Vedantu. If you are a student of Class 12, you have reached the right platform. The NCERT Solutions for Class 12 Maths in Hindi provided by us are designed in a simple, straightforward language, which are easy to memorise. You will also be able to download the PDF file for NCERT Solutions for Class 12 Maths in Hindi from our website at absolutely free of cost.
NCERT, which stands for The National Council of Educational Research and Training, is responsible for designing and publishing textbooks for all the classes and subjects. NCERT textbooks covered all the topics and are applicable to the Central Board of Secondary Education (CBSE) and various state boards.
We, at Vedantu, offer free NCERT Solutions in English medium and Hindi medium for all the classes as well. Created by subject matter experts, these NCERT Solutions in Hindi are very helpful to the students of all classes.
NCERT Solutions for Class 12 Maths Chapter 3 Matrices in Hindi
प्रश्नावली 3.1
प्रश्र 1: आव्यूह $\mathbf{A = \left[ {\begin{array}{*{20}{c}} 2&5&{19}&{ - 7} \\ {35}&{ - 2}&{\frac{5}{2}}&{12} \\ {\sqrt 3 }&1&{ - 5}&{17} \end{array}} \right]}$ के लिए ज्ञात कीजिए:
आव्यूह की कोटि
उत्तर: आव्यूह की कोटि = पंक्तियों की संख्या = स्तंभों की संख्या
$ = 3 \times 4$
अवयवों की संख्या
उत्तर: अवयवोंकी संख्या$ = 3 \times 4 = 12$
अवयव \[\mathbf{{{\text{a}}_{{\text{13}}}}{\text{, }}{{\text{a}}_{{\text{21}}}}{\text{, }}{{\text{a}}_{{\text{33}}}}{\text{, }}{{\text{a}}_{{\text{24}}}}{\text{, }}{{\text{a}}_{{\text{23}}}}}\]
उत्तर: अवयव ${a_{13}} = 19,\quad {a_{21}} = 35,{a_{33}} = - 5,{a_{24}} = 12,{a_{23}} = \frac{5}{2}$
प्रश्न 2: यदि किसी आव्यूह में 24 अवयव हैं तो इसकी संभव कोटियाँ क्या हैं ? यदि 13 अवयव हों तो कोटियाँ क्या होंगी ?
उत्तर: आव्यूह में कुल अवयव$ = 24$
आव्यूह की संभव कोटियाँ $ = 1 \times 24,2 \times 12,3 \times 8,4 \times 6,6 \times 4,8 \times 3,12 \times 2,24 \times 1$
यदि इसमें $13$ अवयव हों तो कोटियाँ $:1 \times 13,13 \times 1$ हो सकती हैं|
प्रश्न 3: यदि किसी आव्यूह में 18 अवयव हैं तो इसकी संभव कोटियाँ क्या हैं ? यदि इसमें 5 अवयव हों तो क्या होगा ?
उत्तर: आव्यूह में कुल अवयव$ = 18$
आव्यूह की संभव कोटियाँ$ = 1 \times 18,2 \times 9,3 \times 6,6 \times 3,9 \times 2,18 \times 1$ यदि इसमें $13$ अवयव हों तो कोटियाँ \[:1 \times 5,5 \times 1\] हो सकती हैं|
प्रश्न 4:एक \[2 \times 2\] आव्यूह $A = \left[ {{a_{ij}}} \right]$ की रचना कीजिए जिसके अवयव निम्नलिखित प्रकार से प्रदत्त हैं
$\mathbf{{a_{ij}} = \frac{{{{(i + j)}^2}}}{2}}$
उत्तर:
${a_{ij}} = \frac{{{{(i + j)}^2}}}{2} $
${a_{11}} = \frac{{{{(1 + 1)}^2}}}{2} = 2 $
${a_{12}} = \frac{{{{(1 + 2)}^2}}}{2} = \frac{9}{2} $
${a_{21}} = \frac{{{{(2 + 1)}^2}}}{2} = \frac{9}{2} $
${a_{22}} = \frac{{{{(2 + 2)}^2}}}{2} = 8 $
आव्यूह $ = \left[ {\begin{array}{*{20}{l}} 2&{\frac{9}{2}} \\ {\frac{9}{2}}&8 \end{array}} \right]$
$\mathbf{{a_{ij}} = \frac{i}{j}}$
उत्तर:
${a_{ij}} = \frac{i}{j} $
${a_{11}} = \frac{1}{1} = 1 $
${a_{12}} = \frac{1}{2} = 2 $
${a_{21}} = \frac{2}{1} = 2 $
${a_{22}} = \frac{2}{2} = 2 $
$\mathbf{{a_{ij}} = \frac{{{{(i + 2j)}^2}}}{2}}$
उत्तर:
${a_{ij}} = \frac{{{{(i + 2j)}^2}}}{2} $
${a_{11}} = \frac{{{{(1 + 2)}^2}}}{2} = \frac{9}{2} $
${a_{12}} = \frac{{{{(1 + 4)}^2}}}{2} = \frac{{25}}{2} $
${a_{21}} = \frac{{{{(2 + 2)}^2}}}{2} = 8 $
${a_{22}} = \frac{{{{(2 + 4)}^2}}}{2} = 18 $
आव्यूह $ = \left[ {\begin{array}{*{20}{c}} {\frac{9}{2}}&{\frac{{25}}{2}} \\ 8&{18} \end{array}} \right]$
प्रश्न 5: एक $3 \times 4$ आव्यूह की रचना कीजिए जिसके अवयव निम्नलिखित प्रकार से प्राप्त होते हैं :
$\mathbf{{a_{ij}} = \frac{1}{2}| - 3i + j|}$
उत्तर:
${a_{ij}} = \frac{1}{2}| - 3i + j| $
${a_{11}} = \frac{1}{2}| - 3 + 1| = 1 $
${a_{12}} = \frac{1}{2}| - 3 + 2| = \frac{1}{2} $
${a_{13}} = \frac{1}{2}| - 3 + 3| = 0 $
${a_{14}} = \frac{1}{2}| - 3 + 4| = \frac{1}{2} $
${a_{21}} = \frac{1}{2}| - 6 + 1| = \frac{5}{2} $
${a_{22}} = \frac{1}{2}| - 6 + 2| = 2 $
${a_{23}} = \frac{1}{2}| - 6 + 3| = \frac{3}{2} $
${a_{24}} = \frac{1}{2}| - 6 + 4| = 1 $
${a_{31}} = \frac{1}{2}| - 9 + 1| = 4 $
${a_{32}} = \frac{1}{2}| - 9 + 2| = \frac{7}{2}$
${a_{33}} = \frac{1}{2}| - 9 + 3| = 3 $
${a_{33}} = \frac{1}{2}| - 9 + 4| = \frac{5}{2}$
आव्यूह $ = \left[ {\begin{array}{*{20}{c}} 1&{\frac{1}{2}}&0&{\frac{1}{2}} \\ {\frac{5}{2}}&2&{\frac{3}{2}}&1 \\ 4&{\frac{7}{2}}&3&{\frac{5}{2}} \end{array}} \right]$
\[\mathbf{{{\text{a}}_{{\text{i j}}}}{\text{ = 2 i - j}}}\]
उत्तर:
${a_{ij}} = 2i - j $
${a_{11}} = 2 - 1 = 1 $
${a_{12}} = 2 - 2 = 0 $
${a_{13}} = 2 - 3 = - 1 $
${a_{14}} = 2 - 4 = - 2 $
${a_{21}} = 4 - 1 = 3 $
${a_{22}} = 4 - 2 = 2 $
${a_{23}} = 4 - 3 = 1 $
${a_{24}} = 4 - 4 = 0 $
${a_{31}} = 6 - 1 = 5 $
${a_{32}} = 6 - 2 = 4 $
${a_{33}} = 6 - 3 = 3 $
${a_{34}} = 6 - 4 = 2 $
आव्यूह $= \left[ {\begin{array}{*{20}{c}} 1&0&{-1}&{ -2} \\ 3&2&1&0 \\ 5&4&3&2 \end{array}} \right]$
प्रश्न 6: निम्नलिखित समीकरण से \[x,y{\text{ }}\] तथा $z$ के मान ज्ञात कीजिए :
$\mathbf{\left[ {\begin{array}{*{20}{l}} 4&3 \\ x&5 \end{array}} \right] = \left[ {\begin{array}{*{20}{l}} y&z \\ 1&5 \end{array}} \right]}$
उत्तर:
$\left[ {\begin{array}{*{20}{l}} 4&3 \\ x&5 \end{array}} \right] = \left[ {\begin{array}{*{20}{l}} y&z \\ 1&5 \end{array}} \right]$
अगर दो आव्यूह समान है तो उनके संगत अवयव भी समान होता है,
\[y = 4,z = 3,x = 1\]
$\mathbf{\left[ {\begin{array}{*{20}{c}} {x + y}&2 \\ {5 + z}&{xy} \end{array}} \right] = \left[ {\begin{array}{*{20}{l}} 6&2 \\ 5&8 \end{array}} \right]}$
उत्तर:
$\left[ {\begin{array}{*{20}{c}} {x + y}&2 \\ {5 + z}&{xy} \end{array}} \right] = \left[ {\begin{array}{*{20}{l}} 6&2 \\ 5&8 \end{array}} \right]$
अगर दो आव्यूह समान हैं तो उनके संगत अवयव भी समान होता है,
\[x + y = 6,5 + z = 5,xy = 8\]
अतः \[x = 2,y = 4,z = 0\] या \[x = 4,y = 2,z = 0\]
$\mathbf{\left[ {\begin{array}{*{20}{c}} {x + y + z} \\ {x + z} \\ {y + z} \end{array}} \right] = \left[ {\begin{array}{*{20}{l}} 9 \\ 5 \\ 7 \end{array}} \right]}$
उत्तर:
$\left[ {\begin{array}{*{20}{c}} {x + y + z} \\ {x + z} \\ {y + z} \end{array}} \right] = \left[ {\begin{array}{*{20}{l}} 9 \\ 5 \\ 7 \end{array}} \right]$
अगर दो आव्यूह समान हैं तो उनके संगत अवयव भी समान होता है,
\[x + y + z = 9,x + z = 5,y + z = 7\]
अतः \[x = 2,y = 4,z = 3\]
प्रश्न 7: समीकरण $\mathbf{\left[ {\begin{array}{*{20}{l}} {a - b}&{2a + c} \\ {2a - b}&{3c + d} \end{array}} \right] = \left[ {\begin{array}{*{20}{c}} { - 1}&5 \\ 0&{13} \end{array}} \right]}$ से a,b,c तथा d के मान ज्ञात कीजिए|
उत्तर: दिया है कि $,\left[ {\begin{array}{*{20}{c}} {a - b}&{2a + c} \\ {2a - b}&{3c + d} \end{array}} \right] = \left[ {\begin{array}{*{20}{c}} { - 1}&5 \\ 0&{13} \end{array}} \right]$
$a - b = - 1 \ldots \ldots {\text{ (i) }} $
$2a + c = 5 \ldots \ldots {\text{ (ii) }} $
$2a - b = 0 \ldots \ldots {\text{ (iii) }} $
$3c + d = 13 \ldots \ldots {\text{ (iv) }} $
समीकरण (i) और (iii) को हल करने पर,
$a = 1,b = 2$
समीकरण (ii) से $c = 3$ और (iv) से $d = 4$
प्रश्न 8: $\mathbf{{\text{A}} = {\left[ {{a_{ij}}} \right]_{m \times n}}}$ एक वर्ग आव्यूह है यदि
$m < n$
$m > n$
$m = n$
इनमें से कोई नहीं
उत्तर: सही विकल्प (C) है क्यूंकि, एक वर्ग आव्यूह में स्तंभों की पंक्तियों की संख्या के बराबर होती है।
प्रश्न 9: $\mathbf{x}$ तथा $\mathbf{y}$ के प्रदत्त किन मानों केलिए आव्यूहों के निम्नलिखित युग्म समान हैं ?
$\mathbf{\left[ {\begin{array}{*{20}{c}} {3x + 7}&5 \\ {y + 1}&{2 - 3x} \end{array}} \right],\left[ {\begin{array}{*{20}{c}} 0&{y - 2} \\ 8&4 \end{array}} \right]}$
$\mathbf{x = \frac{{ - 1}}{3},y = 7}$
ज्ञात करना संभव नहीं है
$\mathbf{y = 7,x = \frac{{ - 2}}{3}}$
$\mathbf{x = \frac{{ - 1}}{3},y = \frac{{ - 2}}{3}}$
उत्तर: सही विकल्प (B) है,
$\left[ {\begin{array}{*{20}{c}} {3x + 7}&5 \\ {y + 1}&{2 - 3x} \end{array}} \right]\left[ {\begin{array}{*{20}{c}} 0&{y - 2} \\ 8&4 \end{array}} \right]$
अगर दो आव्यूह समान हैं तो उनके संगत अवयव भी समान होता है,
$3x + 7 = 0 \Rightarrow x = \frac{{ - 7}}{3} $
$y - 2 = 5 \Rightarrow y = 7 $
$y + 1 = 8 \Rightarrow y = 7 $
$2 - 3x = 4 \Rightarrow x = \frac{{ - 2}}{3}$ इन परिणामों के अनुसार $x$ के दो मान है इसीलिए असंभव है |
प्रश्न 10: $\mathbf{3 \times 3}$ कोटि के ऐसे आव्यूहों की कुल कितनी संख्या होगी जिनकी प्रत्येक प्रविष्टि 0 या 1 है ?
उत्तर: सही विकल्प (D) है क्यूंकि,
$3 \times 3$ कोटि के आव्यूह में अवयव कि कुल संख्या $ = 9$
यदि प्रत्येक प्रविष्ट 0 या 1 है, तो प्रत्येक अवयव के लिए क्रमचय
\[ = 2,\] अतः अवयवों केलिए कुल क्रमचय $ = {2^9} = 512$
प्रश्नावली 3.2
प्रश्न 1: मान लीजिए की $\mathbf{A = \left[ {\begin{array}{*{20}{l}} 2&4 \\ 3&2 \end{array}} \right],B = \left[ {\begin{array}{*{20}{c}} 1&3 \\ { - 2}&5 \end{array}} \right],C = \left[ {\begin{array}{*{20}{c}} { - 2}&5 \\ 3&4 \end{array}} \right]}$ तो निम्नलिखित ज्ञात कीजिए:
\[\mathbf{A + B}\]
उत्तर: $A + B = \left[ {\begin{array}{*{20}{l}} {(2 + 1)}&{(4 + 3)} \\ {(3 - 2)}&{(2 + 5)} \end{array}} \right] = \left[ {\begin{array}{*{20}{l}} 3&7 \\ 1&7 \end{array}} \right]$
\[\mathbf{A - B}\]
उत्तर: $A - B = \left[ {\begin{array}{*{20}{l}} {(2 - 1)}&{(4 - 3)} \\ {(3 + 2)}&{(2 - 5)} \end{array}} \right] = \left[ {\begin{array}{*{20}{c}} 1&1 \\ 5&{ - 3} \end{array}} \right]$
\[\mathbf{3A - C}\]
उत्तर: $3A = 3\left[ {\begin{array}{*{20}{l}} 2&4 \\ 3&2 \end{array}} \right] = \left[ {\begin{array}{*{20}{l}} {2 \times 3}&{4 \times 3} \\ {3 \times 3}&{2 \times 3} \end{array}} \right] = \left[ {\begin{array}{*{20}{c}} 6&{12} \\ 9&6 \end{array}} \right]$
$ \therefore 3\;{\text{A}} - {\text{C}} = \left[ {\begin{array}{*{20}{c}} 6&{12} \\ 9&6 \end{array}} \right] - \left[ {\begin{array}{*{20}{c}} { - 2}&5 \\ 3&4 \end{array}} \right] $ $= \left[ {\begin{array}{*{20}{c}} {(6 + 2)}&{(12 - 5)} \\ {(9 - 3)}&{(6 - 4)} \end{array}} \right] $ $ = \left[ {\begin{array}{*{20}{l}} 8&7 \\ 6&2 \end{array}} \right] $
\[\mathbf{AB}\]
उत्तर:
$ {\text{AB}} = \left[ {\begin{array}{*{20}{l}} 2&4 \\ 3&2 \end{array}} \right]\left[ {\begin{array}{*{20}{c}} 1&3 \\ { - 2}&5 \end{array}} \right] $
$ = \left[ {\begin{array}{*{20}{l}} {(2 \times 1 - 4 \times 2)}&{(2 \times 3 + 4 \times 5)} \\ {(3 \times 1 - 2 \times 2)}&{(3 \times 3 + 2 \times 5)} \end{array}} \right] $
$ = \left[ {\begin{array}{*{20}{c}} {(2 - 8)}&{(6 + 20)} \\ {(3 - 4)}&{(9 + 10)} \end{array}} \right] $
$ = \left[ {\begin{array}{*{20}{l}} { - 6}&{26} \\ { - 1}&{19} \end{array}} \right] $
\[\mathbf{BA}\]
उत्तर: $BA = \left[ {\begin{array}{*{20}{c}} 1&3 \\ { - 2}&5 \end{array}} \right]\left[ {\begin{array}{*{20}{l}} 2&4 \\ 3&2 \end{array}} \right]$
$ = \left[ {\begin{array}{*{20}{c}} {(1 \times 2 + 3 \times 3)}&{(1 \times 4 + 3 \times 2)} \\ {( - 2 \times 2 + 5 \times 3)}&{( - 2 \times 4 + 5 \times 2)} \end{array}} \right] $ $ = \left[ {\begin{array}{*{20}{c}} {(2 + 9)}&{(4 + 6)} \\ {( - 4 + 15)}&{( - 8 + 10)} \end{array}} \right] $
$ = \left[ {\begin{array}{*{20}{c}} {11}&{10} \\ {11}&2 \end{array}} \right] $
प्रश्र 2: निम्नलिखित को परिकलित कीजिए:
$\mathbf{\left[ {\begin{array}{*{20}{c}} a&b \\ { - b}&a \end{array}} \right] + \left[ {\begin{array}{*{20}{l}} a&b \\ b&a \end{array}} \right]}$
उत्तर:
$\left[ {\begin{array}{*{20}{c}} a&b \\ { - b}&a \end{array}} \right] + \left[ {\begin{array}{*{20}{c}} a&b \\ b&a \end{array}} \right] $
$ = \left[ {\begin{array}{*{20}{c}} {(a + a)}&{(b + b)} \\ {( - b + b)}&{(a + a)} \end{array}} \right] $
$ = \left[ {\begin{array}{*{20}{c}} {2a}&{2b} \\ 0&{2a} \end{array}} \right] $
$ = 2\left[ {\begin{array}{*{20}{l}} a&b \\ 0&a \end{array}} \right] $
$\mathbf{\left[ {\begin{array}{*{20}{c}} {{a^2} + {b^2}}&{{b^2} + {c^2}} \\ {{a^2} + {c^2}}&{{a^2} + {b^2}} \end{array}} \right] + \left[ {\begin{array}{*{20}{c}} {2ab}&{2bc} \\ { - 2ac}&{ - 2ab} \end{array}} \right]}$
उत्तर:
$\left[ {\begin{array}{*{20}{c}} {{a^2} + {b^2}}&{{b^2} + {c^2}} \\ {{a^2} + {c^2}}&{{a^2} + {b^2}} \end{array}} \right] + \left[ {\begin{array}{*{20}{c}} {2ab}&{2bc} \\ { - 2ac}&{ - 2ab} \end{array}} \right] $
$ = \left[ {\begin{array}{*{20}{c}} {\left( {{a^2} + {b^2}} \right)}&{\left( {{b^2} + {c^2}} \right)} \\ {\left( {{a^2} + {c^2}} \right)}&{\left( {{a^2} + {b^2}} \right)} \end{array}} \right] + \left[ {\begin{array}{*{20}{c}} {2ab}&{2bc} \\ { - 2ac}&{ - 2ab} \end{array}} \right] $
$ = \left[ {\begin{array}{*{20}{l}} {\left( {{a^2} + 2ab + {b^2}} \right)}&{\left( {{b^2} + 2bc + {c^2}} \right)} \\ {\left( {{a^2} - 2ac + {c^2}} \right)}&{\left( {{a^2} - 2ab + {b^2}} \right)} \end{array}} \right]$
$ = \left[ {\begin{array}{*{20}{l}} {{{({\mathbf{a}} + {\mathbf{b}})}^2}}&{{{({\mathbf{b}} + {\mathbf{c}})}^2}} \\ {{{({\mathbf{a}} - {\mathbf{c}})}^2}}&{{{({\mathbf{a}} - {\mathbf{b}})}^2}} \end{array}} \right]$
$\mathbf{\left[ {\begin{array}{*{20}{c}} { - 1}&4&{ - 6} \\ 8&5&{16} \\ 2&8&5 \end{array}} \right] + \left[ {\begin{array}{*{20}{c}} {12}&7&6 \\ 8&0&5 \\ 3&2&4 \end{array}} \right]}$
उत्तर:
$\left[ {\begin{array}{*{20}{c}} { - 1}&4&{ - 6} \\ 8&5&{16} \\ 2&8&5 \end{array}} \right] + \left[ {\begin{array}{*{20}{c}} {12}&7&6 \\ 8&0&5 \\ 3&2&4 \end{array}} \right] $
$ = \left[ {\begin{array}{*{20}{c}} {( - 1 + 12)}&{(4 + 7)}&{( - 6 + 6)} \\ {(8 + 8)}&{(5 + 0)}&{(16 + 5)} \\ {(2 + 3)}&{(8 + 2)}&{(5 + 4)} \end{array}} \right] $
$ = \left[ {\begin{array}{*{20}{c}} {11}&{11}&0 \\ {16}&5&{21} \\ 5&{10}&9 \end{array}} \right] $
$\mathbf{\left[ {\begin{array}{*{20}{c}} {{{\cos }^2}x}&{{{\sin }^2}x} \\ {{{\sin }^2}x}&{{{\cos }^2}x} \end{array}} \right] + \left[ {\begin{array}{*{20}{c}} {{{\sin }^2}x}&{{{\cos }^2}x} \\ {{{\cos }^2}x}&{{{\sin }^2}x} \end{array}} \right]}$
उत्तर:
$ \left[ {\begin{array}{*{20}{c}} {{{\cos }^2}x}&{{{\sin }^2}x} \\ {{{\sin }^2}x}&{{{\cos }^2}x} \end{array}} \right] + \left[ {\begin{array}{*{20}{c}} {{{\sin }^2}x}&{{{\cos }^2}x} \\ {{{\cos }^2}x}&{{{\sin }^2}x} \end{array}} \right] $
$ = \left[ {\begin{array}{*{20}{c}} {\left( {{{\cos }^2}x + {{\sin }^2}x} \right)}&{\left( {{{\sin }^2}x + {{\cos }^2}x} \right)} \\ {\left( {{{\sin }^2}x + {{\cos }^2}x} \right)}&{\left( {{{\cos }^2}x + {{\sin }^2}x} \right)} \end{array}} \right]$
$ = \left[ {\begin{array}{*{20}{l}} 1&1 \\ 1&1 \end{array}} \right]$ (चूंकि $,\left. {{{\sin }^2}x + {{\cos }^2}x = 1} \right)$
प्रश्न 3: निदर्शित गुणनफल परिकलित कीजिए:
$\mathbf{\left[ {\begin{array}{*{20}{c}} a&b \\ { - b}&a \end{array}} \right]\left[ {\begin{array}{*{20}{c}} a&{ - b} \\ b&a \end{array}} \right]}$
उत्तर:
$\left[ {\begin{array}{*{20}{c}} a&b \\ { - b}&a \end{array}} \right]\left[ {\begin{array}{*{20}{c}} a&{ - b} \\ b&a \end{array}} \right]$
$ = \left[ {\begin{array}{*{20}{c}} {(a \times a + b \times b)}&{( - a \times b + b \times a)} \\ {( - b \times a + a \times b)}&{(b \times b + a \times a)} \end{array}} \right] $
$ = \left[ {\begin{array}{*{20}{c}} {{a^2} + {b^2}}&0 \\ 0&{{a^2} + {b^2}} \end{array}} \right] $
$ = \left( {{a^2} + {b^2}} \right)\left[ {\begin{array}{*{20}{l}} 1&0 \\ 0&1 \end{array}} \right] $
$ = \left( {{a^2} + {b^2}} \right)\mid $
$\mathbf{\left[ {\begin{array}{*{20}{l}} 1 \\ 2 \\ 3 \end{array}} \right]\left[ {\begin{array}{*{20}{l}} 2&3&4 \end{array}} \right]}$
उत्तर:
$ \left[ {\begin{array}{*{20}{l}} 1 \\ 2 \\ 3 \end{array}} \right]\left[ {\begin{array}{*{20}{l}} 2&3&4 \end{array}} \right] $
$ = \left[ {\begin{array}{*{20}{l}} {1 \times 2}&{1 \times 3}&{1 \times 4} \\ {2 \times 2}&{2 \times 3}&{2 \times 4} \\ {3 \times 2}&{3 \times 3}&{3 \times 4} \end{array}} \right] $
$ = \left[ {\begin{array}{*{20}{c}} 2&3&4 \\ 4&6&8 \\ 6&9&{12} \end{array}} \right] $
$\mathbf{\left[ {\begin{array}{*{20}{c}} 1&{ - 2} \\ 2&3 \end{array}} \right]\left[ {\begin{array}{*{20}{c}} 1&2&3 \\ 2&3&1 \end{array}} \right]}$
उत्तर:
$ \left[ {\begin{array}{*{20}{c}} 1&{ - 2} \\ 2&3 \end{array}} \right]\left[ {\begin{array}{*{20}{l}} 1&2&3 \\ 2&3&1 \end{array}} \right] $
$ = \left[ {\begin{array}{*{20}{c}} {(1 \times 1 - 2 \times 2)}&{(1 \times 2 - 2 \times 3)}&{(1 \times 3 - 2 \times 1)} \\ {(2 \times 1 + 3 \times 2)}&{(2 \times 2 + 3 \times 3)}&{(2 \times 3 + 3 \times 1)} \end{array}} \right] $
$ = \left[ {\begin{array}{*{20}{c}} {(1 - 4)}&{(2 - 6)}&{(3 - 2)} \\ {(2 + 6)}&{(4 + 9)}&{(6 + 3)} \end{array}} \right] $
$ = \left[ {\begin{array}{*{20}{c}} { - 3}&{ - 4}&1 \\ 8&{13}&9 \end{array}} \right] $
$\mathbf{\left[ {\begin{array}{*{20}{l}} 2&3&4 \\ 3&4&5 \\ 4&5&6 \end{array}} \right]\left[ {\begin{array}{*{20}{c}} 1&{ - 3}&5 \\ 0&2&4 \\ 3&0&5 \end{array}} \right]}$
उत्तर:
$\left[ {\begin{array}{*{20}{l}} 2&3&4 \\ 3&4&5 \\ 4&5&6 \end{array}} \right]\left[ {\begin{array}{*{20}{c}} 1&{ - 3}&5 \\ 0&2&4 \\ 3&0&5 \end{array}} \right]$
$ \left[ {\begin{array}{*{20}{c}} {(2 \times 1 + 3 \times 0 + 4 \times 3)}&{( - 2 \times 3 + 3 \times 2 + 4 \times 0)}&{(2 \times 5 + 3 \times 4 + 4 \times 5)} \\ {(3 \times 1 + 4 \times 0 + 5 \times 3)}&{( - 3 \times 3 + 4 \times 2 + 5 \times 0)}&{(3 \times 5 + 4 \times 4 + 5 \times 5)} \\ {(4 \times 1 + 5 \times 6 \times 3)}&{( - 4 \times 3 + 5 \times 2 + 6 \times 0)}&{(4 \times 5 + 5 \times 4 + 6 \times 5)} \end{array}} \right] $
$ = \left[ {\begin{array}{*{20}{c}} {(2 + 0 + 12)}&{( - 6 + 6 + 0)}&{(10 + 12 + 20)} \\ {(3 + 0 + 15)}&{( - 9 + 8 + 0)}&{(15 + 16 + 25)} \\ {(4 + 0 + 18)}&{( - 12 + 10 + 0)}&{(20 + 20 + 30)} \end{array}} \right] $
$ = \left[ {\begin{array}{*{20}{c}} {14}&0&{42} \\ {18}&{ - 1}&{56} \\ {22}&{ - 2}&{70} \end{array}} \right] $
$\mathbf{\left[ {\begin{array}{*{20}{c}} 2&1 \\ 3&2 \\ { - 1}&1 \end{array}} \right]\left[ {\begin{array}{*{20}{c}} 1&0&1 \\ { - 1}&2&1 \end{array}} \right]}$
उत्तर:
$\left[ {\begin{array}{*{20}{c}} 2&1 \\ 3&2 \\ { - 1}&1 \end{array}} \right]\left[ {\begin{array}{*{20}{c}} 1&0&1 \\ { - 1}&2&1 \end{array}} \right] $
$ = \left[ {\begin{array}{*{20}{c}} {(2 \times 1 - 1 \times 1)}&{(2 \times 0 + 1 \times 2)}&{(2 \times 1 + 1 \times 1)} \\ {(3 \times 1 - 2 \times 1)}&{(3 \times 0 + 2 \times 2)}&{(3 \times 1 + 2 \times 1)} \\ {( - 1 \times 1 - 1 \times 1)}&{( - 1 \times 0 + 1 \times 2)}&{( - 1 \times 1 + 1 \times 1)} \end{array}} \right] $
$ = \left[ {\begin{array}{*{20}{c}} {(2 - 1)}&{(0 + 2)}&{(2 + 1)} \\ {(3 - 2)}&{(0 + 4)}&{(3 + 2)} \\ {( - 1 - 1)}&{(0 + 2)}&{( - 1 + 1)} \end{array}} \right] $
$ = \left[ {\begin{array}{*{20}{c}} 1&2&3 \\ 1&4&5 \\ { - 2}&{ - 2}&0 \end{array}} \right] $
$\mathbf{\left[ {\begin{array}{*{20}{c}} 3&{ - 1}&3 \\ { - 1}&0&2 \end{array}} \right]\left[ {\begin{array}{*{20}{c}} 2&{ - 3} \\ 1&0 \\ 3&1 \end{array}} \right]}$
उत्तर:
$\left[ {\begin{array}{*{20}{c}} 3&{ - 1}&3 \\ { - 1}&0&2 \end{array}} \right]\left[ {\begin{array}{*{20}{c}} 2&{ - 3} \\ 1&0 \\ 3&1 \end{array}} \right] $
$ = \left[ {\begin{array}{*{20}{c}} {(3 \times 2 - 1 \times 1 + 3 \times 3)}&{( - 3 \times 3 - 1 \times 0 + 3 \times 1)} \\ {( - 1 \times 2 + 0 \times 1 + 2 \times 3)}&{(1 \times 3 + 0 \times 0 + 2 \times 1)} \end{array}} \right] $
$ = \left[ {\begin{array}{*{20}{c}} {(6 - 1 + 9)}&{( - 9 - 0 + 3)} \\ {( - 2 + 0 + 6)}&{(3 + 0 + 2)} \end{array}} \right] $
$ = \left[ {\begin{array}{*{20}{c}} {14}&{ - 6} \\ 4&5 \end{array}} \right] $
प्रश्न4: यदि $A = \left[ {\begin{array}{*{20}{c}} 1&2&{ - 3} \\ 5&0&2 \\ 1&{ - 1}&1 \end{array}} \right],\quad B = \left[ {\begin{array}{*{20}{c}} 3&{ - 1}&2 \\ 4&2&5 \\ 2&0&3 \end{array}} \right]$ तथा $C = \left[ {\begin{array}{*{20}{c}} 4&1&2 \\ 0&3&2 \\ 1&{ - 2}&3 \end{array}} \right]$ तो \[\left( {A + B} \right)\] तथा \[\left( {B{\text{ }} - {\text{ }}C} \right)\] परिकलित कीजिए| साथ ही सत्यापित कीजिए कि \[A + \left( {B - C} \right) = {\text{ }}\left( {A + B} \right) - C.\]
उत्तर:
$ A + B = \left[ {\begin{array}{*{20}{c}} 1&2&{ - 3} \\ 5&0&2 \\ 1&{ - 1}&1 \end{array}} \right] + \left[ {\begin{array}{*{20}{c}} 3&{ - 1}&2 \\ 4&2&5 \\ 2&0&3 \end{array}} \right] $
$ = \left[ {\begin{array}{*{20}{c}} {(1 + 3)}&{(2 - 1)}&{( - 3 + 2)} \\ {(5 + 4)}&{(0 + 2)}&{(2 + 5)} \\ {(1 + 2)}&{( - 1 + 0)}&{(1 + 3)} \end{array}} \right] $
$ = \left[ {\begin{array}{*{20}{c}} 4&1&{ - 1} \\ 9&2&7 \\ 3&{ - 1}&4 \end{array}} \right] $
$ B - C = \left[ {\begin{array}{*{20}{c}} 3&{ - 1}&2 \\ 4&2&5 \\ 2&0&3 \end{array}} \right] - \left[ {\begin{array}{*{20}{c}} 4&1&2 \\ 0&3&2 \\ 1&{ - 2}&3 \end{array}} \right] $
$ = \left[ {\begin{array}{*{20}{c}} { - 1}&{ - 2}&0 \\ 4&{ - 1}&3 \\ 1&2&0 \end{array}} \right] $
इसीलिए $A + (B - C) = \left[ {\begin{array}{*{20}{c}} 1&2&{ - 3} \\ 5&0&2 \\ 1&{ - 1}&1 \end{array}} \right] + \left[ {\begin{array}{*{20}{c}} { - 1}&{ - 2}&0 \\ 4&{ - 1}&3 \\ 1&2&0 \end{array}} \right]$
$ = \left[ {\begin{array}{*{20}{c}} {(1 - 1)}&{(2 - 2)}&{( - 3 + 0)} \\ {(5 + 4)}&{(0 - 1)}&{(2 + 3)} \\ {(1 + 1)}&{( - 1 + 2)}&{(1 + 0)} \end{array}} \right] = \left[ {\begin{array}{*{20}{c}} 0&0&{ - 3} \\ 9&{ - 1}&5 \\ 2&1&1 \end{array}} \right]$
और
$(A + B) - C = \left[ {\begin{array}{*{20}{c}} 4&1&{ - 1} \\ 9&2&7 \\ 3&{ - 1}&4 \end{array}} \right] - \left[ {\begin{array}{*{20}{c}} 4&1&2 \\ 0&3&2 \\ 1&{ - 2}&3 \end{array}} \right] $
$= \left[ {\begin{array}{*{20}{c}} 0&0&{ - 3} \\ 9&{ - 1}&5 \\ 2&1&1 \end{array}} \right] $
स्पष्टतया \[A{\text{ }} + {\text{ }}\left( {B - C} \right){\text{ }} = {\text{ }}\left( {A + B} \right){\text{ }}--{\text{ }}C\]
प्रश्न 5: यदि $A = \left[ {\begin{array}{*{20}{c}} {\frac{2}{3}}&1&{\frac{5}{3}} \\ {\frac{1}{3}}&{\frac{2}{3}}&{\frac{4}{3}} \\ {\frac{7}{3}}&2&{\frac{2}{3}} \end{array}} \right]$ तथा $B = \left[ {\begin{array}{*{20}{l}} {\frac{2}{5}}&{\frac{3}{5}}&1 \\ {\frac{1}{5}}&{\frac{2}{5}}&{\frac{4}{5}} \\ {\frac{7}{5}}&{\frac{6}{5}}&{\frac{2}{5}} \end{array}} \right]$, तो \[3A - 5B\] परिकलित कीजिए|
उत्तर:
$3A = 3\left[ {\begin{array}{*{20}{l}} {\frac{2}{3}}&1&{\frac{5}{3}} \\ {\frac{1}{3}}&{\frac{2}{3}}&{\frac{4}{3}} \\ {\frac{7}{3}}&2&{\frac{2}{3}} \end{array}} \right] = \left[ {\begin{array}{*{20}{l}} 2&3&5 \\ 1&2&4 \\ 7&6&2 \end{array}} \right]$
और
$ = 5\left[ {\begin{array}{*{20}{c}} {\frac{2}{5}}&{\frac{3}{5}}&1 \\ {\frac{1}{5}}&{\frac{2}{5}}&{\frac{4}{5}} \\ {\frac{7}{5}}&{\frac{6}{5}}&{\frac{2}{5}} \end{array}} \right] $
$ = \left[ {\begin{array}{*{20}{l}} 2&3&5 \\ 1&2&4 \\ 7&6&2 \end{array}} \right]$
इसीलिए $3A - 5B = \left[ {\begin{array}{*{20}{l}} 2&3&5 \\ 1&2&4 \\ 7&6&2 \end{array}} \right] - \left[ {\begin{array}{*{20}{l}} 2&3&5 \\ 1&2&4 \\ 7&6&2 \end{array}} \right] = \left[ {\begin{array}{*{20}{l}} 0&0&0 \\ 0&0&0 \\ 0&0&0 \end{array}} \right]$
प्रश्र 6: सरल कीजिए $\cos \theta \left[ {\begin{array}{*{20}{c}} {\cos \Theta }&{\sin \theta } \\ { - \sin \theta }&{\cos \Theta } \end{array}} \right] + \sin \Theta \left[ {\begin{array}{*{20}{c}} {\sin \theta }&{ - \cos \theta } \\ {\cos \Theta }&{\sin \theta } \end{array}} \right]$
उत्तर:
$\cos \theta \left[ {\begin{array}{*{20}{c}} {\cos \Theta }&{\sin \theta } \\ { - \sin \theta }&{\cos \Theta } \end{array}} \right] + \sin \Theta \left[ {\begin{array}{*{20}{c}} {\sin \theta }&{ - \cos \theta } \\ {\cos \Theta }&{\sin \theta } \end{array}} \right]$
$ = \left[ {\begin{array}{*{20}{c}} {{{\cos }^2}\Theta }&{\sin \theta \cos \Theta } \\ { - \sin \theta \cos \Theta }&{{{\cos }^2}\theta } \end{array}} \right] + \left[ {\begin{array}{*{20}{c}} {{{\sin }^2}\Theta }&{ - \sin \theta \cos \Theta } \\ {\sin \theta \cos \Theta }&{{{\sin }^2}\theta } \end{array}} \right] $
$ = \left[ {\begin{array}{*{20}{c}} {{{\sin }^2}x + {{\cos }^2}x}&0 \\ 0&{{{\sin }^2}x + {{\cos }^2}x} \end{array}} \right] $
$ = \left[ {\begin{array}{*{20}{l}} 1&0 \\ 0&1 \end{array}} \right]$ (चूंकि$,\left. {{{\sin }^2}x + {{\cos }^2}x = 1} \right)$
$ = 1$ (2 कोटि का तत्समक आव्यूह)
प्रश्न 7: $\mathbf{{\text{X}}}$ तथा ${\text{Y}}$ ज्ञात कीजिये यदि
$\mathbf{X + Y = \left[ {\begin{array}{*{20}{l}} 3&2 \\ 1&4 \end{array}} \right]}$ तथा $\mathbf{X - Y = \left[ {\begin{array}{*{20}{l}} 3&0 \\ 0&3 \end{array}} \right]}$
उत्तर:
$ X + Y = \left[ {\begin{array}{*{20}{l}} 7&0 \\ 2&5 \end{array}} \right].......(i) $
$ X - Y = \left[ {\begin{array}{*{20}{l}} 3&0 \\ 0&3 \end{array}} \right].......(ii) $
$ {\text{(i) }} + {\text{ (ii) }} \Rightarrow 2{\text{X}} = \left[ {\begin{array}{*{20}{c}} {10}&0 \\ 2&8 \end{array}} \right] $
$ \Rightarrow {\text{X}} = \left[ {\begin{array}{*{20}{l}} 5&0 \\ 1&4 \end{array}} \right]{\text{ }} $
$ {\text{(i) - (ii) }} \Rightarrow 2{\text{Y}} = \left[ {\begin{array}{*{20}{l}} 4&0 \\ 2&2 \end{array}} \right] $
$ \Rightarrow Y = \left[ {\begin{array}{*{20}{l}} 2&0 \\ 1&1 \end{array}} \right] $
$\mathbf{2X + 3Y = \left[ {\begin{array}{*{20}{l}} 2&3 \\ 4&0 \end{array}} \right]$ तथा $3X + 2Y = \left[ {\begin{array}{*{20}{c}} 2&{ - 2} \\ { - 1}&5 \end{array}} \right]}$
उत्तर:
$ 2X + 3Y = \left[ {\begin{array}{*{20}{l}} 2&3 \\ 4&0 \end{array}} \right]...........(i) $
$ 3X + 2Y = \left[ {\begin{array}{*{20}{c}} 2&{ - 2} \\ { - 1}&5 \end{array}} \right].......(ii) $
$ {\text{ (i) }} \times 3 \Rightarrow 6X + 9Y = \left[ {\begin{array}{*{20}{c}} 6&9 \\ {12}&0 \end{array}} \right] $
$ (ii) \times 2 \to 6X + 4Y = \left[ {\begin{array}{*{20}{c}} 4&{ - 4} \\ { - 2}&{10} \end{array}} \right] $
${\text{ (i) - (ii) }} \to 5Y = \left[ {\begin{array}{*{20}{c}} 6&9 \\ {12}&0 \end{array}} \right] - \left[ {\begin{array}{*{20}{c}} 4&{ - 4} \\ { - 2}&{10} \end{array}} \right] = \left[ {\begin{array}{*{20}{c}} 2&{13} \\ {14}&{ - 10} \end{array}} \right]$
$\Rightarrow Y = \left[ {\begin{array}{*{20}{c}} {\frac{2}{5}}&{\frac{{13}}{5}} \\ {\frac{{14}}{5}}&{ - 2} \end{array}} \right] $
$ {\text{(i) }} \times 2 \Rightarrow 4X + 6Y = \left[ {\begin{array}{*{20}{c}} 6&9 \\ {12}&0 \end{array}} \right] $
$ {\text{ (ii) }} \times 3 \Rightarrow 9X + 6Y = \left[ {\begin{array}{*{20}{c}} 6&{ - 6} \\ { - 3}&{15} \end{array}} \right]{\text{ }} $
$ {\text{(i) - (ii) }} \Rightarrow 5X = \left[ {\begin{array}{*{20}{c}} 6&{ - 6} \\ { - 3}&{15} \end{array}} \right] - \left[ {\begin{array}{*{20}{l}} 4&6 \\ 8&0 \end{array}} \right] = \left[ {\begin{array}{*{20}{c}} 2&{ - 12} \\ { - 11}&{15} \end{array}} \right] $
$ \Rightarrow X = \left[ {\begin{array}{*{20}{c}} {\frac{2}{5}}&{ - \frac{{12}}{5}} \\ { - \frac{{11}}{5}}&3 \end{array}} \right] $
प्रश्न 8: x तथा Y ज्ञात कीजिए यदि $\mathbf{Y = \left[ {\begin{array}{*{20}{l}} 3&2 \\ 1&4 \end{array}} \right]$ तथा $2X + Y = \left[ {\begin{array}{*{20}{c}} 1&0 \\ { - 3}&2 \end{array}} \right]}$
उत्तर: हमें पता है कि $Y = \left[ {\begin{array}{*{20}{l}} 3&2 \\ 1&4 \end{array}} \right]$
तथा $2X + Y = \left[ {\begin{array}{*{20}{c}} 1&0 \\ { - 3}&2 \end{array}} \right]$
इसीलिए $2X = \left[ {\begin{array}{*{20}{c}} 1&0 \\ { - 3}&2 \end{array}} \right] - Y$
$\to 2X = \left[ {\begin{array}{*{20}{c}} 1&0 \\ { - 3}&2 \end{array}} \right] - \left[ {\begin{array}{*{20}{l}} 3&2 \\ 1&4 \end{array}} \right] = \left[ {\begin{array}{*{20}{l}} { - 2}&{ - 2} \\ { - 4}&{ - 2} \end{array}} \right] = - 2\left[ {\begin{array}{*{20}{l}} 1&1 \\ 2&1 \end{array}} \right] $
$\Rightarrow X = - 1\left[ {\begin{array}{*{20}{l}} 1&1 \\ 2&1 \end{array}} \right]$
$ = \left[ {\begin{array}{*{20}{c}} { - 1}&{ - 1} \\ { - 2}&{ - 1} \end{array}} \right] $
प्रश्न 9: $x$ तथा $Y$ज्ञात कीजिए यदि $\mathbf{2\left[ {\begin{array}{*{20}{l}} 1&3 \\ 0&x \end{array}} \right] + \left[ {\begin{array}{*{20}{l}} y&0 \\ 1&2 \end{array}} \right] = \left[ {\begin{array}{*{20}{l}} 5&6 \\ 1&8 \end{array}} \right]}$
उत्तर: हमें दिया गया है कि:
$2\left[ {\begin{array}{*{20}{l}} 1&3 \\ 0&x \end{array}} \right] + \left[ {\begin{array}{*{20}{l}} y&0 \\ 1&2 \end{array}} \right] = \left[ {\begin{array}{*{20}{l}} 5&6 \\ 1&8 \end{array}} \right]$
इसे परिकलित करने पर हम पाएंगे कि:
$\left[ {\begin{array}{*{20}{c}} 2&6 \\ 0&{2x} \end{array}} \right] + \left[ {\begin{array}{*{20}{l}} y&0 \\ 1&2 \end{array}} \right] = \left[ {\begin{array}{*{20}{c}} 5&6 \\ 1&8 \end{array}} \right] $
$\Rightarrow \left[ {\begin{array}{*{20}{c}} {2 + y}&6 \\ 1&{2x + 2} \end{array}} \right] = \left[ {\begin{array}{*{20}{l}} 5&6 \\ 1&8 \end{array}} \right] $
दोनों तरफ के आव्यूहों की तुलना करने पर हम पाएँगे कि:
\[2 + y = 5{\text{ }}\] तथा\[2x + 2 = 8\]
\[{\text{ }} \Rightarrow y = 5 - 2 = {\text{ }}3\] तथा \[x = {\text{ }}\frac{{8 - 2{\text{ }}}}{2}{\text{ }} = {\text{ }}3\]
प्रश्न 10. प्रदत्त समीकरण को $x,y,z$ तथा $t$ के लिए हल कीजिए यदि
$\mathbf{2\left[ {\begin{array}{*{20}{l}} x&z \\ y&t \end{array}} \right] + 3\left[ {\begin{array}{*{20}{c}} 1&{ - 1} \\ 0&2 \end{array}} \right] = 3\left[ {\begin{array}{*{20}{l}} 3&5 \\ 4&6 \end{array}} \right]}$
उत्तर: हमें दिया गया है कि:
$2\left[ {\begin{array}{*{20}{l}} x&z \\ y&t \end{array}} \right] + 3\left[ {\begin{array}{*{20}{c}} 1&{ - 1} \\ 0&2 \end{array}} \right] = 3\left[ {\begin{array}{*{20}{l}} 3&5 \\ 4&6 \end{array}} \right]$
परिकलन करने पर हम पाएंगे की :
$ \left[ {\begin{array}{*{20}{l}} {2x}&{2z} \\ {2y}&{2t} \end{array}} \right] + \left[ {\begin{array}{*{20}{c}} 3&{ - 3} \\ 0&6 \end{array}} \right] = \left[ {\begin{array}{*{20}{c}} 9&{15} \\ {12}&{18} \end{array}} \right] $
$\to \left[ {\begin{array}{*{20}{c}} {2x + 3}&{2z - 3} \\ {2y}&{2t + 6} \end{array}} \right] = \left[ {\begin{array}{*{20}{c}} 9&{15} \\ {12}&{18} \end{array}} \right] $
दोनों तरफ की आव्यूह क इतुलना करने पर हम यह चार समीकरण पाएंगे:
$\begin{array}{*{20}{l}} {2x + 3 = 9\quad \Rightarrow x = \frac{{9 - 3}}{2} = 3} \\ {2z - 3 = 15\quad \Rightarrow \quad z = \frac{{15 + 3}}{2} = 9} \\ {2y = 12\quad \Rightarrow \quad y = \frac{{12}}{2} = 6} \\ {2t + 6 = 18\quad \Rightarrow \quad t = \frac{{18 - 6}}{6} = 6} \end{array}$
प्रश्न 11. यदि $\mathbf{x\left[ {\begin{array}{*{20}{l}} 2 \\ 3 \end{array}} \right] + y\left[ {\begin{array}{*{20}{c}} { - 1} \\ 1 \end{array}} \right] = \left[ {\begin{array}{*{20}{c}} {10} \\ 5 \end{array}} \right]}$ है तो $x$ तथा $Y$के मान ज्ञात कीजिए।
उत्तर: दिया है ${\text{x}}\left[ {\begin{array}{*{20}{l}} 2 \\ 3 \end{array}} \right] + {\text{y}}\left[ {\begin{array}{*{20}{c}} { - 1} \\ 1 \end{array}} \right] = \left[ {\begin{array}{*{20}{c}} {10} \\ 5 \end{array}} \right]$
$\left[ {\begin{array}{*{20}{c}} {2x} \\ {3x} \end{array}} \right] + \left[ {\begin{array}{*{20}{c}} { - y} \\ y \end{array}} \right] = \left[ {\begin{array}{*{20}{c}} {10} \\ 5 \end{array}} \right]$
$\left[ {\begin{array}{*{20}{c}} {2x - y} \\ {3x - y} \end{array}} \right] = \left[ {\begin{array}{*{20}{c}} {10} \\ 5 \end{array}} \right]$
संगत अव्यवों की तुलना करने पर
$ 2x - y = 10........(1) $
$ 3x - y = 5..........(2) $
$ (1) + (2) $
$ 5x = 15,x = 3 $
$x$ का मान समीकरण (1) में रखने पर
$2 \times 3 - y = 10,y = 6 - 10 = - 4$
प्रश्न 12. यदि $\mathbf{3\left[ {\begin{array}{*{20}{c}} x&y \\ z&w \end{array}} \right] = \left[ {\begin{array}{*{20}{c}} x&6 \\ { - 1}&{2w} \end{array}} \right] + \left[ {\begin{array}{*{20}{c}} 4&{x + y} \\ {z + w}&3 \end{array}} \right]}$ हैं तो $x,y,z$ तथा $w$ के मानों को ज्ञात कीजिए|
उत्तर: दिया है
$ 3\left[ {\begin{array}{*{20}{l}} x&y \\ z&w \end{array}} \right] = \left[ {\begin{array}{*{20}{c}} x&6 \\ { - 1}&{2w} \end{array}} \right] + \left[ {\begin{array}{*{20}{c}} 4&{x + y} \\ {z + w}&3 \end{array}} \right] $
$ \left[ {\begin{array}{*{20}{c}} {3x}&{3y} \\ {3z}&{3w} \end{array}} \right] = \left[ {\begin{array}{*{20}{c}} {x + 4}&{6 + x + y} \\ { - 1 + z + w}&{2w + 3} \end{array}} \right] $
संगत अव्यवों की तुलना करने पर
$3x = x + 4 $
$\Rightarrow 2x = 4 $
$\Rightarrow x = 2 $
$3y = 6 + x + y $
$\Rightarrow 2y = 6 + x = 6 + 2 $
$\Rightarrow y = 4$
$3w = 2w + 3 $
$w = 3 $
$3z = - 1 + z + w $
$\Rightarrow 2z = - 1 + w = - 1 + 3 $
z = 1 $
प्रश्न 13. $\mathbf{{\text{F}}({\text{x}}) = \left[ {\begin{array}{*{20}{c}} {\cos x}&{ - \sin x}&0 \\ {\sin x}&{\cos x}&0 \\ 0&0&1 \end{array}} \right]}$ है तो सिद्ध कीजिए कि $\mathbf{{\text{F}}({\text{x}}) \cdot {\text{F}}({\text{y}}) = {\text{F}}({\text{x}} + {\text{y}})}$
उत्तर: दिया है ${\text{F}}({\text{x}}) = \left[ {\begin{array}{*{20}{c}} {\cos x}&{ - \sin x}&0 \\ {\sin x}&{\cos x}&0 \\ 0&0&1 \end{array}} \right]$
${\text{F}}({\text{y}}) = \left[ {\begin{array}{*{20}{c}} {\cos y}&{ - \sin y}&0 \\ {\sin y}&{\cos y}&0 \\ 0&0&1 \end{array}} \right] $
${\text{F}}({\text{x}}) \cdot {\text{F}}({\text{y}}) = \left[ {\begin{array}{*{20}{c}} {\cos x}&{ - \sin x}&0 \\ {\sin x}&{\cos x}&0 \\ 0&0&1 \end{array}} \right] \times \left[ {\begin{array}{*{20}{c}} {\cos y}&{ - \sin y}&0 \\ {\sin y}&{\cos y}&0 \\ 0&0&1 \end{array}} \right] $
$ = \left[ {\begin{array}{*{20}{c}} {\cos x\cos y - \sin x\sin y + 0}&{ - \cos x\sin y - \sin x\cos y + 0}&0 \\ {\sin x\cos y + \cos x\sin y + 0}&{ - \sin x\sin y + \cos x\cos y + 0}&0 \\ 0&0&1 \end{array}} \right]$
$ = \left[ {\begin{array}{*{20}{c}} {\cos (x + y)}&{ - \sin (x + y)}&0 \\ {\sin (x + y)}&{\cos (x + y)}&0 \\ 0&0&1 \end{array}} \right]$
\[ = {\text{ }}F\left( {x{\text{ }} + {\text{ }}y} \right){\text{ }} = \] दायाँ पक्ष
प्रश्न 14. दर्शाइए कि
$\mathbf{\left[ {\begin{array}{*{20}{c}} 5&{ - 1} \\ 6&7 \end{array}} \right]\left[ {\begin{array}{*{20}{l}} 2&1 \\ 3&4 \end{array}} \right] \ne \left[ {\begin{array}{*{20}{c}} 2&1 \\ 3&4 \end{array}} \right]\left[ {\begin{array}{*{20}{c}} 5&{ - 1} \\ 6&7 \end{array}} \right]}$
उत्तर: दायाँ पक्ष
$ = \left[ {\begin{array}{*{20}{l}} 2&1 \\ 3&4 \end{array}} \right]\left[ {\begin{array}{*{20}{c}} 5&{ - 1} \\ 6&7 \end{array}} \right] $
$ \left[ {\begin{array}{*{20}{c}} {10 + 6}&{ - 2 + 7} \\ {15 + 24}&{ - 3 + 28} \end{array}} \right] = \left[ {\begin{array}{*{20}{c}} {16}&5 \\ {39}&{25} \end{array}} \right] $
बायाँ पक्ष
$ = \left[ {\begin{array}{*{20}{c}} 5&{ - 1} \\ 6&7 \end{array}} \right]\left[ {\begin{array}{*{20}{l}} 2&1 \\ 3&4 \end{array}} \right] $
$ = \left[ {\begin{array}{*{20}{c}} {10 - 3}&{5 - 4} \\ {12 + 21}&{6 + 28} \end{array}} \right] = \left[ {\begin{array}{*{20}{c}} 7&1 \\ {33}&{34} \end{array}} \right] $
बाँयां पक्ष $ \ne $ दांयाँ पक्ष
$ \mathbf{= \left[ {\begin{array}{*{20}{c}} 1&2&3 \\ 0&1&0 \\ 1&1&0 \end{array}} \right]\left[ {\begin{array}{*{20}{c}} { - 1}&1&0 \\ 0&{ - 1}&1 \\ 2&3&4 \end{array}} \right]}$ $\mathbf{\left[ {\begin{array}{*{20}{c}} 1&2&3 \\ 0&1&0 \\ 1&1&0 \end{array}} \right]\left[ {\begin{array}{*{20}{c}} { - 1}&1&0 \\ 0&{ - 1}&1 \\ 2&3&4 \end{array}} \right] \ne \left[ {\begin{array}{*{20}{c}} { - 1}&1&0 \\ 0&{ - 1}&1 \\ 2&3&4 \end{array}} \right]\left[ {\begin{array}{*{20}{l}} 1&2&3 \\ 0&1&0 \\ 1&1&0 \end{array}} \right]}$
उत्तर: बाँयां पक्ष
$ = \left[ {\begin{array}{*{20}{c}} 1&2&3 \\ 0&1&0 \\ 1&1&0 \end{array}} \right]\left[ {\begin{array}{*{20}{c}} { - 1}&1&0 \\ 0&{ - 1}&1 \\ 2&3&4 \end{array}} \right]$
$ = \left[ {\begin{array}{*{20}{c}} { - 1 + 0 + 6}&{1 - 2 + 9}&{0 + 2 + 12} \\ {0 + 0 + 0}&{0 - 1 + 0}&{0 + 1 + 0} \\ { - 1 + 0 + 0}&{1 - 1 + 0}&{0 + 1 + 0} \end{array}} \right]$
$= \left[ {\begin{array}{*{20}{c}} 5&8&{14} \\ 0&{ - 1}&1 \\ { - 1}&0&1 \end{array}} \right] $
दांयाँ पक्ष $ = \left[ {\begin{array}{*{20}{c}} { - 1}&1&0 \\ 0&{ - 1}&1 \\ 2&3&4 \end{array}} \right]\left[ {\begin{array}{*{20}{l}} 1&2&3 \\ 0&1&0 \\ 1&1&0 \end{array}} \right]$
$ = \left[ {\begin{array}{*{20}{c}} { - 1 + 0 + 0}&{ - 2 + 1 + 0}&{ - 3 + 0 + 0} \\ {0 + 0 + 1}&{0 - 1 + 1}&{0 + 0 + 0} \\ {2 + 0 + 4}&{4 + 3 + 4}&{6 + 0 + 0} \end{array}} \right]$
$ = \left[ {\begin{array}{*{20}{c}} { - 1}&{ - 1}&{ - 3} \\ 1&0&0 \\ 6&{11}&6 \end{array}} \right] $
प्रश्न 15. $\mathbf{A = \left[ {\begin{array}{*{20}{c}} 2&0&1 \\ 2&1&3 \\ 1&{ - 1}&0 \end{array}} \right]}$ है तो \[\mathbf{{A^2}{\text{ }} - {\text{ }}5A{\text{ }} + {\text{ }}6I{\text{ }}}\] का माना ज्ञात कीजिए
उत्तर: दिया है $A = \left[ {\begin{array}{*{20}{c}} 2&0&1 \\ 2&1&3 \\ 1&{ - 1}&0 \end{array}} \right]$
${A^2} = A \cdot A = \left[ {\begin{array}{*{20}{c}} 2&0&1 \\ 2&1&3 \\ 1&{ - 1}&0 \end{array}} \right]\left[ {\begin{array}{*{20}{c}} 2&0&1 \\ 2&1&3 \\ 1&{ - 1}&0 \end{array}} \right] $
$ = \left[ {\begin{array}{*{20}{l}} {4 + 0 + 1}&{0 + 0 + 1}&{2 + 0 + 0} \\ {4 + 2 + 3}&{0 + 1 - 3}&{2 + 3 + 0} \\ {2 - 2 + 0}&{0 - 1 + 0}&{1 - 3 + 0} \end{array}} \right] $
$= \left[ {\begin{array}{*{20}{c}} 5&{ - 1}&2 \\ 9&{ - 2}&5 \\ 0&{ - 1}&{ - 2} \end{array}} \right] $
$ {A^2} - 5A + 6I = \left[ {\begin{array}{*{20}{c}} 5&{ - 1}&2 \\ 9&{ - 2}&5 \\ 0&{ - 1}&{ - 2} \end{array}} \right] - 5\left[ {\begin{array}{*{20}{c}} 2&0&1 \\ 2&1&3 \\ 1&{ - 1}&0 \end{array}} \right] + 6\left[ {\begin{array}{*{20}{l}} 1&0&0 \\ 0&1&0 \\ 0&0&1 \end{array}} \right]$
$= \left[ {\begin{array}{*{20}{c}} 5&{ - 1}&2 \\ 9&{ - 2}&5 \\ 0&{ - 1}&{ - 2} \end{array}} \right] - \left[ {\begin{array}{*{20}{c}} {10}&0&1 \\ {10}&5&3 \\ 5&{ - 5}&0 \end{array}} \right] + \left[ {\begin{array}{*{20}{l}} 6&0&0 \\ 0&6&0 \\ 0&0&6 \end{array}} \right] $
$= \left[ {\begin{array}{*{20}{c}} 1&{ - 1}&{ - 3} \\ { - 1}&{ - 1}&{ - 10} \\ { - 5}&4&4 \end{array}} \right] $
प्रश्न 16. $\mathbf{A = \left[ {\begin{array}{*{20}{l}} 1&0&2 \\ 0&2&1 \\ 2&0&3 \end{array}} \right]}$ है तो सिद्ध कीजिए कि \[\mathbf{{A^3}{\text{ }} - {\text{ }}6{A^2}{\text{ }} + {\text{ 7A + }}2I = 0}\]
उत्तर: दिया है $A = \left[ {\begin{array}{*{20}{l}} 1&0&2 \\ 0&2&1 \\ 2&0&3 \end{array}} \right]$
${A^2} = A \cdot A = \left[ {\begin{array}{*{20}{l}} 1&0&2 \\ 0&2&1 \\ 2&0&3 \end{array}} \right]\left[ {\begin{array}{*{20}{l}} 1&0&2 \\ 0&2&1 \\ 2&0&3 \end{array}} \right]$
$= \left[ {\begin{array}{*{20}{l}} {1 + 0 + 4}&{0 + 0 + 0}&{2 + 0 + 6} \\ {0 + 0 + 2}&{0 + 4 + 0}&{0 + 2 + 3} \\ {2 + 0 + 6}&{0 + 0 + 0}&{4 + 0 + 9} \end{array}} \right] $
$= \left[ {\begin{array}{*{20}{c}} 5&0&8 \\ 2&4&5 \\ 8&0&{13} \end{array}} \right] $
$ {A^3} = {A^2} \cdot A = \left[ {\begin{array}{*{20}{c}} 5&0&8 \\ 2&4&5 \\ 8&0&{13} \end{array}} \right]\left[ {\begin{array}{*{20}{l}} 1&0&2 \\ 0&2&1 \\ 2&0&3 \end{array}} \right] $
$ = \left[ {\begin{array}{*{20}{c}} {5 + 0 + 16}&{0 + 0 + 0}&{10 + 0 + 24} \\ {2 + 0 + 10}&{0 + 8 + 0}&{4 + 4 + 15} \\ {8 + 0 + 26}&{0 + 0 + 0}&{16 + 0 + 39} \end{array}} \right] $
$ = \left[ {\begin{array}{*{20}{l}} {21}&0&{34} \\ {12}&8&{23} \\ {34}&0&{55} \end{array}} \right]$
${A^3} - 6{A^2} + 7A + 2I = \left[ {\begin{array}{*{20}{l}} {21}&0&{34} \\ {12}&8&{23} \\ {34}&0&{55} \end{array}} \right] - 6\left[ {\begin{array}{*{20}{c}} 5&0&8 \\ 2&4&5 \\ 8&0&{13} \end{array}} \right] + 7\left[ {\begin{array}{*{20}{l}} 1&0&2 \\ 0&2&1 \\ 2&0&3 \end{array}} \right] + 2\left[ {\begin{array}{*{20}{l}} 1&0&0 \\ 0&1&0 \\ 0&0&1 \end{array}} \right]$
$= \left[ {\begin{array}{*{20}{c}} {21}&0&{34} \\ {12}&8&{23} \\ {34}&0&{55} \end{array}} \right] - \left[ {\begin{array}{*{20}{c}} {30}&0&{48} \\ {12}&{24}&{30} \\ {48}&0&{73} \end{array}} \right] + \left[ {\begin{array}{*{20}{c}} 7&0&{14} \\ 0&{14}&7 \\ {14}&0&{21} \end{array}} \right] + \left[ {\begin{array}{*{20}{l}} 2&0&0 \\ 0&2&0 \\ 0&0&2 \end{array}} \right] $
$= \left[ {\begin{array}{*{20}{l}} 0&0&0 \\ 0&0&0 \\ 0&0&0 \end{array}} \right] = 0 $
${A^3} - 6{A^2} + 7A + 2I = 0 $
प्रश्न 17. यदि $\mathbf{A = \left[ {\begin{array}{*{20}{l}} 3&{ - 2} \\ 4&{ - 2} \end{array}} \right]}$ तथा $\mathbf{I = \left[ {\begin{array}{*{20}{l}} 1&0 \\ 0&1 \end{array}} \right]}$ एवं \[\mathbf{{A^2}{\text{ }} = {\text{ KA}} - {\text{ }}2I}\] हो तो $K$ ज्ञात कीजिए
उत्तर: दिया है ${\text{A}} = \left[ {\begin{array}{*{20}{l}} 3&{ - 2} \\ 4&{ - 2} \end{array}} \right],{\text{I}} = \left[ {\begin{array}{*{20}{l}} 1&0 \\ 0&1 \end{array}} \right]$
$ {A^2} = A,A = \left[ {\begin{array}{*{20}{l}} 3&{ - 2} \\ 4&{ - 2} \end{array}} \right]\left[ {\begin{array}{*{20}{l}} 3&{ - 2} \\ 4&{ - 2} \end{array}} \right] $
$ = \left[ {\begin{array}{*{20}{c}} {9 - 8}&{ - 6 + 4} \\ {12 - 8}&{ - 8 + 4} \end{array}} \right] $
$= \left[ {\begin{array}{*{20}{l}} 1&{ - 2} \\ 4&{ - 4} \end{array}} \right] $
$KA - 2I = K\left[ {\begin{array}{*{20}{l}} 3&{ - 2} \\ 4&{ - 2} \end{array}} \right] - 2\left[ {\begin{array}{*{20}{l}} 1&0 \\ 0&1 \end{array}} \right] $
$= \left[ {\begin{array}{*{20}{l}} {3k}&{ - 2k} \\ {4k}&{ - 2k} \end{array}} \right] - \left[ {\begin{array}{*{20}{l}} 2&0 \\ 0&2 \end{array}} \right] $
$= \left[ {\begin{array}{*{20}{c}} {3k + 2}&{ - 2k} \\ {4k}&{ - 2k + 2} \end{array}} \right] $
प्रशन से,
${A^2} = KA - 2I $
$\left[ {\begin{array}{*{20}{l}} 1&{ - 2} \\ 4&{ - 4} \end{array}} \right] = \left[ {\begin{array}{*{20}{c}} {3k - 2}&{ - 2k} \\ {4k}&{ - 2k - 2} \end{array}} \right] $
$3k - 2 = 1 $
$\Rightarrow 3k = 3 $
$k = 1 $
प्रश्न 18. $\mathbf{A = \left[ {\begin{array}{*{20}{c}} 0&{ - \tan \frac{\alpha }{2}} \\ {\tan \frac{\alpha }{2}}&0 \end{array}} \right]}$ तथा $I$ कोटि $2$ का एक तत्समक आव्यूह है |तो सिद्ध कीजिए कि
$I + A = (I - A)\left[ {\begin{array}{*{20}{c}} {\cos \alpha }&{ - \sin \alpha } \\ {\sin \alpha }&{\cos \alpha } \end{array}} \right]$
उत्तर: दिया है
$A = \left[ {\begin{array}{*{20}{c}} 0&{ - \tan \frac{\alpha }{2}} \\ {\tan \frac{\alpha }{2}}&0 \end{array}} \right],I = \left[ {\begin{array}{*{20}{l}} 1&0 \\ 0&1 \end{array}} \right] $
$I + A = \left[ {\begin{array}{*{20}{c}} 1&0 \\ 0&1 \end{array}} \right] + \left[ {\begin{array}{*{20}{c}} 0&{ - \tan \frac{\alpha }{2}} \\ {\tan \frac{\alpha }{2}}&0 \end{array}} \right] $
$ - \left[ {\begin{array}{*{20}{c}} 1&{ - \tan \frac{\alpha }{2}} \\ {\tan \frac{\alpha }{2}}&1 \end{array}} \right]$
$(I - A)\left[ {\begin{array}{*{20}{c}} {\cos \alpha }&{ - \sin \alpha } \\ {\sin \alpha }&{\cos \alpha } \end{array}} \right] = \left( {\left[ {\begin{array}{*{20}{l}} 1&0 \\ 0&1 \end{array}} \right] - } \right.{\text{ }}\left. {\left[ {\begin{array}{*{20}{c}} 0&{ - \tan \frac{\alpha }{2}} \\ {\tan \frac{\alpha }{2}}&0 \end{array}} \right]} \right)\left[ {\begin{array}{*{20}{c}} {\cos \alpha }&{ - \sin \alpha } \\ {\sin \alpha }&{\cos \alpha } \end{array}} \right]$
$= \left[ {\begin{array}{*{20}{c}} 1&{\tan \frac{\alpha }{2}} \\ { - \tan \frac{\alpha }{2}}&1 \end{array}} \right]\left[ {\begin{array}{*{20}{c}} {\cos \alpha }&{ - \sin \alpha } \\ {\sin \alpha }&{\cos \alpha } \end{array}} \right] $
$= \left[ {\begin{array}{*{20}{c}} 1&{\tan \frac{\alpha }{2}} \\ { - \tan \frac{\alpha }{2}}&1 \end{array}} \right]\left[ {\begin{array}{*{20}{c}} {\frac{{1 - {{\tan }^2}\frac{\alpha }{2}}}{{1 + {{\tan }^2}\frac{\alpha }{2}}}}&{\frac{{ - 2\tan \frac{\alpha }{2}}}{{1 + {{\tan }^2}\frac{\alpha }{2}}}} \\ {\frac{{2\tan \frac{\alpha }{2}}}{{1 + {{\tan }^2}\frac{\alpha }{2}}}}&{\frac{{1 - {{\tan }^2}\frac{\alpha }{2}}}{{1 + {{\tan }^2}\frac{\alpha }{2}}}} \end{array}} \right] $
$= \left[ {\begin{array}{*{20}{c}} {\frac{{1 + {{\tan }^2}\frac{\alpha }{2}}}{{1 + {{\tan }^2}\frac{\alpha }{2}}}}&{\frac{{ - \tan \frac{\alpha }{2} - {{\tan }^3}\frac{\alpha }{2}}}{{1 + {{\tan }^2}\frac{\alpha }{2}}}} \\ {\frac{{\tan \frac{\alpha }{2} + {{\tan }^3}\frac{\alpha }{2}}}{{1 + {{\tan }^2}\frac{\alpha }{2}}}}&{\frac{{1 + {{\tan }^2}\frac{\alpha }{2}}}{{1 + {{\tan }^2}\frac{\alpha }{2}}}} \end{array}} \right] $
$= \left[ {\begin{array}{*{20}{c}} 1&{ - \tan \frac{\alpha }{2}} \\ {\tan \frac{\alpha }{2}}&1 \end{array}} \right]$
अतः $I + A = (I - A)\left[ {\begin{array}{*{20}{c}} {\cos \alpha }&{ - \sin \alpha } \\ {\sin \alpha }&{\cos \alpha } \end{array}} \right]$
प्रश्न 19. किसी व्यापार संघ के पास 30,000 रुपयों का कोष है जिसे दो भित्र-भित्र प्रकार के बांडों में निवेशित करना है। प्रथम बांड पर $5\% $ वार्षिक तथा द्वितीय बांड पर $7\% $ वार्षिक ब्याज प्राप्त होता है। आव्यूह गुणन के प्रयोग द्वारा यह निर्धारित कीजिए कि 30,000 रुपयों के कोष को दो प्रकार के बांडों में निवेश करने के लिए किस प्रकार बाँटें जिससे व्यापार संघ को प्राप्त कुल वार्षिक ब्याज
Rs 1800 हो।
Rs 2000 हो।
उत्तर: माना की एक भाग $x$ है इसलिए दूसरा भाग $(30000 - x)$
आव्यूह ${\text{A}} = \left[ {\begin{array}{*{20}{l}} x&{(30000 - {\text{x}})} \end{array}} \right]$
व्याज दर $5\% = 0.05$ तथा $7\% = 0.07$ है
${\text{B}} = \left[ {\begin{array}{*{20}{l}} {0.05} \\ {0.07} \end{array}} \right]$
कुल ब्याज \[ = {\text{ }}1800{\text{ }} = {\text{ }}A.{\text{ }}B\]
$ \left[ {\begin{array}{*{20}{l}} x&{(30000 - x)} \end{array}} \right]\left[ {\begin{array}{*{20}{l}} {0.05} \\ {0.07} \end{array}} \right] = [1800] $
$[0.05x + (3000 - x)0.07] = [1800] $
$0.05x - 0.07x + 2100 = 1800 - 0.02x $
$= - 300 $
$x = 15000 $
पहला भाग \[ = {\text{ }}15000{\text{ }}\]
दूसरा भाग\[ = {\text{ }}30000{\text{ }} - {\text{ }}15000{\text{ }} = {\text{ }}15000\]
कुल ब्याज\[ = {\text{ }}2000{\text{ }} = {\text{ }}A.{\text{ }}B\]
$\left[ {\begin{array}{*{20}{l}} x&{(30000 - x)} \end{array}} \right]\left[ {\begin{array}{*{20}{l}} {0.05} \\ {0.07} \end{array}} \right] = [2000] $
$[0.05x + (3000 - x)0.07] = [2000] $
$0.05x - 0.07x + 2100 = 2000 $
\[ - 0.02x = {\text{ }} - 100\]
\[{\text{x = }}5000\]
पहला भाग \[ = {\text{ }}5000\]
दूसरा भाग\[ = {\text{ }}30000{\text{ }} - {\text{ }}5000{\text{ }} = {\text{ }}25000\]
प्रश्न 20. किसी स्कूल की पुस्तकों की दुकान में 10 दर्जन रसायन विज्ञान, 8 दर्जन भौतिक विजान तथा 10 दर्जन अर्थशास्त्र की पुस्तकें हैं। इन पुस्तकों का विक्रय मूल्य क्रमश: Rs 80, Rs 60 तथा Rs 40 प्रति पुस्तक है। आव्यूह बीजगणित के प्रयोग द्वारा ज्ञात कीजिए कि सभी पुस्तकों को बेचने से दुकान को कुल कितनी धनराशि प्राप्त होगी।
मान लीजिए कि $\mathbf{{\text{X}},{\text{Y}},{\text{Z}},{\text{W}}}$ तथा ${\text{P}}$ क्रमशः $\mathbf{2 \times n,3 \times k,2 \times p,n \times 3}$ तथा $p \times k$ कोटियों के आव्यूह हैं। नीचे दिए प्रश्न संख्या 21 तथा 22 में सही उत्तर चुनिए।
उत्तर: रसायन विज्ञान की पुस्तकों की संख्या $ = 10$ दर्जन $ = 120$
भौतिकी विज्ञान की पुस्तकों की संख्या $ = 8$ दर्जन $ = 96$
अर्थशास्त्न की पुस्तकों की संख्या $ = 10$ दर्जन $ = 120$
आव्यूह ${\text{A}} = \left[ {\begin{array}{*{20}{l}} {120}&{96}&{120} \end{array}} \right]$
रसायन विज्ञान, भीतिकी विज्ञान तथा अथेशास्त्न की प्रत्येक का विक्रय मूल्य क्रमशः \[Rs80,{\text{ }}Rs60,\] तथा \[Rs40\]है
${\text{B}} = \left[ {\begin{array}{*{20}{l}} {80} \\ {60} \\ {40} \end{array}} \right]$
प्राप्त राशि
$= {\text{ A}}{\text{. }}B = \left[ {\begin{array}{*{20}{l}} {120}&{96}&{120} \end{array}} \right]\left[ {\begin{array}{*{20}{l}} {80} \\ {60} \\ {40} \end{array}} \right] $
$= \left[ {\begin{array}{*{20}{l}} {120 \times 80}&{96 \times 60}&{120 \times 60} \end{array}} \right] $
$= \left[ {\begin{array}{*{20}{l}} {9600}&{5760}&{4800} \end{array}} \right] = [20160] $
प्राप्त राशि \[ = {\text{ }}20160{\text{ }}Rs{\text{ }}\]
प्रश्न 21. \[\mathbf{{\text{P Y + W Y}}}\] के परिभाषित होने के लिए \[n,k,\] तथा $p$ पर क्या प्रतिबन्ध होगा |
\[\mathbf{K = 3,{\text{ }}p{\text{ }} = {\text{ }}}\]
k स्वेच्छ है,
pस्वेच्छ है,
k = 2,p = n,p = 2,k = 3,3
उत्तर: ${\text{X}},{\text{Y}},{\text{Z}},{\text{W}}$ तथा ${\text{P}}$ क्रमशः \[2 \times n,3 \times k,2 \times p,n \times 3\] तथा $p \times k$ कोटियों के आव्यूह हैं।
$P$ की कोटि $ = p \times k$
$Y$ की कोटि $ = 3 \times k$
$PY$ तभी संभव है जब $k = 3$
$PY$ की कोटि $ = p \times k = p \times 3$
$w$ की कोटि $ = n \times 3$
$Y$ की कोटि $ = 3 \times k = 3 \times 3$
$WY$ की कोटि $ = n \times 3$
$PY$ तथा $WY$ को तभी जोड़ सकते हैं जब दोनों की कोटि समान
$ p \times 3 = n \times 3 $
$ p = n $
अतः $k = 3$ तथा $p = n$ होना चाहिए
इसलिए विकल्प $(A)$ सही है
प्रश्र 22. \[\mathbf{{\mathbf{n}} = {\mathbf{p}},}\] तो आव्यूह $\mathbf{7X - 5{\text{Z}}}$ की कोटि है।
$\mathbf{{\text{p}} \times 2}$
$\mathbf{2 \times {\text{n}}}$
$\mathbf{{\text{ n}} \times 3}$
$\mathbf{{\text{p}} \times {\text{n}}}$
उत्तर: दिया है
${\text{X}},{\text{Y}},{\text{Z}},{\text{W}}$ तथा ${\text{P}}$ क्रमशः $2 \times n,3 \times k,2 \times p,n \times 3$ तथा $p \times k$ कोटियों के आव्यूह हैं।
${\text{X}}$ की कोटि $ = 2 \times n$
$Z$ की कोटि $ = 2 \times p$
$7X - 5{\text{Z}}$ तभी हो सकता है जब दोनों की कोटि समान हो
अतः $7X - 5{\text{Z}}$ की कोटि $2 \times n = 2 \times p$ होगी
इसलिए विकल्प (B) सही है।
प्रश्नावली 3.3
प्रश्न 1. निम्नलिखित आव्यूहों मे से प्रत्येक का परिवर्त ज्ञात कीजिए :
$\mathbf{\left[ {\begin{array}{*{20}{c}} 5 \\ {\frac{1}{2}} \\ { - 1} \end{array}} \right]}$
उत्तर: मान लीजिये कि, $A = \left[ {\begin{array}{*{20}{c}} 5 \\ {\frac{1}{2}} \\ { - 1} \end{array}} \right]$ इसिलए ${A^\prime } = \left[ {\begin{array}{*{20}{l}} 5&{\frac{1}{2}}&{ - 1} \end{array}} \right]$
$\mathbf{\left[ {\begin{array}{*{20}{c}} 1&{ - 1} \\ 2&3 \end{array}} \right]}$
उत्तर: मान लीजिये कि, $B = \left[ {\begin{array}{*{20}{c}} 1&{ - 1} \\ 2&3 \end{array}} \right]$ इसिलए ${B^\prime } = \left[ {\begin{array}{*{20}{c}} 1&2 \\ { - 1}&3 \end{array}} \right]$
$\mathbf{\left[ {\begin{array}{*{20}{c}} { - 1}&5&6 \\ {\sqrt 3 }&5&6 \\ 2&3&{ - 1} \end{array}} \right]}$
उत्तर: मान लीजिये कि, $C = \left[ {\begin{array}{*{20}{c}} { - 1}&5&6 \\ {\sqrt 3 }&5&6 \\ 2&3&{ - 1} \end{array}} \right]$ इसिलए $C' = \left[ {\begin{array}{*{20}{c}} { - 1}&5&6 \\ {\sqrt 3 }&5&6 \\ 2&3&{ - 1} \end{array}} \right]$
प्रश्न 2. यदि $A = \left[ {\begin{array}{*{20}{c}} { - 1}&2&3 \\ 5&7&9 \\ { - 2}&1&1 \end{array}} \right]$ तथा $B = \left[ {\begin{array}{*{20}{c}} { - 4}&1&{ - 5} \\ 1&2&0 \\ 1&3&1 \end{array}} \right]$ हैं तो सत्यापित कीजिए कि:
\[\mathbf{\left( {A{\text{ }} + {\text{ }}B} \right)\prime {\text{ }} = {\text{ }}A\prime {\text{ }} + {\text{ }}B\prime {\text{ }}}\]
उत्तर: दिया गया है, \[A{\text{ }} = 23{\text{ }}579 - 2112\]
दिया गया है , $A = \left[ {\begin{array}{*{20}{c}} { - 1}&2&3 \\ 5&7&9 \\ { - 2}&1&1 \end{array}} \right]$तथा $B = \left[ {\begin{array}{*{20}{c}} { - 4}&1&{ - 5} \\ 1&2&0 \\ 1&3&1 \end{array}} \right]$
इसिलए \[,{\text{ }}\left( {A + B} \right){\text{ }}\] $ = \left[ {\begin{array}{*{20}{c}} { - 1}&2&3 \\ 5&7&9 \\ { - 2}&1&1 \end{array}} \right] + \left[ {\begin{array}{*{20}{c}} { - 4}&1&{ - 5} \\ 1&2&0 \\ 1&3&1 \end{array}} \right]$
$ = \left[ {\begin{array}{*{20}{c}} { - 1 - 4}&{2 + 1}&{3 - 5} \\ {5 + 1}&{7 + 2}&{9 + 0} \\ { - 2 + 1}&{1 + 3}&{1 + 1} \end{array}} \right]$
$ = \left[ {\begin{array}{*{20}{c}} { - 5}&3&{ - 2} \\ 6&9&9 \\ { - 1}&4&2 \end{array}} \right]$
अब ${(A + B)^\prime } = \left[ {\begin{array}{*{20}{c}} { - 5}&6&{ - 1} \\ 3&9&4 \\ { - 2}&9&2 \end{array}} \right] \ldots .....(i)$
फिर ${A^\prime } = 5 - 2\quad 27\quad 1\quad 39\quad 1$ फिर ${A^\prime } = \left[ {\begin{array}{*{20}{c}} { - 1}&5&{ - 2} \\ 2&7&1 \\ 3&9&1 \end{array}} \right]$ तथा ${B^\prime } = \left[ {\begin{array}{*{20}{c}} { - 4}&1&1 \\ 1&2&3 \\ { - 5}&0&1 \end{array}} \right]$
इसिलए ${A^\prime } + {B^\prime } = \left[ {\begin{array}{*{20}{c}} { - 1}&5&{ - 2} \\ 2&7&1 \\ 3&9&1 \end{array}} \right] + \left[ {\begin{array}{*{20}{c}} { - 4}&1&1 \\ 1&2&3 \\ { - 5}&0&1 \end{array}} \right] = $
$ \left[ {\begin{array}{*{20}{c}} { - 1 - 4}&{5 + 1}&{ - 2 + 1} \\ {2 + 1}&{7 + 2}&{1 + 3} \\ {3 - 5}&{9 + 0}&{1 + 1} \end{array}} \right] $
$\left[ {\begin{array}{*{20}{c}} { - 5}&6&{ - 1} \\ 3&9&4 \\ { - 2}&9&2 \end{array}} \right]$
समीकरण (i) और (ii) से प्रमाणित होता है कि,
${(A + B)^\prime } = {A^\prime } + {B^\prime }$
\[\mathbf{\left( {A{\text{ }}--{\text{ }}B} \right)\prime {\text{ }} = {\text{ }}A\prime {\text{ }}--{\text{ }}B\prime }\]
अब, $(A - B) = \left[ {\begin{array}{*{20}{c}} { - 1}&2&3 \\ 5&7&9 \\ { - 2}&1&1 \end{array}} \right] - \left[ {\begin{array}{*{20}{c}} { - 4}&1&{ - 5} \\ 1&2&0 \\ 1&3&1 \end{array}} \right] = $
$ \left[ {\begin{array}{*{20}{c}} { - 1 + 4}&{2 - 1}&{3 + 5} \\ {5 - 1}&{7 - 2}&{9 - 0} \\ { - 2 - 1}&{1 - 3}&{1 - 1} \end{array}} \right] $
$\left[ {\begin{array}{*{20}{c}} 3&1&8 \\ 4&5&9 \\ { - 3}&{ - 2}&0 \end{array}} \right]$
इसिलए ${(A - B)^\prime } = \left[ {\begin{array}{*{20}{c}} 3&4&{ - 3} \\ 1&5&{ - 2} \\ 8&9&0 \end{array}} \right]$
हमें ज्ञात है कि ${A^\prime } = \left[ {\begin{array}{*{20}{c}} { - 1}&5&{ - 2} \\ 2&7&1 \\ 3&9&1 \end{array}} \right]$ तथा ${B^\prime } = \left[ {\begin{array}{*{20}{c}} { - 4}&1&1 \\ 1&2&3 \\ { - 5}&0&1 \end{array}} \right]$
फिर ${A^\prime } - {B^\prime } = \left[ {\begin{array}{*{20}{c}} { - 1}&5&{ - 2} \\ 2&7&1 \\ 3&9&1 \end{array}} \right] - \left[ {\begin{array}{*{20}{c}} { - 4}&1&1 \\ 1&2&3 \\ { - 5}&0&1 \end{array}} \right]$
$ = \left[ {\begin{array}{*{20}{c}} { - 1 + 4}&{5 - 1}&{ - 2 - 1} \\ {2 - 1}&{7 - 2}&{1 - 3} \\ {3 + 5}&{9 - 0}&{1 - 1} \end{array}} \right] $
$ = \left[ {\begin{array}{*{20}{c}} 3&4&{ - 3} \\ 1&5&{ - 2} \\ 8&9&0 \end{array}} \right].....................(iv) $
समीकरण (iii) और (iv) से प्रमाणित होता है कि,
प्रश्न 3. यदि $\mathbf{{A^\prime } = \left[ {\begin{array}{*{20}{c}} 3&4 \\ { - 1}&2 \\ 0&1 \end{array}} \right]}$ तथा $\mathbf{B = \left[ {\begin{array}{*{20}{c}} { - 1}&2&1 \\ 1&2&3 \end{array}} \right]}$ हैं तो सत्यापित कीजिए कि:
\[\mathbf{\left( {A{\text{ }} + {\text{ }}B} \right)\prime {\text{ }} = {\text{ }}A\prime {\text{ }} + {\text{ }}B\prime {\text{ }}}\]
उत्तर: दिया गया है ${A^\prime } = \left[ {\begin{array}{*{20}{c}} 3&4 \\ { - 1}&2 \\ 0&1 \end{array}} \right]$ तथा $B = \left[ {\begin{array}{*{20}{c}} { - 1}&2&1 \\ 1&2&3 \end{array}} \right]$
इसिलए $A = \left[ {\begin{array}{*{20}{c}} 3&{ - 1}&0 \\ 4&2&1 \end{array}} \right]$ और ${B^\prime } = \left[ {\begin{array}{*{20}{c}} { - 1}&1 \\ 2&2 \\ 1&3 \end{array}} \right]$ क्यूंकि
अब $({\text{A}} + {\text{B}}) = \left[ {\begin{array}{*{20}{c}} 3&{ - 1}&0 \\ 4&2&1 \end{array}} \right] + \left[ {\begin{array}{*{20}{c}} { - 1}&2&1 \\ 1&2&3 \end{array}} \right] $
$\left[ {\begin{array}{*{20}{c}} {3 - 1}&{ - 1 + 2}&{0 + 1} \\ {4 + 1}&{2 + 2}&{1 + 3} \end{array}} \right] $
$= \left[ {\begin{array}{*{20}{l}} 2&1&1 \\ 5&4&4 \end{array}} \right] $
इसिलए ${({\text{A}} + {\text{B}})^\prime } = \left[ {\begin{array}{*{20}{l}} 2&5 \\ 1&4 \\ 1&4 \end{array}} \right] \ldots ....(i)$
फिर \[{A^\prime } + {B^\prime } = \left[ {\begin{array}{*{20}{c}} 3&4 \\ { - 1}&2 \\ 0&1 \end{array}} \right] + \left[ {\begin{array}{*{20}{c}} { - 1}&1 \\ 2&2 \\ 1&3 \end{array}} \right]\]
$ = \left[ {\begin{array}{*{20}{c}} {3 - 1}&{4 + 1} \\ { - 1 + 2}&{2 + 2} \\ {0 + 1}&{1 + 3} \end{array}} \right] = \left[ {\begin{array}{*{20}{l}} 2&5 \\ 1&4 \\ 1&4 \end{array}} \right]..............(ii)$
समीकरण (i) और (ii) से प्रमाणित होता है कि,
$\left( {A{\text{ }} + {\text{ }}B} \right)\prime {\text{ }} = {\text{ }}A\prime {\text{ }} + {\text{ }}B\prime$
$\mathbf{\left( {A{\text{ }} - {\text{ }}B} \right)\prime {\text{ }} = {\text{ }}A\prime {\text{ }} - {\text{ }}B\prime}$
उत्तर: हमें ज्ञात है कि ${\text{A}} = \left[ {\begin{array}{*{20}{c}} 3&{ - 1}&0 \\ 4&2&1 \end{array}} \right]$ और ${B^\prime } = \left[ {\begin{array}{*{20}{c}} { - 1}&1 \\ 2&2 \\ 1&3 \end{array}} \right]$
अब
$({\text{A}} - {\text{B}}) = \left[ {\begin{array}{*{20}{c}} 3&{ - 1}&0 \\ 4&2&1 \end{array}} \right] - \left[ {\begin{array}{*{20}{c}} { - 1}&2&1 \\ 1&2&3 \end{array}} \right]$
$= \left[ {\begin{array}{*{20}{c}} {3 + 1}&{ - 1 - 2}&{0 - 1} \\ {4 - 1}&{2 - 2}&{1 - 3} \end{array}} \right]$
$ = \left[ {\begin{array}{*{20}{c}} 4&{ - 3}&{ - 1} \\ 3&0&{ - 2} \end{array}} \right]$
इसिलए ${(A - B)^\prime } = \left[ {\begin{array}{*{20}{c}} 4&3 \\ { - 3}&0 \\ { - 1}&{ - 2} \end{array}} \right]...................(iii)$
फिर
\[{A^\prime } - {B^\prime } = \left[ {\begin{array}{*{20}{c}} 3&4 \\ { - 1}&2 \\ 0&1 \end{array}} \right] - \left[ {\begin{array}{*{20}{c}} { - 1}&1 \\ 2&2 \\ 1&3 \end{array}} \right] = \left[ {\begin{array}{*{20}{c}} {3 + 1}&{4 - 1} \\ { - 1 - 2}&{2 - 2} \\ {0 - 1}&{1 - 3} \end{array}} \right] = \left[ {\begin{array}{*{20}{c}} 4&3 \\ { - 3}&0 \\ { - 1}&{ - 2} \end{array}} \right].......................(iv)\]
समीकरण (iii) और (iv) से प्रमाणित होता है कि,
${(A - B)^\prime } = {A^\prime } - {B^\prime }$
प्रश्न 4. यदि $\mathbf{{A^\prime } = \left[ {\begin{array}{*{20}{c}} { - 2}&3 \\ 1&2 \end{array}} \right]}$ तथा $\mathbf{B = \left[ {\begin{array}{*{20}{c}} { - 1}&0 \\ 1&2 \end{array}} \right]}$ हैं तो ज्ञात कीजिए|
उत्तर: दिया गया है${A^\prime } = \left[ {\begin{array}{*{20}{c}} { - 2}&3 \\ 1&2 \end{array}} \right]$ तथा $B = \left[ {\begin{array}{*{20}{c}} { - 1}&0 \\ 1&2 \end{array}} \right]$
इसीलिए $A = \left[ {\begin{array}{*{20}{c}} { - 2}&1 \\ 3&2 \end{array}} \right]$ [क्यूंकि ]
अब $(A + 2B) = \left[ {\begin{array}{*{20}{c}} { - 2}&1 \\ 3&2 \end{array}} \right] + 2\left[ {\begin{array}{*{20}{c}} { - 1}&0 \\ 1&2 \end{array}} \right] = \left[ {\begin{array}{*{20}{c}} { - 2}&1 \\ 3&2 \end{array}} \right] + \left[ {\begin{array}{*{20}{c}} { - 2}&0 \\ 2&4 \end{array}} \right]$
$= \left[ {\begin{array}{*{20}{c}} { - 2 - 2}&{1 + 0} \\ {3 + 2}&{2 + 4} \end{array}} \right] $
$= \left[ {\begin{array}{*{20}{c}} { - 4}&1 \\ 5&6 \end{array}} \right] $
इसिलए ${(A + 2B)^\prime } = \left[ {\begin{array}{*{20}{c}} { - 4}&5 \\ 1&6 \end{array}} \right]$
प्रश्न 5. A तथा B आव्यूहों के लिए सत्यापेत कीजिए कि ${(AB)^\prime } = {B^\prime }{A^\prime },$ जहाँ
$\mathbf{A = \left[ {\begin{array}{*{20}{c}} 1 \\ { - 4} \\ 3 \end{array}} \right],B = \left[ {\begin{array}{*{20}{l}} { - 1}&2&1 \end{array}} \right]}$
उत्तर: दिया गया है , ${\text{ (i) A}} = \left[ {\begin{array}{*{20}{c}} 1 \\ { - 4} \\ 3 \end{array}} \right],{\text{B}} = \left[ {\begin{array}{*{20}{l}} { - 1}&2&1 \end{array}} \right]$
इसिलए ${\text{AB}} = \left[ {\begin{array}{*{20}{c}} 1 \\ { - 4} \\ 3 \end{array}} \right] \times \left[ {\begin{array}{*{20}{l}} { - 1}&2&1 \end{array}} \right]$
$ = \left[ {\begin{array}{*{20}{c}} {1 \times ( - 1)}&{1 \times 2}&{1 \times 1} \\ { - 4 \times ( - 1)}&{ - 4 \times 2}&{ - 4 \times 1} \\ {3 \times ( - 1)}&{3 \times 2}&{3 \times 1} \end{array}} \right] $
$ = \left[ {\begin{array}{*{20}{c}} { - 1}&2&1 \\ 4&{ - 8}&{ - 4} \\ { - 3}&6&3 \end{array}} \right] $
अब ${({\text{AB}})^\prime } = \left[ {\begin{array}{*{20}{c}} { - 1}&4&{ - 3} \\ 2&{ - 8}&6 \\ 1&{ - 4}&3 \end{array}} \right] \ldots .....(i)$
इसिलए ${A^\prime } = \left[ {\begin{array}{*{20}{l}} 1&{ - 4}&3 \end{array}} \right]$ तथा ${B^\prime } = \left[ {\begin{array}{*{20}{c}} { - 1} \\ 2 \\ 1 \end{array}} \right]$
अब ${B^\prime }{A^\prime } = \left[ {\begin{array}{*{20}{c}} { - 1} \\ 2 \\ 1 \end{array}} \right]X\left[ {\begin{array}{*{20}{l}} 1&{ - 4}&3 \end{array}} \right] = $
$\left[ {\begin{array}{*{20}{c}} { - 1 \times 1}&{ - 1 \times ( - 4)}&{ - 1 \times 3} \\ {2 \times 1}&{2 \times ( - 4)}&{2 \times 3} \\ {1 \times 1}&{1 \times ( - 4)}&{1 \times 3} \end{array}} \right]$
$ = \left[ {\begin{array}{*{20}{c}} { - 1}&4&{ - 3} \\ 2&{ - 8}&6 \\ 1&{ - 4}&3 \end{array}} \right]..........(ii)$
समीकरण (i) और (ii) से प्रमाणित होता है कि,
${(AB)^\prime } = {B^\prime }{A^\prime }$
$\mathbf{{\text{A}} = \left[ {\begin{array}{*{20}{l}} 0 \\ 1 \\ 2 \end{array}} \right],{\text{B}} = \left[ {\begin{array}{*{20}{l}} 1&5&7 \end{array}} \right]}$
दिया गया है, ${\text{A}} = \left[ {\begin{array}{*{20}{l}} 0 \\ 1 \\ 2 \end{array}} \right],{\text{B}} = \left[ {\begin{array}{*{20}{l}} 1&5&7 \end{array}} \right]$
इसिलए $AB = \left[ {\begin{array}{*{20}{l}} 0 \\ 1 \\ 2 \end{array}} \right]X\left[ {\begin{array}{*{20}{l}} 1&5&7 \end{array}} \right] = \left[ {\begin{array}{*{20}{l}} {0 \times 1}&{0 \times 5}&{0 \times 7} \\ {1 \times 1}&{1 \times 5}&{1 \times 7} \\ {2 \times 1}&{2 \times 5}&{2 \times 7} \end{array}} \right]$
$ = \left[ {\begin{array}{*{20}{c}} 0&0&0 \\ 1&5&7 \\ 2&{10}&{14} \end{array}} \right]$
अब, ${({\text{AB}})^\prime } = \left[ {\begin{array}{*{20}{c}} 0&1&2 \\ 0&5&{10} \\ 0&7&{14} \end{array}} \right]..................(iii)$
इसिलए ${{\text{A}}^\prime } = \left[ {\begin{array}{*{20}{l}} 0&1&2 \end{array}} \right.$ तथा ${{\text{B}}^\prime } = \left[ {\begin{array}{*{20}{l}} 1 \\ 5 \\ 7 \end{array}} \right]$
अब,
$ {B^\prime }{A^\prime } = \left[ {\begin{array}{*{20}{l}} 1 \\ 5 \\ 7 \end{array}} \right]X\left[ {\begin{array}{*{20}{l}} 0&1&2 \end{array}} \right] = \left[ {\begin{array}{*{20}{l}} {1 \times 0}&{1 \times 1}&{1 \times 2} \\ {5 \times 0}&{5 \times 1}&{5 \times 2} \\ {7 \times 0}&{7 \times 1}&{7 \times 2} \end{array}} \right] $
$ = \left[ {\begin{array}{*{20}{c}} 0&1&2 \\ 0&5&{10} \\ 0&7&{14} \end{array}} \right]....................(iv) $
समीकरण (iii) और (iv) से प्रमाणित होता है कि,
${({\text{AB}})^\prime } = {{\text{B}}^\prime }{{\text{A}}^\prime }$
प्रश्न 6.
यदि $\mathbf{{\text{A}} = \left[ {\begin{array}{*{20}{c}} {\cos \alpha }&{\sin \alpha } \\ { - \sin \alpha }&{\cos \alpha } \end{array}} \right]}$ हो तो सत्यापित कीजिए कि:
उत्तर: दिया गया है ${\text{A}} = \left[ {\begin{array}{*{20}{c}} {\cos \alpha }&{\sin \alpha } \\ { - \sin \alpha }&{\cos \alpha } \end{array}} \right]$ इसिलए ${\text{A'}} = \left[ {\begin{array}{*{20}{c}} {\cos \alpha }&{ - \sin \alpha } \\ {\sin \alpha }&{\cos \alpha } \end{array}} \right]$
अब, ${A^\prime }A = \left[ {\begin{array}{*{20}{c}} {\cos \alpha }&{ - \sin \alpha } \\ {\sin \alpha }&{\cos \alpha } \end{array}} \right] \times \left[ {\begin{array}{*{20}{c}} {\cos \alpha }&{\sin \alpha } \\ { - \sin \alpha }&{\cos \alpha } \end{array}} \right]$ $ = \left[ {\begin{array}{*{20}{c}} {{{\cos }^2}\alpha + {{\sin }^2}\alpha }&{\cos \alpha \sin \alpha - \sin \alpha \cos \alpha } \\ {\sin \alpha \cos \alpha - \cos \alpha \sin \alpha }&{{{\sin }^2}\alpha + {{\cos }^2}\alpha } \end{array}} \right]$
$ = \left[ {\begin{array}{*{20}{l}} 1&0 \\ 0&1 \end{array}} \right] = I$ [क्यूंकि ${\sin ^2}\alpha + {\cos ^2}\alpha = 1$]
इसीलिए प्रमाणित होता है कि,
यदि $\mathbf{{\text{A}} = \left[ {\begin{array}{*{20}{c}} {\sin \alpha }&{\cos \alpha } \\ { - \cos \alpha }&{\sin \alpha } \end{array}} \right]}$ हो तो सत्यापित कीजिए कि:
उत्तर: दिया गया है $A = \left[ {\begin{array}{*{20}{c}} {\sin \alpha }&{\cos \alpha } \\ { - \cos \alpha }&{\sin \alpha } \end{array}} \right]$ इसीलए $A = \left[ {\begin{array}{*{20}{c}} {\sin \alpha }&{ - \cos \alpha } \\ {\cos \alpha }&{\sin \alpha } \end{array}} \right]$
अब ${A^\prime }A = \left[ {\begin{array}{*{20}{c}} {\sin \alpha }&{ - \cos \alpha } \\ {\cos \alpha }&{\sin \alpha } \end{array}} \right] \times \left[ {\begin{array}{*{20}{c}} {\sin \alpha }&{\cos \alpha } \\ { - \cos \alpha }&{\sin \alpha } \end{array}} \right]$ $ = \left[ {\begin{array}{*{20}{c}} {{{\sin }^2}\alpha + {{\cos }^2}\alpha }&{\sin \alpha \cos \alpha - \cos \alpha \sin \alpha } \\ {\cos \alpha \sin \alpha - \sin \alpha \cos \alpha }&{{{\cos }^2}\alpha + {{\sin }^2}\alpha } \end{array}} \right]$
$ = \left[ {\begin{array}{*{20}{l}} 1&0 \\ 0&1 \end{array}} \right] = I$ [क्यूंकि ${\sin ^2}\alpha + {\cos ^2}\alpha = 1$]
इसीलए प्रमाणित होता है की
प्रश्न 7.
सिद्ध कीजिए की आव्यूह $\mathbf{A = \left[ {\begin{array}{*{20}{c}} 1&{ - 1}&5 \\ { - 1}&2&1 \\ 5&1&3 \end{array}} \right]}$ एक सममित आव्यूह हैं|
उत्तर: दिया गया है $A = \left[ {\begin{array}{*{20}{c}} 1&{ - 1}&5 \\ { - 1}&2&1 \\ 5&1&3 \end{array}} \right]$ इसीलिए \[A' = \left[ {\begin{array}{*{20}{c}} 1&{ - 1}&5 \\ { - 1}&2&1 \\ 5&1&3 \end{array}} \right]\]
चूँकि इसीलए प्रमाणित होता है की आव्यूह $A = \left[ {\begin{array}{*{20}{c}} 1&{ - 1}&5 \\ { - 1}&2&1 \\ 5&1&3 \end{array}} \right]$ एक सममित आव्यूह हैं|
सिद्ध कीजिए की आव्यूह $\mathbf{A = \left[ {\begin{array}{*{20}{c}} 0&1&{ - 1} \\ { - 1}&0&1 \\ 1&{ - 1}&0 \end{array}} \right]}$ एक विषम सममित आव्यूह हैं|
उत्तर: दिया गया है $A = \left[ {\begin{array}{*{20}{c}} 0&1&{ - 1} \\ { - 1}&0&1 \\ 1&{ - 1}&0 \end{array}} \right]$ इसीलिए, ${A^\prime } = \left[ {\begin{array}{*{20}{c}} 0&{ - 1}&1 \\ 1&0&{ - 1} \\ { - 1}&1&0 \end{array}} \right] = - \left[ {\begin{array}{*{20}{c}} 0&1&{ - 1} \\ { - 1}&0&1 \\ 1&{ - 1}&0 \end{array}} \right]$
चूँकि इसीलिए प्रमाणित होता है की आव्यूह $A = \left[ {\begin{array}{*{20}{c}} 0&1&{ - 1} \\ { - 1}&0&1 \\ 1&{ - 1}&0 \end{array}} \right]$ एक विषम आव्यूह हैं|
प्रश्न 8. आव्यूह $\mathbf{A = \left[ {\begin{array}{*{20}{l}} 1&5 \\ 6&7 \end{array}} \right]}$ के लिए सत्यापित कीजिए कि
एक सममित आव्यूह हैं|
उत्तर: दिया गया है, $A = \left[ {\begin{array}{*{20}{l}} 1&5 \\ 6&7 \end{array}} \right]$ इसीलिए ${{\text{A}}^\prime } = \left[ {\begin{array}{*{20}{l}} 1&6 \\ 5&7 \end{array}} \right]$
अब, $\left( {A + {A^\prime }} \right) = \left[ {\begin{array}{*{20}{l}} 1&5 \\ 6&7 \end{array}} \right] + \left[ {\begin{array}{*{20}{l}} 1&6 \\ 5&7 \end{array}} \right] = \left[ {\begin{array}{*{20}{l}} {1 + 1}&{5 + 6} \\ {6 + 5}&{7 + 7} \end{array}} \right] = \left[ {\begin{array}{*{20}{c}} 2&{11} \\ {11}&{14} \end{array}} \right]$
फिर ${\left( {A + {A^\prime }} \right)^\prime } = \left[ {\begin{array}{*{20}{c}} 2&{11} \\ {11}&{14} \end{array}} \right]$
चूँकि इसीलिए प्रमाणित होता है की आव्यूह एक सममित आव्यूह हैं|
एक विषम आव्यूह हैं|
उत्तर: अब, $\left( {A - {A^\prime }} \right) = \left[ {\begin{array}{*{20}{l}} 1&5 \\ 6&7 \end{array}} \right] - \left[ {\begin{array}{*{20}{l}} 1&6 \\ 5&7 \end{array}} \right] = \left[ {\begin{array}{*{20}{l}} {1 - 1}&{5 - 6} \\ {6 - 5}&{7 - 7} \end{array}} \right] = \left[ {\begin{array}{*{20}{c}} 0&{ - 1} \\ 1&0 \end{array}} \right]$
फिर, ${\left( {{\text{A}} - {{\text{A}}^\prime }} \right)^\prime } = \left[ {\begin{array}{*{20}{c}} 0&1 \\ { - 1}&0 \end{array}} \right] = - \left[ {\begin{array}{*{20}{c}} 0&{ - 1} \\ 1&0 \end{array}} \right]$
इसीलिए प्रमाणित हॉट अहै की आव्यूह एक विषम सममित आव्यूह हैं|
प्रश्न 9. यदि $\mathbf{{\text{A}} = \left[ {\begin{array}{*{20}{c}} 0&a&b \\ { - a}&0&c \\ { - b}&{ - c}&0 \end{array}} \right]$ तो $\frac{1}{2}\left( {A + {A^\prime }} \right)$ तथा $\frac{1}{2}\left( {A - {A^\prime }} \right)}$ ज्ञात कीजिए|
उत्तर: दिया गया है ${\text{A}} = \left[ {\begin{array}{*{20}{c}} 0&a&b \\ { - a}&0&c \\ { - b}&{ - c}&0 \end{array}} \right]$
इसीलिए ${{\text{A}}^\prime } = \left[ {\begin{array}{*{20}{c}} 0&{ - a}&{ - b} \\ a&0&{ - c} \\ b&c&0 \end{array}} \right] = - \left[ {\begin{array}{*{20}{c}} 0&a&b \\ { - a}&0&c \\ { - b}&{ - c}&0 \end{array}} \right] = - {\text{A}}$
अब $\frac{1}{2}\left( {A + {A^\prime }} \right) = \frac{1}{2}\left( {\left[ {\begin{array}{*{20}{c}} 0&a&b \\ { - a}&0&c \\ { - b}&{ - c}&0 \end{array}} \right] - \left[ {\begin{array}{*{20}{c}} 0&a&b \\ { - a}&0&c \\ { - b}&{ - c}&0 \end{array}} \right]} \right) $
$\left[ {\begin{array}{*{20}{l}} 0&0&0 \\ 0&0&0 \\ 0&0&0 \end{array}} \right]$
फिर ${\text{,}}\frac{1}{2}\left( {A - {A^\prime }} \right) = \frac{1}{2}\left( {\left[ {\begin{array}{*{20}{c}} 0&a&b \\ { - a}&0&c \\ { - b}&{ - c}&0 \end{array}} \right] + \left[ {\begin{array}{*{20}{c}} 0&a&b \\ { - a}&0&c \\ { - b}&{ - c}&0 \end{array}} \right]} \right) = \frac{1}{2}\left[ {\begin{array}{*{20}{c}} 0&{2a}&{2b} \\ { - 2a}&0&{2c} \\ { - 2b}&{ - 2c}&0 \end{array}} \right]$
$\left[ {\begin{array}{*{20}{c}} 0&a&b \\ { - a}&0&c \\ { - b}&{ - c}&0 \end{array}} \right]$
प्रश्न 10. निम्नलिखित आव्यूहों एक सममित आव्यूह तथा एक विषम सममित आव्यूह के योगफल के रूप में व्यक्त कीजिए :
$\mathbf{\left[ {\begin{array}{*{20}{c}} 3&5 \\ 1&{ - 1} \end{array}} \right]}$
उत्तर: मान लीजिये कि,${\text{A}} = \left[ {\begin{array}{*{20}{c}} 3&5 \\ 1&{ - 1} \end{array}} \right],{{\text{A}}^\prime } = \left[ {\begin{array}{*{20}{c}} 3&1 \\ 5&{ - 1} \end{array}} \right]$
इसीलिए, ${\text{A}} = \frac{1}{2}\left( {A + {A^\prime }} \right) + \frac{1}{2}\left( {A - {A^\prime }} \right)$
माना, ${\text{P}} = \frac{1}{2}\left( {A + {A^\prime }} \right)$ तथा ${\text{Q}} = \frac{1}{2}\left( {A - {A^\prime }} \right)$
अब, ${\text{P}} = \frac{1}{2}\left( {A + {A^\prime }} \right) = \frac{1}{2}\left( {\left[ {\begin{array}{*{20}{c}} 3&5 \\ 1&{ - 1} \end{array}} \right] + \left[ {\begin{array}{*{20}{c}} 3&1 \\ 5&{ - 1} \end{array}} \right]} \right) = \frac{1}{2}\left[ {\begin{array}{*{20}{c}} {3 + 3}&{5 + 1} \\ {1 + 5}&{ - 1 - 1} \end{array}} \right] = \frac{1}{2}\left[ {\begin{array}{*{20}{c}} 6&6 \\ 6&{ - 2} \end{array}} \right] \frac{1}{2}\left[ {\begin{array}{*{20}{c}} {3 + 3}&{5 + 1} \\ {1 + 5}&{ - 1 - 1} \end{array}} \right] = \frac{1}{2}\left[ {\begin{array}{*{20}{c}} 6&6 \\ 6&{ - 2} \end{array}} \right]$
$= \left[ {\begin{array}{*{20}{c}} 3&3 \\ 3&{ - 1} \end{array}} \right] $
तथा ${P^\prime } = \left[ {\begin{array}{*{20}{c}} 3&3 \\ 3&{ - 1} \end{array}} \right] = P$, इसीलिए आव्यूह $P$ एक सममित आव्यूह हैं|
फिर
${\text{Q}} = \frac{1}{2}\left( {A - {A^\prime }} \right) = \frac{1}{2}\left( {\left[ {\begin{array}{*{20}{c}} 3&5 \\ 1&{ - 1} \end{array}} \right] - \left[ {\begin{array}{*{20}{c}} 3&1 \\ 5&{ - 1} \end{array}} \right]} \right) = \frac{1}{2}\left[ {\begin{array}{*{20}{c}} {3 - 3}&{5 - 1} \\ {1 - 5}&{ - 1 + 1} \end{array}} \right] = \frac{1}{2}\left[ {\begin{array}{*{20}{c}} 0&4 \\ { - 4}&0 \end{array}} \right] $
$ = \left[ {\begin{array}{*{20}{c}} 0&2 \\ { - 2}&0 \end{array}} \right] $
तथा ${Q^\prime } = \left[ {\begin{array}{*{20}{c}} 0&{ - 2} \\ 2&0 \end{array}} \right] = - Q$ इसीलिए आव्यूह $Q$ एक विषम सममित आव्यूह हैं|
इसीलिए $A = P + Q = \left[ {\begin{array}{*{20}{c}} 3&3 \\ 3&{ - 1} \end{array}} \right] + \left[ {\begin{array}{*{20}{c}} 0&{ - 2} \\ { - 2}&0 \end{array}} \right]$
$\mathbf{\left[ {\begin{array}{*{20}{c}} 6&{ - 2}&2 \\ { - 2}&3&{ - 1} \\ 2&{ - 1}&3 \end{array}} \right]}$
उत्तर: मान लीजिये कि, ${\text{A}} = \left[ {\begin{array}{*{20}{c}} 6&{ - 2}&2 \\ { - 2}&3&{ - 1} \\ 2&{ - 1}&3 \end{array}} \right],{{\text{A}}^\prime } = \left[ {\begin{array}{*{20}{c}} 6&{ - 2}&2 \\ { - 2}&3&{ - 1} \\ 2&{ - 1}&3 \end{array}} \right]$
इसीलिए, ${\text{A}} = \frac{1}{2}\left( {A + {A^\prime }} \right) + \frac{1}{2}\left( {A - {A^\prime }} \right)$
माना, ${\text{P}} = \frac{1}{2}\left( {A + {A^\prime }} \right)$ तथा${\text{Q}} = \frac{1}{2}\left( {A - {A^\prime }} \right)$
अब, $P = \frac{1}{2}\left( {A + {A^\prime }} \right) = \frac{1}{2}\left( {\left[ {\begin{array}{*{20}{c}} 6&{ - 2}&2 \\ { - 2}&3&{ - 1} \\ 2&{ - 1}&3 \end{array}} \right] + } \right.\left. {\left[ {\begin{array}{*{20}{c}} 6&{ - 2}&2 \\ { - 2}&3&{ - 1} \\ 2&{ - 1}&3 \end{array}} \right]} \right) = \left[ {\begin{array}{*{20}{c}} 6&{ - 2}&2 \\ { - 2}&3&{ - 1} \\ 2&{ - 1}&3 \end{array}} \right]$
तथा ${P^\prime } = \left[ {\begin{array}{*{20}{c}} 6&{ - 2}&2 \\ { - 2}&3&{ - 1} \\ 2&{ - 1}&3 \end{array}} \right] = P$ , इसीलिए आव्यूह $P$ एक सममित आव्यूह हैं|
फिर $Q = \frac{1}{2}\left( {A - {A^\prime }} \right) = \frac{1}{2}\left( {\left[ {\begin{array}{*{20}{c}} 6&{ - 2}&2 \\ { - 2}&3&{ - 1} \\ 2&{ - 1}&3 \end{array}} \right] - } \right.\left. {\left[ {\begin{array}{*{20}{c}} 6&{ - 2}&2 \\ { - 2}&3&{ - 1} \\ 2&{ - 1}&3 \end{array}} \right]} \right) = \left[ {\begin{array}{*{20}{l}} 0&0&0 \\ 0&0&0 \\ 0&0&0 \end{array}} \right]$
तथा ${Q^\prime } = \left[ {\begin{array}{*{20}{l}} 0&0&0 \\ 0&0&0 \\ 0&0&0 \end{array}} \right] = - Q{\text{, }}$ इसीलिए आव्यूह एक विषम सममित आव्यूह हैं
इसीलिए ${\text{A}} = {\text{P}} + {\text{Q}} = \left[ {\begin{array}{*{20}{c}} 6&{ - 2}&2 \\ { - 2}&3&{ - 1} \\ 2&{ - 1}&3 \end{array}} \right] + \left[ {\begin{array}{*{20}{l}} 0&0&0 \\ 0&0&0 \\ 0&0&0 \end{array}} \right]$
$\mathbf{\left[ {\begin{array}{*{20}{c}} 3&3&{ - 1} \\ { - 2}&{ - 2}&1 \\ { - 4}&{ - 5}&2 \end{array}} \right]}$
उत्तर: मान लीजिये कि, $A = \left[ {\begin{array}{*{20}{c}} 3&3&{ - 1} \\ { - 2}&{ - 2}&1 \\ { - 4}&{ - 5}&2 \end{array}} \right],{A^\prime } = \left[ {\begin{array}{*{20}{c}} 3&{ - 2}&{ - 4} \\ 3&{ - 2}&{ - 5} \\ { - 1}&1&2 \end{array}} \right]$
इसीलिए, ${\text{A}} = \frac{1}{2}\left( {A + {A^\prime }} \right) + \frac{1}{2}\left( {A - {A^\prime }} \right)$
माना ${\text{P}} = \frac{1}{2}\left( {A + {A^\prime }} \right)$ तथा ${\text{Q}} = \frac{1}{2}\left( {A - {A^\prime }} \right)$
अब ${\text{P}} = \frac{1}{2}\left( {A + {A^\prime }} \right) = \frac{1}{2}\left( {\left[ {\left[ {\begin{array}{*{20}{c}} 3&3&{ - 1} \\ { - 2}&{ - 2}&1 \\ { - 4}&{ - 5}&2 \end{array}} \right]} \right] + } \right.{\text{ }}\left. {\left[ {\begin{array}{*{20}{c}} 3&{ - 2}&{ - 4} \\ 3&{ - 2}&{ - 5} \\ { - 1}&1&2 \end{array}} \right]} \right) = \frac{1}{2}\left[ {\begin{array}{*{20}{c}} 6&1&{ - 5} \\ 1&{ - 4}&{ - 4} \\ { - 5}&{ - 4}&4 \end{array}} \right]$
$ = \left[ {\begin{array}{*{20}{c}} 3&{\frac{1}{2}}&{ - \frac{5}{2}} \\ {\frac{1}{2}}&{ - 2}&{ - 2} \\ { - \frac{5}{2}}&{ - 2}&2 \end{array}} \right]$
तथा ${P^\prime } = \left[ {\begin{array}{*{20}{c}} 3&{\frac{1}{2}}&{ - \frac{5}{2}} \\ {\frac{1}{2}}&{ - 2}&{ - 2} \\ { - \frac{5}{2}}&{ - 2}&2 \end{array}} \right] = P$ इसीलिए आव्यूह एक सममित आव्यूह हैं |
फिर,
${\text{Q}} = \frac{1}{2}\left( {A - {A^\prime }} \right) = \frac{1}{2}\left( {\left[ {\begin{array}{*{20}{c}} 3&3&{ - 1} \\ { - 2}&{ - 2}&1 \\ { - 4}&{ - 5}&2 \end{array}} \right]} \right] - \left. {\left[ {\begin{array}{*{20}{c}} 3&{ - 2}&{ - 4} \\ 3&{ - 2}&{ - 5} \\ { - 1}&1&2 \end{array}} \right]} \right) = \frac{1}{2}\left[ {\begin{array}{*{20}{c}} 0&5&3 \\ { - 5}&0&6 \\ { - 3}&{ - 6}&0 \end{array}} \right] $
$= \left[ {\begin{array}{*{20}{c}} 0&{\frac{5}{2}}&{\frac{3}{2}} \\ { - \frac{5}{2}}&0&3 \\ { - \frac{3}{2}}&{ - 3}&0 \end{array}} \right] $
तथा ${Q^\prime } = \left[ {\begin{array}{*{20}{c}} 0&{ - \frac{5}{2}}&{ - \frac{3}{2}} \\ {\frac{5}{2}}&0&{ - 3} \\ {\frac{3}{2}}&3&0 \end{array}} \right] = - Q$ इसीलिए आव्यूह $Q$ एक विषम सममित आव्यूह हैं|
इसीलिए $A = P + Q = \left[ {\begin{array}{*{20}{c}} 3&{\frac{1}{2}}&{ - \frac{5}{2}} \\ {\frac{1}{2}}&{ - 2}&{ - 2} \\ { - \frac{5}{2}}&{ - 2}&2 \end{array}} \right] + \left[ {\begin{array}{*{20}{c}} 0&{\frac{5}{2}}&{\frac{3}{2}} \\ { - \frac{5}{2}}&0&3 \\ { - \frac{3}{2}}&{ - 3}&0 \end{array}} \right]$
$\mathbf{\left[ {\begin{array}{*{20}{c}} 1&5 \\ { - 1}&2 \end{array}} \right]}$
उत्तर: मान लीजिये कि, $A = \left[ {\begin{array}{*{20}{c}} 1&5 \\ { - 1}&2 \end{array}} \right],{A^\prime } = \left[ {\begin{array}{*{20}{c}} 1&{ - 1} \\ 5&2 \end{array}} \right]$
इसीलिए, ${\text{A}} = \frac{1}{2}\left( {A + {A^\prime }} \right) + \frac{1}{2}\left( {A - {A^\prime }} \right)$
माना ${\text{P}} = \frac{1}{2}\left( {A + {A^\prime }} \right)$ तथा ${\text{Q}} = \frac{1}{2}\left( {A - {A^\prime }} \right)$
अब,
${\text{P}} = \frac{1}{2}\left( {A + {A^\prime }} \right) = \frac{1}{2}\left( {\left[ {\begin{array}{*{20}{c}} 1&5 \\ { - 1}&2 \end{array}} \right] + \left[ {\begin{array}{*{20}{c}} 1&{ - 1} \\ 5&2 \end{array}} \right]} \right) $
$ = \frac{1}{2}\left[ {\begin{array}{*{20}{c}} {1 + 1}&{5 - 1} \\ { - 1 + 5}&{2 + 2} \end{array}} \right] = \frac{1}{2}\left[ {\begin{array}{*{20}{l}} 2&4 \\ 4&4 \end{array}} \right] $
$ = \left[ {\begin{array}{*{20}{l}} 1&2 \\ 2&2 \end{array}} \right] $
तथा ${{\text{P}}^r} = \left[ {\begin{array}{*{20}{l}} 1&2 \\ 2&2 \end{array}} \right] = {\text{P}}$ इसीलिए आव्यूह ${\text{P}}$ एक सममित आव्यूह हैं|
फिर
${\text{Q}} = \frac{1}{2}\left( {A - {A^\prime }} \right) = \frac{1}{2}\left( {\left[ {\begin{array}{*{20}{c}} 1&5 \\ { - 1}&2 \end{array}} \right] - \left[ {\begin{array}{*{20}{c}} 1&{ - 1} \\ 5&2 \end{array}} \right]} \right) $
$= \frac{1}{2}\left[ {\begin{array}{*{20}{c}} {1 - 1}&{5 + 1} \\ { - 1 - 5}&{2 - 2} \end{array}} \right] = \frac{1}{2}\left[ {\begin{array}{*{20}{c}} 0&6 \\ { - 6}&0 \end{array}} \right] = \left[ {\begin{array}{*{20}{c}} 0&3 \\ { - 3}&0 \end{array}} \right] $
तथा ${{\text{Q}}^\prime } = \left[ {\begin{array}{*{20}{c}} 0&{ - 3} \\ 3&0 \end{array}} \right] = - \left[ {\begin{array}{*{20}{c}} 0&{ - 3} \\ 3&0 \end{array}} \right] = - {\text{Q}}$ इसीलिए आव्यूह ${\text{Q}}$ एक विषम सममित आव्यूह हैं|
इसीलिए $A = P + Q = \left[ {\begin{array}{*{20}{l}} 1&2 \\ 2&2 \end{array}} \right] + \left[ {\begin{array}{*{20}{c}} 0&3 \\ { - 3}&0 \end{array}} \right]$
प्रश्न 11. यदि $A$ तथा $B$ समान कोटि के सममित आव्यूह हैं तो \[AB - BA\] एक
विषम सममित आव्यूह हैं
सममित आव्यूह हैं
शून्य आव्यूह हैं
तत्समक आव्यूह हैं
उत्तर: [चूँकि ]
[चूँकि ]
\[ = {\text{ }}BA{\text{ }} - {\text{ }}AB{\text{ }}\] [दिया गया है: ]
\[ = {\text{ }} - {\text{ }}\left( {AB{\text{ }}--{\text{ }}BA} \right)\]
चूँकि
इसीलिए आव्यूह \[\left( {AB - BA} \right)\] एक विषम सममित आव्यूह हैं|
अतः, विकल्प (A) सही हैं।
प्रश्न 12. यदि ${\text{A}} = \left[ {\begin{array}{*{20}{c}} {\cos \alpha }&{ - \sin \alpha } \\ {\sin \alpha }&{\cos \alpha } \end{array}} \right]{\text{ }}$तो ${\text{A}} + {{\text{A}}^\prime } = 1, यदि\[\alpha \] का मान है
$\mathbf{\frac{\pi }{6}}$
$\mathbf{\frac{\pi }{3}}$
$\mathbf{\pi }$
$\mathbf{\frac{{3\pi }}{2}}$
उत्तर: दिया गया है ${\text{A}} = \left[ {\begin{array}{*{20}{c}} {\cos \alpha }&{ - \sin \alpha } \\ {\sin \alpha }&{\cos \alpha } \end{array}} \right]$, इसीलिए ${\text{A'}} = \left[ {\begin{array}{*{20}{c}} {\cos \alpha }&{\sin \alpha } \\ { - \sin \alpha }&{\cos \alpha } \end{array}} \right]$
अब, ${\text{A}} + {{\text{A}}^\prime } = \left[ {\begin{array}{*{20}{c}} {\cos \alpha }&{ - \sin \alpha } \\ {\sin \alpha }&{\cos \alpha } \end{array}} \right] + \left[ {\begin{array}{*{20}{c}} {\cos \alpha }&{\sin \alpha } \\ { - \sin \alpha }&{\cos \alpha } \end{array}} \right] = \left[ {\begin{array}{*{20}{c}} {2\cos \alpha }&0 \\ 0&{2\cos \alpha } \end{array}} \right]$
चूँकि इसीलिए $\left[ {\begin{array}{*{20}{c}} {2\cos \alpha }&0 \\ 0&{2\cos \alpha } \end{array}} \right] = \left[ {\begin{array}{*{20}{l}} 1&0 \\ 0&1 \end{array}} \right]$
क्योंकि क्रमित युग्म समान है, इसीलिए संगत घटक भी समान होंगे|
इसीलिए $2\cos \alpha = 1 \Rightarrow \cos \alpha = \frac{1}{2} \Rightarrow \cos \alpha = \cos \frac{\pi }{3} \Rightarrow \alpha = \frac{\pi }{3}$
अतः, विकल्प(B) सही हैं
प्रश्नावली 3.4
प्रश्न संख्या 1 से 17 तक के आव्यूहों व्युत्क्रम,यदि उनका अस्तित्व है, तो प्रारंभिक -रुपांतरण के प्रयोग से ज्ञात कीजिए:
प्रश्न 1. $\left[ {\begin{array}{*{20}{c}} 1&{ - 1} \\ 2&3 \end{array}} \right]$
उत्तर: दिया गया आव्यूह $A = \left[ {\begin{array}{*{20}{c}} 1&{ - 1} \\ 2&3 \end{array}} \right]$
आव्यूह$A$ को $A = IA$ के रूप में लिखने पर,
$ \left[ {\begin{array}{*{20}{c}} 1&{ - 1} \\ 2&3 \end{array}} \right] = \left[ {\begin{array}{*{20}{l}} 1&0 \\ 0&1 \end{array}} \right]A $
$\Rightarrow \left[ {\begin{array}{*{20}{c}} 1&{ - 1} \\ 0&5 \end{array}} \right] = \left[ {\begin{array}{*{20}{c}} 1&0 \\ { - 2}&1 \end{array}} \right]A\quad \ldots \ldots \ldots \ldots \ldots ..\left[ {{R_{2 \to }}{R_2} - 2{R_1}} \right] $
$\Rightarrow \left[ {\begin{array}{*{20}{c}} 1&{ - 1} \\ 0&1 \end{array}} \right] = \left[ {\begin{array}{*{20}{c}} 1&0 \\ {\frac{{ - 2}}{5}}&{\frac{1}{5}} \end{array}} \right]A \ldots \ldots \ldots \ldots \ldots \ldots \ldots ..\left[ {{R_{2 \to }}\frac{1}{5}{R_2}} \right] $
$\Rightarrow \left[ {\begin{array}{*{20}{l}} 1&0 \\ 0&1 \end{array}} \right] = \left[ {\begin{array}{*{20}{c}} {\frac{3}{5}}&{\frac{1}{5}} \\ {\frac{{ - 2}}{5}}&{\frac{1}{5}} \end{array}} \right]A \ldots \ldots \ldots \ldots \ldots \ldots \ldots .\left[ {{R_1} \to {R_1} + {R_2}} \right] $
$\therefore {A^{ - 1}} = \left[ {\begin{array}{*{20}{c}} {\frac{3}{5}}&{\frac{1}{5}} \\ {\frac{{ - 2}}{5}}&{\frac{1}{5}} \end{array}} \right]$
प्रश्न 2. $\mathbf{\left[ {\begin{array}{*{20}{l}} 2&1 \\ 1&1 \end{array}} \right]}$
उत्तर: दिया गया आव्यूह $A = \left[ {\begin{array}{*{20}{l}} 2&1 \\ 1&1 \end{array}} \right]$
आव्यूह$A$ को $A = IA$ के रूप में लिखने पर,
$\left[ {\begin{array}{*{20}{l}} 2&1 \\ 1&1 \end{array}} \right] = \left[ {\begin{array}{*{20}{l}} 1&0 \\ 0&1 \end{array}} \right]A $
$\Rightarrow \left[ {\begin{array}{*{20}{l}} 1&0 \\ 1&1 \end{array}} \right] = \left[ {\begin{array}{*{20}{c}} 1&{ - 1} \\ 0&1 \end{array}} \right]A \ldots \ldots \ldots \ldots \ldots \ldots \ldots \left[ {{R_1} \to {R_1} - {R_2}} \right] $
$\Rightarrow \left[ {\begin{array}{*{20}{c}} 1&0 \\ 0&{ - 1} \end{array}} \right] = \left[ {\begin{array}{*{20}{c}} 1&{ - 1} \\ { - 1}&2 \end{array}} \right]A \ldots \ldots \ldots \ldots \ldots \ldots \left[ {{R_2} \to {R_2} - {R_1}} \right]$
$\therefore {A^{ - 1}} = \left[ {\begin{array}{*{20}{c}} 1&{ - 1} \\ { - 1}&2 \end{array}} \right]$
प्रश्न 3. $\mathbf{\left[ {\begin{array}{*{20}{l}} 1&3 \\ 2&7 \end{array}} \right]}$
उत्तर: दिया गया आव्यूह $A = \left[ {\begin{array}{*{20}{l}} 1&3 \\ 2&7 \end{array}} \right]$
आव्यूह$A$ को $A = IA$ के रूप में लिखने पर,
$\left[ {\begin{array}{*{20}{l}} 1&3 \\ 2&7 \end{array}} \right] = \left[ {\begin{array}{*{20}{l}} 1&0 \\ 0&1 \end{array}} \right]A$
$\Rightarrow \left[ {\begin{array}{*{20}{l}} 1&3 \\ 0&1 \end{array}} \right] = \left[ {\begin{array}{*{20}{c}} 1&0 \\ { - 2}&1 \end{array}} \right]A \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots ..\left[ {{R_2} \to {R_2} - 2{R_1}} \right] $
$\Rightarrow \left[ {\begin{array}{*{20}{l}} 1&0 \\ 0&1 \end{array}} \right] = \left[ {\begin{array}{*{20}{c}} 7&{ - 3} \\ { - 2}&1 \end{array}} \right]A \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots ..\left[ {{R_1} \to {R_1} - 2{R_2}} \right]\quad$
$\therefore {A^{ - 1}} = \left[ {\begin{array}{*{20}{c}} 7&{ - 3} \\ { - 2}&1 \end{array}} \right]$
प्रश्न 4. $\mathbf{\left[ {\begin{array}{*{20}{l}} 2&3 \\ 5&7 \end{array}} \right]}$
उत्तर: दिया गया आव्यूह $A = \left[ {\begin{array}{*{20}{l}} 2&3 \\ 5&7 \end{array}} \right]$
आव्यूह$A$ को $A = IA$ के रूप में लिखने पर,
$\left[ {\begin{array}{*{20}{l}} 2&3 \\ 5&7 \end{array}} \right] = \left[ {\begin{array}{*{20}{l}} 1&0 \\ 0&1 \end{array}} \right]A $
$\Rightarrow \left[ {\begin{array}{*{20}{l}} 2&3 \\ 1&1 \end{array}} \right] = \left[ {\begin{array}{*{20}{c}} 1&0 \\ { - 2}&1 \end{array}} \right]A \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \left[ {{R_1} \to {R_2} - 2{R_1}} \right] $
$\Rightarrow \left[ {\begin{array}{*{20}{l}} 1&2 \\ 1&1 \end{array}} \right] = \left[ {\begin{array}{*{20}{c}} 3&{ - 1} \\ { - 2}&1 \end{array}} \right]A \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots .\left[ {{R_1} \to {R_1} - {R_2}} \right] $
$\Rightarrow \left[ {\begin{array}{*{20}{c}} 1&2 \\ 0&{ - 1} \end{array}} \right] = \left[ {\begin{array}{*{20}{c}} 3&{ - 1} \\ { - 5}&2 \end{array}} \right]A \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots .\left[ {{R_2} = {R_2} - {R_1}} \right] $
$\Rightarrow \left[ {\begin{array}{*{20}{l}} 1&2 \\ 0&1 \end{array}} \right] = \left[ {\begin{array}{*{20}{l}} 3&{ - 1} \\ 5&{ - 2} \end{array}} \right]A \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots .\left[ {{R_2} \to - {R_2}} \right] $
$\Rightarrow \left[ {\begin{array}{*{20}{l}} 1&0 \\ 0&1 \end{array}} \right] = \left[ {\begin{array}{*{20}{c}} { - 7}&3 \\ 5&{ - 2} \end{array}} \right]A \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \left[ {{R_1} \to {R_1} - 2{R_2}} \right] $
$\therefore {A^{ - 1}} = \left[ {\begin{array}{*{20}{c}} { - 7}&3 \\ 5&{ - 2} \end{array}} \right]$
प्रश्न 5. $\mathbf{\left[ {\begin{array}{*{20}{l}} 2&1 \\ 7&4 \end{array}} \right]}$
उत्तर: दिया गया आव्यूह $A = \left[ {\begin{array}{*{20}{l}} 2&1 \\ 7&4 \end{array}} \right]$
आव्यूह$A$ को $A = IA$ के रूप में लिखने पर,
$\left[ {\begin{array}{*{20}{l}} 2&1 \\ 7&4 \end{array}} \right] = \left[ {\begin{array}{*{20}{l}} 1&0 \\ 0&1 \end{array}} \right]A $
$\Rightarrow \left[ {\begin{array}{*{20}{l}} 2&1 \\ 1&1 \end{array}} \right] = \left[ {\begin{array}{*{20}{c}} 1&0 \\ { - 3}&1 \end{array}} \right]A \ldots \ldots \ldots \ldots \ldots \ldots \ldots ..\left[ {{R_2} \to {R_2} - 3{R_1}} \right] $
$\Rightarrow \left[ {\begin{array}{*{20}{l}} 1&0 \\ 1&1 \end{array}} \right] = \left[ {\begin{array}{*{20}{c}} 4&{ - 1} \\ { - 3}&1 \end{array}} \right]A \ldots \ldots \ldots \ldots \ldots \ldots \ldots \left[ {{R_1} \to {R_1} - {R_2}} \right] $
$\Rightarrow \left[ {\begin{array}{*{20}{l}} 1&0 \\ 1&1 \end{array}} \right]A = \left[ {\begin{array}{*{20}{c}} 4&{ - 1} \\ { - 7}&2 \end{array}} \right]{A_1} \ldots \ldots \ldots \ldots \ldots \ldots .\left[ {{R_2} \to {R_2} - {R_1}} \right] $
$\therefore {A^{ - 1}} = \left[ {\begin{array}{*{20}{c}} 4&{ - 1} \\ { - 7}&2 \end{array}} \right]$
प्रश्न 6. $\mathbf{\left[ {\begin{array}{*{20}{l}} 2&5 \\ 1&3 \end{array}} \right]}$
उत्तर: दिया गया आव्यूह$A = \left[ {\begin{array}{*{20}{l}} 2&5 \\ 1&3 \end{array}} \right]$
आव्यूह$A$ को $A = IA$ के रूप में लिखने पर,
$\left[ {\begin{array}{*{20}{l}} 2&5 \\ 1&3 \end{array}} \right] = \left[ {\begin{array}{*{20}{l}} 1&0 \\ 0&1 \end{array}} \right]A $
$\Rightarrow \left[ {\begin{array}{*{20}{l}} 1&2 \\ 1&3 \end{array}} \right] = \left[ {\begin{array}{*{20}{c}} 1&{ - 1} \\ 0&1 \end{array}} \right]A \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \left[ {{R_1} \to {R_1} - {R_2}} \right]$
$\Rightarrow \left[ {\begin{array}{*{20}{l}} 1&2 \\ 0&1 \end{array}} \right] = \left[ {\begin{array}{*{20}{c}} 1&{ - 1} \\ { - 1}&2 \end{array}} \right]A \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \left[ {\left[ {{R_2} \to {R_2} - {R_1}} \right]} \right] $
$\Rightarrow \left[ {\begin{array}{*{20}{l}} 1&0 \\ 0&1 \end{array}} \right] = \left[ {\begin{array}{*{20}{c}} 3&{ - 5} \\ { - 1}&2 \end{array}} \right]A \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \left[ {{R_1} \to {R_1} - 2{R_2}} \right] $
$\therefore {A^{ - 1}} = \left[ {\begin{array}{*{20}{c}} 3&{ - 5} \\ { - 1}&2 \end{array}} \right]$
प्रश्न 7. $\mathbf{\left[ {\begin{array}{*{20}{l}} 3&1 \\ 5&2 \end{array}} \right]}$
उत्तर: दिया गया आव्यूह $A = \left[ {\begin{array}{*{20}{l}} 3&1 \\ 5&2 \end{array}} \right]$
आव्यूह$A$ को $A = IA$ के रूप में लिखने पर,
$\left[ {\begin{array}{*{20}{l}} 3&1 \\ 5&2 \end{array}} \right] = \left[ {\begin{array}{*{20}{l}} 1&0 \\ 0&1 \end{array}} \right]A $
$\Rightarrow \left[ {\begin{array}{*{20}{l}} 3&1 \\ 5&2 \end{array}} \right] = \left[ {\begin{array}{*{20}{c}} 1&0 \\ { - 1}&1 \end{array}} \right]A \ldots \ldots \ldots \ldots \ldots \ldots \ldots .\left[ {\left[ {{R_2} \to {R_2} - {R_1}} \right]} \right] $
$\Rightarrow \left[ {\begin{array}{*{20}{l}} 1&0 \\ 2&1 \end{array}} \right] = \left[ {\begin{array}{*{20}{c}} 2&{ - 1} \\ { - 1}&1 \end{array}} \right]A \ldots \ldots \ldots \ldots \ldots \ldots \ldots .\left[ {{R_1} \to {R_1} - {R_2}} \right] $
$\Rightarrow \left[ {\begin{array}{*{20}{c}} 1&0 \\ 0&1 \end{array}} \right] = \left[ {\begin{array}{*{20}{c}} 2&{ - 1} \\ { - 5}&3 \end{array}} \right]A \ldots \ldots \ldots \ldots \ldots \ldots \ldots .\left[ {{R_2} \to {R_2} - 2{R_1}} \right]$
$\therefore {A^{ - 1}} = \left[ {\begin{array}{*{20}{c}} 2&{ - 1} \\ { - 5}&3 \end{array}} \right]$
प्रश्न 8. $\mathbf{\left[ {\begin{array}{*{20}{l}} 4&5 \\ 3&4 \end{array}} \right]}$
उत्तर: दिया गया आव्यूह$A = \left[ {\begin{array}{*{20}{l}} 4&5 \\ 3&4 \end{array}} \right]$
आव्यूह$A$ को $A = IA$ के रूप में लिखने पर,
$\left[ {\begin{array}{*{20}{l}} 4&5 \\ 3&4 \end{array}} \right] = \left[ {\begin{array}{*{20}{l}} 1&0 \\ 0&1 \end{array}} \right]A $
$\Rightarrow \left[ {\begin{array}{*{20}{l}} 1&1 \\ 3&4 \end{array}} \right] = \left[ {\begin{array}{*{20}{c}} 1&{ - 1} \\ 0&1 \end{array}} \right]A \ldots \ldots \ldots \ldots \ldots \ldots \ldots \left[ {{R_1} \to {R_1} - {R_2}} \right] $
$\Rightarrow \left[ {\begin{array}{*{20}{l}} 1&1 \\ 0&1 \end{array}} \right] = \left[ {\begin{array}{*{20}{c}} 1&{ - 1} \\ { - 3}&4 \end{array}} \right]A \ldots \ldots \ldots \ldots \ldots \ldots ..\left[ {{R_2} \to {R_2} - 3{R_1}} \right] $
$\Rightarrow \left[ {\begin{array}{*{20}{c}} 1&0 \\ 0&1 \end{array}} \right] = \left[ {\begin{array}{*{20}{c}} 4&{ - 5} \\ { - 3}&4 \end{array}} \right]A \ldots \ldots \ldots \ldots \ldots \ldots .\left[ {{R_1} \to {R_1} - {R_2}} \right] $
$\therefore {A^{ - 1}} = \left[ {\begin{array}{*{20}{c}} 4&{ - 5} \\ { - 3}&4 \end{array}} \right]$
प्रश्न 9. $\mathbf{\left[ {\begin{array}{*{20}{c}} 3&{10} \\ 2&7 \end{array}} \right]}$
उत्तर: दिया गया आव्यूह$A = \left[ {\begin{array}{*{20}{c}} 3&{10} \\ 2&7 \end{array}} \right]$
आव्यूह$A$ को $A = IA$ के रूप में लिखने पर,
$\left[ {\begin{array}{*{20}{c}} 3&{10} \\ 2&7 \end{array}} \right] = \left[ {\begin{array}{*{20}{l}} 1&0 \\ 0&1 \end{array}} \right]A $
$\Rightarrow \left[ {\begin{array}{*{20}{l}} 1&3 \\ 2&7 \end{array}} \right] = \left[ {\begin{array}{*{20}{c}} 1&{ - 1} \\ 0&1 \end{array}} \right]A \ldots \ldots \ldots \ldots \ldots \ldots \ldots .\left[ {{R_1} \to {R_1} - {R_2}} \right] $
$\Rightarrow \left[ {\begin{array}{*{20}{l}} 1&3 \\ 0&1 \end{array}} \right] = \left[ {\begin{array}{*{20}{c}} 1&{ - 1} \\ { - 2}&3 \end{array}} \right]{A_1} \ldots \ldots \ldots \ldots \ldots \ldots .\left[ {{R_2} \to {R_2} - 2{R_1}} \right] $
$\Rightarrow \left[ {\begin{array}{*{20}{c}} 1&0 \\ 0&1 \end{array}} \right] = \left[ {\begin{array}{*{20}{c}} 7&{ - 10} \\ { - 2}&3 \end{array}} \right]A \ldots \ldots \ldots \ldots \ldots \ldots \left[ {{R_1} \to {R_1} - 3{R_2}} \right] $
$\therefore {A^{ - 1}} = \left[ {\begin{array}{*{20}{c}} 7&{ - 10} \\ { - 2}&3 \end{array}} \right]$
प्रश्न10. $\mathbf{\left[ {\begin{array}{*{20}{c}} 3&{ - 1} \\ { - 4}&2 \end{array}} \right]}$
उत्तर: दिया गया आव्यूह$A = \left[ {\begin{array}{*{20}{c}} 3&{ - 1} \\ { - 4}&2 \end{array}} \right]$
आव्यूह$A$ को $A = IA$ के रूप में लिखने पर,
प्रयुक्त ${R_1} \to {R_2}$
$ \Rightarrow \left[ {\begin{array}{*{20}{c}} { - 4}&2 \\ 3&{ - 1} \end{array}} \right] = \left[ {\begin{array}{*{20}{l}} 0&1 \\ 1&0 \end{array}} \right]A$
प्रयुक्त ${R_1} \to ( - 1) \times {R_1}$
$ \Rightarrow \left[ {\begin{array}{*{20}{l}} 4&{ - 2} \\ 3&{ - 1} \end{array}} \right] = \left[ {\begin{array}{*{20}{c}} 0&{ - 1} \\ 1&0 \end{array}} \right]A$
प्रयुक्त \[{R_2} \to {R_2} - 3{R_1}\]
$\Rightarrow \left[ {\begin{array}{*{20}{c}} 1&{ - 1} \\ 0&1 \end{array}} \right] = \left[ {\begin{array}{*{20}{c}} { - 1}&{ - 1} \\ 4&3 \end{array}} \right]A$
प्रयुक्त ${R_2} \to \frac{1}{2} \times {R_2}$
$ \Rightarrow \left[ {\begin{array}{*{20}{c}} 1&{ - 1} \\ 0&1 \end{array}} \right] = \left[ {\begin{array}{*{20}{c}} { - 1}&{ - 1} \\ 2&{\frac{3}{2}} \end{array}} \right]A$
प्रयुक्त ${R_1} \to {R_2} + {R_2}$
$ \Rightarrow \left[ {\begin{array}{*{20}{l}} 1&0 \\ 0&1 \end{array}} \right] = \left[ {\begin{array}{*{20}{l}} 1&{\frac{1}{2}} \\ 2&{\frac{3}{2}} \end{array}} \right]A$
$\therefore {A^{ - 1}} = \left[ {\begin{array}{*{20}{l}} 1&{\frac{1}{2}} \\ 2&{\frac{3}{2}} \end{array}} \right]$
प्रश्न11. $\mathbf{\left[ {\begin{array}{*{20}{l}} 2&{ - 6} \\ 1&{ - 2} \end{array}} \right]}$
उत्तर: दिया गया आव्यूह $A = \left[ {\begin{array}{*{20}{l}} 2&{ - 6} \\ 1&{ - 2} \end{array}} \right]$
आव्यूह$A$ को $A = IA$ के रूप में लिखने पर,
$\left[ {\begin{array}{*{20}{l}} 2&{ - 6} \\ 1&{ - 2} \end{array}} \right] = \left[ {\begin{array}{*{20}{l}} 1&0 \\ 0&1 \end{array}} \right]A $
$\Rightarrow \left[ {\begin{array}{*{20}{c}} 1&{ - 4} \\ 1&{ - 2} \end{array}} \right] = \left[ {\begin{array}{*{20}{c}} 1&{ - 1} \\ 0&1 \end{array}} \right]A \ldots \ldots \ldots \ldots \ldots \ldots \ldots \left[ {{R_1} \to {R_1} - {R_2}} \right] $
$\Rightarrow \left[ {\begin{array}{*{20}{c}} 1&{ - 4} \\ 0&2 \end{array}} \right] = \left[ {\begin{array}{*{20}{c}} 1&{ - 1} \\ { - 1}&2 \end{array}} \right]A \ldots \ldots \ldots \ldots \ldots \left[ {{R_2} \to {R_2} - {R_1}} \right] $
$\Rightarrow \left[ {\begin{array}{*{20}{l}} 1&0 \\ 0&2 \end{array}} \right] = \left[ {\begin{array}{*{20}{r}} { - 1}&3 \\ { - 1}&2 \end{array}} \right]A \ldots \ldots \ldots \ldots \ldots \ldots \ldots \left[ {{R_1} \to {R_1} + 2{R_2}} \right] $
$\Rightarrow \left[ {\begin{array}{*{20}{l}} 1&0 \\ 0&1 \end{array}} \right] = \left[ {\begin{array}{*{20}{c}} { - 1}&3 \\ {\frac{{ - 1}}{2}}&1 \end{array}} \right]A \ldots \ldots \ldots \ldots \ldots \ldots \ldots ..\left[ {{R_1} = \frac{1}{2}{R_1}} \right] $
$\therefore {A^{ - 1}} = \left[ {\begin{array}{*{20}{c}} { - 1}&3 \\ {\frac{{ - 1}}{2}}&1 \end{array}} \right]$
प्रश्न12. $\mathbf{\left[ {\begin{array}{*{20}{c}} 6&{ - 3} \\ { - 2}&1 \end{array}} \right]}$
उत्तर: दिया गया आव्यूह $A = \left[ {\begin{array}{*{20}{c}} 6&{ - 3} \\ { - 2}&1 \end{array}} \right]$
आव्यूह$A$ को $A = IA$ के रूप में लिखने पर,
$\left[ {\begin{array}{*{20}{c}} 6&{ - 3} \\ { - 2}&1 \end{array}} \right] = \left[ {\begin{array}{*{20}{l}} 1&0 \\ 0&1 \end{array}} \right]A $
$\Rightarrow \left[ {\begin{array}{*{20}{c}} 0&0 \\ { - 2}&1 \end{array}} \right] = \left[ {\begin{array}{*{20}{l}} 1&3 \\ 0&1 \end{array}} \right]A \ldots \ldots \ldots \ldots \ldots \ldots .\left[ {{R_1} \to {R_1} + 3{R_2}} \right] $
चूँकि पहली पक्ति में दोनों अवयव शून्य है ।
$\therefore {\text{A}}$ का व्युक्क्रम ${A^{ - 1}}$ अस्तित्व नहीं है।
प्रश्न13. $\mathbf{\left[ {\begin{array}{*{20}{c}} 2&{ - 3} \\ { - 1}&2 \end{array}} \right]}$
उत्तर: दिया गया आव्यूह$A = \left[ {\begin{array}{*{20}{c}} 2&{ - 3} \\ { - 1}&2 \end{array}} \right]$
आव्यूह$A$ को $A = IA$ के रूप में लिखने पर,
$\left[ {\begin{array}{*{20}{c}} 2&{ - 3} \\ { - 1}&3 \end{array}} \right] = \left[ {\begin{array}{*{20}{l}} 1&0 \\ 0&1 \end{array}} \right]A $
$\Rightarrow \left[ {\begin{array}{*{20}{c}} 1&{ - 1} \\ { - 1}&2 \end{array}} \right] = \left[ {\begin{array}{*{20}{c}} 1&1 \\ 0&1 \end{array}} \right]A \ldots \ldots \ldots \ldots \ldots \ldots \ldots .\left[ {{R_1} \to {R_1} + {R_2}} \right] $
$\Rightarrow \left[ {\begin{array}{*{20}{c}} 1&{ - 1} \\ 0&1 \end{array}} \right] = \left[ {\begin{array}{*{20}{l}} 1&1 \\ 1&2 \end{array}} \right]A \ldots \ldots \ldots \ldots \ldots \ldots \ldots .\left[ {{R_2} = {R_2} + {R_1}} \right] $
$\Rightarrow \left[ {\begin{array}{*{20}{l}} 1&0 \\ 0&1 \end{array}} \right] = \left[ {\begin{array}{*{20}{l}} 2&3 \\ 1&2 \end{array}} \right]A \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots .\left[ {{R_1} \to {R_1} + {R_2}} \right] $
$\therefore {A^{ - 1}} = \left[ {\begin{array}{*{20}{l}} 2&3 \\ 1&2 \end{array}} \right]$
प्रश्न14. $\mathbf{\left[ {\begin{array}{*{20}{l}} 2&1 \\ 4&2 \end{array}} \right]}$
उत्तर: दिया गया आव्यूह $A = \left[ {\begin{array}{*{20}{l}} 2&1 \\ 4&2 \end{array}} \right]$
आव्यूह$A$ को $A = IA$ के रूप में लिखने पर,
$\left[ {\begin{array}{*{20}{l}} 2&1 \\ 4&2 \end{array}} \right] = \left[ {\begin{array}{*{20}{l}} 1&0 \\ 0&1 \end{array}} \right]A $
$\Rightarrow \left[ {\begin{array}{*{20}{l}} 2&1 \\ 0&0 \end{array}} \right] = \left[ {\begin{array}{*{20}{l}} 1&0 \\ 0&1 \end{array}} \right]A \ldots \ldots \ldots \ldots \ldots ..{R_2} \to {R_2} - 2{R_1} $
$\Rightarrow \left[ {\begin{array}{*{20}{l}} 0&0 \\ 4&2 \end{array}} \right] = \left[ {\begin{array}{*{20}{l}} 1&{\frac{{ - 1}}{2}} \\ 0&1 \end{array}} \right]A$
चूकि पहली पक्ति में दोनों अवयव शून्य है ।
$\therefore {\text{A}}$ का व्युत्क्रम ${A^{ - 1}}$ अस्तित्व नहीं है।
प्रश्न15. $\mathbf{\left[ {\begin{array}{*{20}{c}} 2&{ - 3}&3 \\ 2&2&3 \\ 3&{ - 2}&2 \end{array}} \right]}$
उत्तर: दिया गया आव्यूह$A = \left[ {\begin{array}{*{20}{c}} 2&{ - 3}&3 \\ 2&2&3 \\ 3&{ - 2}&2 \end{array}} \right]$
आव्यूह$A$ को $A = IA$ के रूप में लिखने पर,
$ \left[ {\begin{array}{*{20}{c}} 2&{ - 3}&3 \\ 2&2&3 \\ 3&{ - 2}&2 \end{array}} \right] = \left[ {\begin{array}{*{20}{l}} 1&0&0 \\ 0&1&0 \\ 0&0&1 \end{array}} \right]{\text{A}} $
$ \Rightarrow \left[ {\begin{array}{*{20}{l}} 2&0&3 \\ 2&5&3 \\ 3&0&2 \end{array}} \right] = \left[ {\begin{array}{*{20}{l}} 1&0&0 \\ 0&1&0 \\ 0&1&1 \end{array}} \right]A \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots .{C_2} \to {C_2} + {C_3} $
$\Rightarrow \left[ {\begin{array}{*{20}{c}} 1&0&3 \\ 1&5&3 \\ { - 1}&0&2 \end{array}} \right] = \left[ {\begin{array}{*{20}{c}} { - 1}&0&0 \\ 0&1&1 \\ 1&1&1 \end{array}} \right]{\text{ A}}........................{\text{ }}\left[ {{C_1} \to {C_3} - } \right.\left. {{C_1}} \right] $
$\Rightarrow \left[ {\begin{array}{*{20}{c}} 1&0&0 \\ 1&5&0 \\ { - 1}&0&5 \end{array}} \right] = \left[ {\begin{array}{*{20}{c}} { - 1}&0&3 \\ {\frac{{ - 1}}{5}}&1&0 \\ {\frac{4}{5}}&1&{ - 2} \end{array}} \right]A \ldots \ldots \ldots \ldots \ldots \ldots \ldots ..\left[ {{C_1} \to {C_1} - } \right.\left. {\frac{1}{5}{C_2}} \right] $
$\Rightarrow \left[ {\begin{array}{*{20}{c}} 1&0&0 \\ 0&5&0 \\ { - 1}&0&5 \end{array}} \right] = \left[ {\begin{array}{*{20}{c}} {\frac{{ - 2}}{5}}&0&3 \\ {\frac{{ - 1}}{5}}&1&0 \\ {\frac{2}{5}}&1&{ - 2} \end{array}} \right] \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots ..\left[ {{C_1} \to } \right.\left. {{C_1} - \frac{1}{5}{C_3}} \right] $
$ \Rightarrow \left[ {\begin{array}{*{20}{l}} 1&0&0 \\ 0&1&0 \\ 0&0&1 \end{array}} \right] = \left[ {\begin{array}{*{20}{c}} {\frac{{ - 2}}{5}}&0&{\frac{3}{5}} \\ {\frac{{ - 1}}{5}}&{\frac{1}{5}}&0 \\ {\frac{2}{5}}&{\frac{1}{5}}&{\frac{{ - 2}}{5}} \end{array}} \right] \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots ..\left[ {{C_2} \to } \right.\left. {\frac{1}{5}{C_2},{C_3} \to \frac{1}{5}{C_3}} \right]$
$\therefore {A^{ - 1}} = \left[ {\begin{array}{*{20}{c}} {\frac{{ - 2}}{5}}&0&{\frac{3}{5}} \\ {\frac{{ - 1}}{5}}&{\frac{1}{5}}&0 \\ {\frac{2}{5}}&{\frac{1}{5}}&{\frac{{ - 2}}{5}} \end{array}} \right]$
प्रश्न16. $\mathbf{\left[ {\begin{array}{*{20}{c}} 1&3&{ - 2} \\ { - 3}&0&{ - 5} \\ 2&5&0 \end{array}} \right]}$
उत्तर: दिया गया आव्यूह $A = \left[ {\begin{array}{*{20}{c}} 1&3&{ - 2} \\ { - 3}&0&{ - 5} \\ 2&5&0 \end{array}} \right]$
आव्यूह$A$ को $A = IA$ के रूप में लिखने पर,
$\left[ {\begin{array}{*{20}{c}} 1&3&{ - 2} \\ { - 3}&0&{ - 5} \\ 2&5&0 \end{array}} \right] = \left[ {\begin{array}{*{20}{l}} 1&0&0 \\ 0&1&0 \\ 0&0&1 \end{array}} \right]A$
$ \Rightarrow \left[ {\begin{array}{*{20}{c}} 1&3&{ - 2} \\ 0&9&{ - 11} \\ 0&{ - 1}&4 \end{array}} \right] = $
$ \left[ {\begin{array}{*{20}{c}} 1&0&0 \\ 3&1&0 \\ { - 2}&0&1 \end{array}} \right]A \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots .\left[{{R_2} \to {R_2} + 3{R_1}{R_3} \to } \right.\left. {{R_3} - 2{R_1}} \right] $
$ \Rightarrow \left[ {\begin{array}{*{20}{c}} 1&3&{ - 2} \\ 0&1&{21} \\ 0&{ - 1}&4 \end{array}} \right] = $
$\left[ {\begin{array}{*{20}{c}} 1&0&0 \\ { - 13}&1&8 \\ { - 2}&0&1 \end{array}} \right]A \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots ..\left[ {{R_1} \to {R_1} - 3{R_2},{R_3} \to } \right.\left. {{R_3} + {R_2}} \right] $
$\Rightarrow \left[ {\begin{array}{*{20}{c}} 1&0&{ - 65} \\ 1&1&{21} \\ 0&0&1 \end{array}} \right] = $
$\left[ {\begin{array}{*{20}{c}} {40}&{ - 3}&{ - 24} \\ { - 13}&1&8 \\ { - \frac{{15}}{{25}}}&{\frac{1}{{25}}}&{\frac{9}{{25}}} \end{array}} \right]A \ldots \ldots \ldots \ldots \left[ {{R_3} \to \frac{1}{{25}} \times {R_3}} \right] $
$\Rightarrow \left[ {\begin{array}{*{20}{l}} 1&0&0 \\ 0&1&0 \\ 0&0&1 \end{array}} \right] = $
$\left[ {\begin{array}{*{20}{r}} 1&{ - \frac{2}{5}}&{ - \frac{3}{5}} \\ { - \frac{2}{5}}&{\frac{4}{{25}}}&{\frac{{11}}{{25}}} \\ { -\frac{3}{5}}&{\frac{1}{{25}}}&{\frac{9}{{25}}} \end{array}} \right]{\text{ }}A \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots ...\left[ {{R_1} \to {R_1} + } \right.\left. {65{R_3},{R_2} \to {R_2} - 21{R_3}} \right] $
$\therefore {A^{ - 1}} = \left[ {\begin{array}{*{20}{c}} 1&{ - \frac{2}{5}}&{ - \frac{3}{5}} \\ { - \frac{2}{5}}&{\frac{4}{{25}}}&{\frac{{11}}{{15}}} \\ { - \frac{3}{5}}&{\frac{1}{{25}}}&{\frac{9}{{25}}} \end{array}} \right] = $
$- \frac{1}{{25}}\left[ {\begin{array}{*{20}{c}} { - 25}&{10}&{15} \\ {10}&{ - 4}&{ - 11} \\ {15}&{ - 1}&{ - 9} \end{array}} \right] \ldots \ldots \ldots \ldots \ldots ...\left[ {\because A{A^{ - 1}} = I} \right] $
प्रश्न17. $\mathbf{\left[ {\begin{array}{*{20}{c}} 2&0&{ - 1} \\ 5&1&0 \\ 0&1&3 \end{array}} \right]}$
उत्तर: दिया गया आव्यूह$A = \left[ {\begin{array}{*{20}{c}} 2&0&{ - 1} \\ 5&1&0 \\ 0&1&3 \end{array}} \right]$
आव्यूह$A$ को $A = IA$ के रूप में लिखने पर,
$\left[ {\begin{array}{*{20}{c}} 2&0&{ - 1} \\ 5&1&0 \\ 0&1&3 \end{array}} \right] = \left[ {\begin{array}{*{20}{l}} 1&0&0 \\ 0&1&0 \\ 0&0&1 \end{array}} \right]{\text{ A }} \ldots \ldots \ldots \ldots \ldots \ldots .{R_1} \Leftrightarrow {R_2}$
$ \Rightarrow \left[ {\begin{array}{*{20}{c}} 5&1&0 \\ 2&0&{ - 1} \\ 0&1&3 \end{array}} \right] = \left[ {\begin{array}{*{20}{l}} 0&1&0 \\ 1&0&0 \\ 0&0&1 \end{array}} \right]{\text{ A}}...............{\text{ }}{R_1} - 2{R_2} \Rightarrow {R_1}$
$ \Rightarrow \left[ {\begin{array}{*{20}{c}} 1&1&2 \\ 2&0&{ - 1} \\ 0&1&3 \end{array}} \right] = \left[ {\begin{array}{*{20}{c}} { - 2}&1&0 \\ 1&0&0 \\ 0&0&1 \end{array}} \right]A \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots .{R_2} - 2{R_2} \Rightarrow {R_2}$
$ \Rightarrow \left[ {\begin{array}{*{20}{l}} 1&1&2 \\ 0&2&5 \\ 0&1&3 \end{array}} \right] = \left[ {\begin{array}{*{20}{c}} { - 2}&1&0 \\ { - 5}&2&0 \\ 0&0&1 \end{array}} \right]A \ldots \ldots \ldots \ldots \ldots \ldots \ldots ..{R_2} \Leftrightarrow {R_2}$
$ \Rightarrow \left[ {\begin{array}{*{20}{l}} 1&1&2 \\ 0&1&2 \\ 0&1&3 \end{array}} \right] = \left[ {\begin{array}{*{20}{c}} { - 2}&1&0 \\ { - 5}&2&{ - 1} \\ 0&0&1 \end{array}} \right]A \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots .{R_2} - {R_3} \Rightarrow {R_2}$
$ \Rightarrow \left[ {\begin{array}{*{20}{l}} 1&0&0 \\ 0&1&2 \\ 0&1&3 \end{array}} \right] = \left[ {\begin{array}{*{20}{c}} 3&{ - 1}&1 \\ { - 5}&2&{ - 1} \\ 0&0&1 \end{array}} \right]A \ldots \ldots \ldots \ldots \ldots ..{R_1} - {R_2} = {R_1}$
$\therefore {A^{ - 1}} = \left[ {\begin{array}{*{20}{c}} 3&{ - 1}&1 \\ { - 15}&6&{ - 5} \\ 5&{ - 2}&2 \end{array}} \right]$
प्रश्न18. आव्यूहों ${\text{A}}$ तथा ${\text{B}}$ एक दूसरे के व्युत्रम होंगे केवल यदि
AB = BA
AB = BA = 0
AB = 0,BA = 1
AB = BA = 1
उत्तर: \[D.{\text{ }}A{\text{ }}B = B{\text{ }}A = 1\]
${\text{AB}} = {\text{BA}} = 1,$ केवल इस स्थिति में ही आव्यूह ${\text{A}}$ और आव्यूह ${\text{B}}$ एक दूसरे के व्युत्क्रम होंगे ।
अत: विकल्प (D) सही है।
प्रश्नावली A3
प्रश्न 1 मान लीजिए कि $\mathbf{A = \left( {\begin{array}{*{20}{l}} 0&1 \\ 0&0 \end{array}} \right)}$ हो तो दिखाइए की सभी $\mathbf{n \in N}$ के लिए $\mathbf{{(aI + bA)^n} = {a^n}I + n{a^{n - 1}}bA}$ जहाँ$I$ एक कोटि$2$ का तत्समक आव्यूह है |
उत्तर: यहाँ $P(n):{(aI + bA)^n} = {a^n}I + n{a^{n - 1}}bA$
इसीलिए $P(1):{(aI + bA)^1} = aI + bA$
अतः परिणाम\[n = 1\] के लिए सत्य है |
माना परिणाम $n = k$ के लिए सत्य है|
इसीलिए $P(k):{(aI + bA)^k} = {a^k}I + n{a^{k - 1}}bA$
अब हमें सिद्ध करना है परिणाम $n = k + 1$ के लिए भी सत्य है|
अर्थात:
$P(k + 1):{(aI + bA)^{k + 1}} = {a^{k + 1}} + (k + 1){a^k}kA $
$\Rightarrow {\text{ L}}{\text{.H}}{\text{.S }} = {(aI + bA)^k}(aI + bA) $
=$ \left( {{a^k}I + n{a^{k - 1}}bA} \right)(aI + bA) \ldots \ldots \ldots \ldots \ldots \cdots [(aI + \left. {bA{)^{k + 1}} = {a^k}l + n{a^{k - 1}}bA} \right] $
$= {a^{k + 1}}{I^2} + {a^k}IbA + n{a^k}IbA + n{a^{k - 1}}{b^2}{A^2} $
$= {a^{k + 1}} + (k + 1){a^k}bA\quad \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots ..\left[ {{A^2} = A \cdot A = } \right.\left. {\left[ {\begin{array}{*{20}{l}} 0&1 \\ 0&0 \end{array}} \right]\left[ {\begin{array}{*{20}{l}} 0&1 \\ 0&0 \end{array}} \right] = \left[ {\begin{array}{*{20}{l}} 0&0 \\ 0&0 \end{array}} \right] = 0} \right] $
$\Rightarrow {\text{ L}}{\text{.H}}{\text{.S }} = R.H.S $
अतः परिणाम $n = k + 1$ के लिए भी सत्य है|
गणितीय आगमन के सिद्धात प्रामाणित होता है कि ${(aI + bA)^n} = {a^n}I + n{a^{n - 1}}bA$ समस्त प्राकृत संख्याओ $n$ के लिए सत्य है।
प्रश्न 2 यदि $\mathbf{A = \left[ {\begin{array}{*{20}{l}} 1&1&1 \\ 1&1&1 \\ 1&1&1 \end{array}} \right]}$ तो सिद्ध कीजिए कि \[\mathbf{{A^n} = \left[ {\begin{array}{*{20}{l}} {{3^{n - 1}}}&{{3^{n - 1}}}&{{3^{n - 1}}} \\ {{3^{n - 1}}}&{{3^{n - 1}}}&{{3^{n - 1}}} \\ {{3^{n - 1}}}&{{3^{n - 1}}}&{{3^{n - 1}}} \end{array}} \right],n \in N\mid }\]
उत्तर: दिया जाता है $P(n) = {A^n} = \left[ {\begin{array}{*{20}{l}} {{3^{n - 1}}}&{{3^{n - 1}}}&{{3^{n - 1}}} \\ {{3^{n - 1}}}&{{3^{n - 1}}}&{{3^{n - 1}}} \\ {{3^{n - 1}}}&{{3^{n - 1}}}&{{3^{n - 1}}} \end{array}} \right],n \in N$
अतः $P(n) = {A^1} = \left[ {\begin{array}{*{20}{l}} {{3^0}}&{{3^0}}&{{3^0}} \\ {{3^0}}&{{3^0}}&{{3^0}} \\ {{3^0}}&{{3^0}}&{{3^0}} \end{array}} \right] = \left[ {\begin{array}{*{20}{l}} 1&1&1 \\ 1&1&1 \\ 1&1&1 \end{array}} \right] = A$
अतः परिणाम \[n = 1\]के लिए भी सत्य है|
माना परिणाम $n = k$ के लिए सत्य है|
इसीलिए $P(k) = {A^k} = \left[ {\begin{array}{*{20}{l}} {{3^{k - 1}}}&{{3^{k - 1}}}&{{3^{k - 1}}} \\ {{3^{k - 1}}}&{{3^{k - 1}}}&{{3^{k - 1}}} \\ {{3^{k - 1}}}&{{3^{k - 1}}}&{{3^{k - 1}}} \end{array}} \right]$
सिद्ध करना है परिणाम $n = k + 1$ के लिए भी सत्य है|
अर्थात: $P(k + 1) = {A^{k + 1}} = \left[ {\begin{array}{*{20}{l}} {{3^k}}&{{3^k}}&{{3^k}} \\ {{3^k}}&{{3^k}}&{{3^k}} \\ {{3^k}}&{{3^k}}&{{3^k}} \end{array}} \right]$
$\Rightarrow {\text{ L}}{\text{.H}}{\text{.S }} = {A^{k + !}} = {A^k}A $
$= \left[ {\begin{array}{*{20}{c}} {{3^{k - 1}}}&{{3^{k - 1}}}&{{3^{k - 1}}} \\ {{3^{k - 1}}}&{{3^{k - 1}}}&{{3^{k - 1}}} \\ {{3^{k - 1}}}&{{3^{k - 1}}}&{{3^{k - 1}}} \end{array}} \right]\left[ {\begin{array}{*{20}{l}} 1&1&1 \\ 1&1&1 \\ 1&1&1 \end{array}} \right]$
$= \left[ {\begin{array}{*{20}{l}} {{3^{k - 1}} + {3^{k - 1}} + {3^{k - 1}}}&{{3^{k - 1}} + {3^{k - 1}} + {3^{k - 1}}}&{{3^{k - 1}} + {3^{k - 1}} + {3^{k - 1}}} \\ {{3^{k - 1}} + {3^{k - 1}} + {3^{k - 1}}}&{{3^{k - 1}} + {3^{k - 1}} + {3^{k - 1}}}&{{3^{k - 1}} + {3^{k - 1}} + {3^{k - 1}}} \\ {{3^{k - 1}} + {3^{k - 1}} + {3^{k - 1}}}&{{3^{k - 1}} + {3^{k - 1}} + {3^{k - 1}}}&{{3^{k - 1}} + {3^{k - 1}} + {3^{k - 1}}} \end{array}} \right] = \left[ {\begin{array}{*{20}{c}} {{{3.3}^{k - 1}}}&{{{3.3}^{k - 1}}}&{{{3.3}^{k - 1}}} \\ {{{3.3}^{k - 1}}}&{{{3.3}^{k - 1}}}&{{{3.3}^{k - 1}}} \\ {{{3.3}^{k - 1}}}&{{{3.3}^{k - 1}}}&{{{3.3}^{k - 1}}} \end{array}} \right] = \left[ {\begin{array}{*{20}{c}} {{3^k}}&{{3^k}}&{{3^k}} \\ {{3^k}}&{{3^k}}&{{3^k}} \\ {{3^k}}&{{3^k}}&{{3^k}} \end{array}} \right] = R \cdot H \cdot S $
$\Rightarrow {\text{ L}}{\text{.H}}{\text{.S }} = {\text{ R}}{\text{.H}}{\text{.S }} $
अतः परिणाम $n = k + 1$ के लिए भी सत्य है |
गणितीय आगमन के सिद्धात प्रामाणित होता है कि
${A^n}\left[ {\begin{array}{*{20}{c}} {{3^{n - 1}}}&{{3^{n - 1}}}&{{3^{n - 1}}} \\ {{3^{n - 1}}}&{{3^{n - 1}}}&{{3^{n - 1}}} \\ {{3^{n - 1}}}&{{3^{n - 1}}}&{{3^{n - 1}}} \end{array}} \right],$ समस्त प्राकृत संख्याओ $n$ के लिए सत्य है ।
प्रश्न 3 यदि $\mathbf{A = \left[ {\begin{array}{*{20}{l}} 3&{ - 4} \\ 1&{ - 1} \end{array}} \right]}$ तो सिद्ध कीजिए कि$\mathbf{{A^n} = \left[ {\begin{array}{*{20}{c}} {1 + 2n}&{ - 4n} \\ n&{1 - 2n} \end{array}} \right]}$ जहाँ $n$ एक पूर्णांक है |
उत्तर: $P(n) = {A^n} = \left[ {\begin{array}{*{20}{c}} {1 + 2n}&{ - 4n} \\ n&{1 - 2n} \end{array}} \right]$
इसीलिए $P(1) = {A^n} = \left[ {\begin{array}{*{20}{c}} {1 + 2(1)}&{ - 4(1)} \\ 1&{1 - 2(1)} \end{array}} \right]$
$ \Rightarrow \left[ {\begin{array}{*{20}{l}} 3&{ - 4} \\ 1&{ - 1} \end{array}} \right] = A$
अतः परिणाम \[n = 1\] के लिए सत्य है |
माना परिणाम $n = k$ के लिए सत्य है |
इसीलिए $ \Rightarrow P(k) = {A^k} = \left[ {\begin{array}{*{20}{c}} {1 + 2k}&{ - 4k} \\ k&{1 - 2k} \end{array}} \right]$
अब हमें सिद्ध करना है परिणाम के लिए भी सत्य है।
अर्थात
$\Rightarrow P(k + 1) = {A^{k + 1}} = \left[ {\begin{array}{*{20}{c}} {1 + 2(k + 1)}&{ - 4(k + 1)} \\ {k + 1}&{1 - 2(k + 1)} \end{array}} \right] $
$\Rightarrow {\text{ L}}{\text{.H}}{\text{.S }} = {A^{k + 1}} = {A^k}A $
$= \left[ {\begin{array}{*{20}{c}} {1 + 2k}&{ - 4k} \\ k&{1 - 2k} \end{array}} \right]\left[ {\begin{array}{*{20}{c}} 3&{ - 4} \\ 1&{ - 1} \end{array}} \right] $
$= \left[ {\begin{array}{*{20}{l}} {3 + 6k - 4k}&{ - 4 - 8k + 4k} \\ {3k + 1 - 2k}&{ - 4k - 1 + 2k} \end{array}} \right]$
$= \left[ {\begin{array}{*{20}{c}} {1 + (2k + 2)}&{ - 4k - 4} \\ {k + 1}&{1 - (2k + 2)} \end{array}} \right] = \left[ {\begin{array}{*{20}{c}} {1 + 2(k + 1)}&{ - 4(2k + 2)} \\ {k + 1}&{1 - 2(k + 1)} \end{array}} \right] = {\text{ R}}{\text{.H}}{\text{.S }} $
$\Rightarrow {\text{ L}}{\text{.H}}{\text{.S }} = {\text{ R}}{\text{.H}}{\text{.S }} $
अतः परिणाम $n = k + 1$ केलिए भी सत्य है |
गणितीय आगमन के सिद्धात प्रामाणित होता है कि
${A^n}\left[ {\begin{array}{*{20}{c}} {1 + 2n}&{ - 4n} \\ n&{1 - 2n} \end{array}} \right]$
समस्त प्राकृत संख्याऔ $n$ के लिए सत्य है ।
प्रश्न 4 यदि $A$ तथा $B$ सममित आव्यूह हैं तो सिद्ध कीजिए कि $AB - BA$ एक विषम सममित आव्यूह है।
उत्तर:
${(AB - BA)^\prime } = {(AB)^\prime } - {(BA)^\prime } $
$= {B^\prime }{A^\prime } - {A^\prime }{B^\prime } \ldots \ldots \ldots \ldots \ldots \ldots ..\left[ {{{(AB)}^\prime } = {B^\prime }{A^\prime }} \right] $
$= BA - AB \ldots \ldots \ldots \ldots \ldots \ldots ..\left[ {.{A^\prime } = A,{B^\prime } = B} \right] $
$= - (AB - BA) $
$\Rightarrow (AB - BA) $
$= - (AB - BA) $
इसीलिए आव्यूह \[(AB - BA)\] एक विषम सममित है |
प्रश्न 5 सिद्ध कीजिए कि आव्यूह ${B^\prime }AB$ सममित अथवा विषम सममित है यदि $A$ सममित अथवा विषम सममित है।
उत्तर: यदि $A$ सममित आव्यूह है।
अत : ${A^\prime } = A$
यहां
${\left( {{B^\prime }AB} \right)^\prime } = {(AB)^\prime }{\left( {{B^\prime }} \right)^\prime } \ldots \ldots \ldots \ldots \ldots \ldots .\left[ {{{(AB)}^\prime } = {B^\prime }{A^\prime }} \right] $
$= {B^\prime }{A^\prime }B \ldots \ldots \ldots \ldots \ldots \ldots .\left[ {{{(B)}^\prime } = B} \right] $
$= {B^\prime }AB \ldots \ldots \ldots \ldots \ldots \ldots \ldots .\left[ {{{(AB)}^\prime } = {B^\prime }{A^\prime }} \right] $
$= {B^\prime }AB \ldots \ldots \ldots \ldots \ldots \ldots .\left[ {{A^\prime } = A} \right] $
$\Rightarrow {\left( {{B^\prime }AB} \right)^\prime } = {B^\prime }AB$
इसीलिए आव्यूह \[B'AB\] एक सममित आव्यूह है |
यदि \[A\] विषम सममित आव्यूह है |
अतः ${A^\prime } = - A$
यहाँ
${\left( {{B^\prime }AB} \right)^\prime } = {(AB)^\prime }{\left( {{B^\prime }} \right)^\prime } \ldots \ldots \ldots \ldots \ldots ...\left[ {{{(AB)}^\prime } = {B^\prime }{A^\prime }} \right] $
$= {(AB)^\prime }B \ldots \ldots \ldots \ldots \ldots \ldots \left[ {{{(B)}^\prime } = B} \right] $
$= {B^\prime }AB \ldots \ldots \ldots \ldots \ldots \ldots ...\left[ {{{(AB)}^\prime } = {B^\prime }{A^\prime }} \right] $
$= - {B^\prime }AB \ldots \ldots \ldots \ldots \ldots ..\left[ {{A^\prime } = - A} \right] $
$\Rightarrow {\left( {{B^\prime }AB} \right)^\prime } = - {B^\prime }AB$
इसिलए आव्यूह \[B'AB\] विषम सममित आव्यूह है |
प्रश्न 6 $x,y$ तथा $z$ के मानों को ज्ञात कीजिए, यदि आव्यूह $\mathbf{A = \left[ {\begin{array}{*{20}{c}} 0&{2y}&z \\ x&y&{ - z} \\ x&{ - y}&z \end{array}} \right]}$ समीकरण $A{A^\prime } = I$ को संतुष्ट करता है।
उत्तर: यहाँ ${A^\prime }A = I$
$\Rightarrow {\left[ {\left[ {\begin{array}{*{20}{c}} 0&{2y}&z \\ x&y&{ - z} \\ x&{ - y}&z \end{array}} \right]\left[ {\begin{array}{*{20}{c}} 0&{2y}&z \\ x&y&{ - z} \\ x&{ - y}&z \end{array}} \right]} \right]^\prime } = \left[ {\begin{array}{*{20}{l}} 1&0&0 \\ 0&1&0 \\ 0&0&1 \end{array}} \right] $
$\Rightarrow \left[ {\begin{array}{*{20}{c}} 0&{2y}&z \\ x&y&{ - z} \\ x&{ - y}&z \end{array}} \right]\left[ {\begin{array}{*{20}{c}} 0&{2y}&z \\ x&y&{ - z} \\ x&{ - y}&z \end{array}} \right] = \left[ {\begin{array}{*{20}{l}} 1&0&0 \\ 0&1&0 \\ 0&0&1 \end{array}} \right] $
$\Rightarrow \left[ {\begin{array}{*{20}{c}} {0 + 4{y^2} + {z^2}}&{0 + 2{y^2} - {z^2}}&{0 - 2{y^2} + {z^2}} \\ {0 + 2{y^2} - {z^2}}&{{x^2} + {y^2} + {z^2}}&{{x^2} - {y^2} - {z^2}} \\ {0 - 2{y^2} + {z^2}}&{{x^2} - {y^2} - {z^2}}&{{x^2} + {y^2} + {z^2}} \end{array}} \right] $
$= \left[ {\begin{array}{*{20}{l}} 1&0&0 \\ 0&1&0 \\ 0&0&1 \end{array}} \right] $
यदि दो आव्यूह सामान है तो उनके सगत अवयव भी सामान होते है,
अत: $4{y^2} + {z^2} = 1$
$\Rightarrow x = \pm \frac{1}{{\sqrt 2 }} $
$2{y^2} - {z^2} = 0 $
$\Rightarrow y = \pm \frac{1}{{\sqrt 6 }} $
${x^2} + {y^2} + {z^2} = 1 $
$\Rightarrow z = \pm \frac{1}{{\sqrt 3 }}$
प्रश्न 7 $x$ के किस मान के लिए $\mathbf{\left[ {\begin{array}{*{20}{l}} 1&2&1 \end{array}} \right]\left[ {\begin{array}{*{20}{l}} 1&2&0 \\ 2&0&1 \\ 1&0&2 \end{array}} \right]\left[ {\begin{array}{*{20}{l}} 0 \\ 2 \\ x \end{array}} \right] = O}$ है|
उत्तर: यहाँ $\left[ {\begin{array}{*{20}{l}} 1&2&1 \end{array}} \right]\left[ {\begin{array}{*{20}{l}} 1&2&0 \\ 2&0&1 \\ 1&0&2 \end{array}} \right]\left[ {\begin{array}{*{20}{l}} 0 \\ 2 \\ x \end{array}} \right] = 0$
$\Rightarrow \left[ {\begin{array}{*{20}{l}} {1 + 4 + 1}&{2 + 0 + 0}&{0 + 2 + 2} \end{array}} \right]\left[ {\begin{array}{*{20}{l}} 0 \\ 2 \\ x \end{array}} \right] = 0 $
$\Rightarrow \left[ {\begin{array}{*{20}{l}} 6&2&4 \end{array}} \right]\left[ {\begin{array}{*{20}{l}} 0 \\ 2 \\ x \end{array}} \right] = 0 $
$\Rightarrow [6(0) + 2(2) + 4(x)] = 0 $
$\Rightarrow [0 + 4 + 4x] = [0] $
$\Rightarrow 4 + 4x = 0 $
$\Rightarrow x = - 1$
प्रश्न 8 यदि $\mathbf{A = \left[ {\begin{array}{*{20}{c}} 3&1 \\ { - 1}&2 \end{array}} \right]}$ तो सिद्ध कीजिए कि$\mathbf{{A^2} - 5A + 7I = {\text{0}}}$ है|
उत्तर: दिया है $A = \left[ {\begin{array}{*{20}{c}} 3&1 \\ { - 1}&2 \end{array}} \right]$
$\Rightarrow {\text{ L}}{\text{.H}}{\text{.S }} = {A^2} - 5A + 7I $
$= \left[ {\begin{array}{*{20}{c}} 3&1 \\ { - 1}&2 \end{array}} \right]\left[ {\begin{array}{*{20}{c}} 3&1 \\ { - 1}&2 \end{array}} \right] - 5\left[ {\begin{array}{*{20}{c}} 3&1 \\ { - 1}&2 \end{array} + 7\left[ {\begin{array}{*{20}{l}} 1&0 \\ 0&1 \end{array}} \right]} \right] $
$= \left[ {\begin{array}{*{20}{c}} {9 - 1}&{3 + 2} \\ { - 3 - 2}&{ - 1 + 4} \end{array}} \right] - \left[ {\begin{array}{*{20}{c}} {15}&5 \\ { - 5}&{10} \end{array}} \right] + \left[ {\begin{array}{*{20}{c}} 7&0 \\ 0&7 \end{array}} \right] $
$= \left[ {\begin{array}{*{20}{c}} 8&5 \\ { - 5}&3 \end{array}} \right] - \left[ {\begin{array}{*{20}{c}} {15}&5 \\ { - 5}&{10} \end{array}} \right] + \left[ {\begin{array}{*{20}{l}} 7&0 \\ 0&7 \end{array}} \right] $
$= \left[ {\begin{array}{*{20}{l}} {8 - 15 + 7}&{5 - 5 + 0} \\ { - 5 + 5 + 0}&{3 - 10 + 7} \end{array}} \right] $
$= \left[ {\begin{array}{*{20}{l}} 0&0 \\ 0&0 \end{array}} \right] $
$= {\text{ R}}{\text{.H}}{\text{.S }} $
प्रश्न 9 यदि $\mathbf{\left[ {\begin{array}{*{20}{l}} x&{ - 5}&{ - 1} \end{array}} \right]\left[ {\begin{array}{*{20}{l}} 1&0&2 \\ 0&2&1 \\ 2&0&2 \end{array}} \right]\left[ {\begin{array}{*{20}{l}} x \\ 4 \\ 1 \end{array}} \right] = 0}$ है तो $x$ का मान ज्ञात कीजिए|
उत्तर: दिया है $\left[ {\begin{array}{*{20}{l}} x&{ - 5}&{ - 1} \end{array}} \right]\left[ {\begin{array}{*{20}{l}} 1&0&2 \\ 0&2&1 \\ 2&0&2 \end{array}} \right]\left[ {\begin{array}{*{20}{l}} x \\ 4 \\ 1 \end{array}} \right] = 0$
$ \Rightarrow [x + 0 - 2\quad 0 - 10 + 2x - 5 - 3]\left[ {\begin{array}{*{20}{l}} x \\ 4 \\ 1 \end{array}} \right] = 0$
$\Rightarrow [x(x - 2) - 40 + 2x - 8] = 0 $
$\Rightarrow \left[ {{x^2} - 2x - 40 + 2x - 8} \right] = [0] $
$\Rightarrow \left[ {{x^2} - 48} \right] = [0]$
$\Rightarrow {x^2} = 48 $
$\Rightarrow x \pm 4\sqrt 3$
प्रश्न 10 एक निर्माता तीन प्रकार की वस्तुएँ \[x,y\] तथा $z$ का उत्पादन करता है जिन का वह दो बाजारो में विक्रय करता है। वस्तुओं की वार्षिक बिक्री नीचे सूचित (निदर्शित) है:
बाजार उत्पादन
$\mathbf{{\text{1}}} $
${\text{II}} $ $\mathbf{\begin{array}{*{20}{c}} {10,000}&{2,000}&{18,000} \\ {6,000}&{20,000}&{8,000} \end{array}}$
यदि $x,y$ तथा $z$ की प्रत्येक इकाई का विक्रय मूल्य क्रमशः $Rs.2.50,{\text{Rs}}1.50$ तथा \[{\mathbf{Rs}}{\text{ }}{\mathbf{1}}.{\mathbf{00}}\] है तो प्रत्येक बाजार में कुल आय (Revenue), आव्यूह बीजगणित की सहायता से ज्ञात कीजिए ।
उत्तर: यदि $x,y$ तथा $z$ की प्रत्येक इकाई का विक्रय मूल्य क्रमशः \[Rs{\text{ }}2.50,{\text{ }}Rs{\text{ }}1.50\] तथा \[Rs{\text{ }}1.00\] है तो
बाज़ार ${\text{1}} $
${\text{II}}$ $\begin{array}{*{20}{c}} {10,000}&{2,000}&{18,000} \\ {6,000}&{20,000}&{8,000} \end{array}$
$\left[ {\begin{array}{*{20}{c}} {{\text{ Rs }}}&{2.50} \\ {{\text{ Rs }}}&{1.50} \\ {Rs}&{1.00} \end{array}} \right]$
प्रत्येक बाज़ार में कुल आय
$ = \left[ {\begin{array}{*{20}{c}} {10,000}&{2,000}&{18,000} \\ {6,000}&{20,000}&{8,000} \end{array}} \right]\left[ {\begin{array}{*{20}{l}} {{\text{ Rs }}2.50} \\ {{\text{ Rs }}1.50} \\ {{\text{ Rs }}1.00} \end{array}} \right]$
$ = \left[ {\begin{array}{*{20}{l}} {Rs25000 + Rs3000 + Rs18000} \\ {Rs15000 + Rs30000 + Rs8000} \end{array}} \right] = \left[ {\begin{array}{*{20}{l}} {Rs46000} \\ {Rs53000} \end{array}} \right]$
अत: बाजार I में कुल आय $Rs46000$ और बाजार ${\text{II}}$ में कुल आय Rs53000 है|
यदि उपर्युक्त तीन वस्तुओं की प्रत्येक इकाई की लागत (cost ) क्रमशः \[\mathbf{{\mathbf{Rs2}}.{\mathbf{00}},{\text{ }}{\mathbf{Rs}}{\text{ }}{\mathbf{1}}.{\mathbf{00}}}\] तथा पैसे 50 है तो कुल लाभ (Gross profit) ज्ञात कीजिए।
उत्तर: यदि उपर्युक्त तीन वस्तुओं की प्रत्येक इकाई की लागत (cost ) क्रमशः \[{\mathbf{Rs2}}.{\mathbf{00}},{\text{ }}{\mathbf{Rs}}{\text{ }}{\mathbf{1}}.{\mathbf{00}}\] तथा पैसे 50 है तो
लागत वस्तुएं
बाजार ${\text{I}}$ $\left[ {\begin{array}{*{20}{c}} {10,000}&{2,000}&{18,000} \\ {6,000}&{20,000}&{8,000} \end{array}} \right]$
बाजार ${\text{II}}$
प्रत्येक बाज़ार मेंकुल आय
$ = \left[ {\begin{array}{*{20}{c}} {10,000}&{2,000}&{18,000} \\ {6,000}&{20,000}&{8,000} \end{array}} \right]\left[ {\begin{array}{*{20}{c}} {{\text{ Rs }}}&{2.50} \\ {{\text{ Rs }}}&{1.00} \\ {Rs}&{0.50} \end{array}} \right] $
$= \left[ {\begin{array}{*{20}{c}} {Rs20000 + Rs2000 + Rs9000} \\ {Rs12000 + Rs20000 + Rs4000} \end{array}} \right] $
$= \left[ {\begin{array}{*{20}{l}} {{\text{ Rs }}31000} \\ {Rs36000} \end{array}} \right] $
बाजार ${\text{I}}$ में कुल आय \[Rs46000\] और बाजार ${\text{I}}$ में कुल लागत \[Rs31000\] है।
बाजार ${\text{II}}$ में कुल आय ${\text{Rs}}53000$ और बाजार ${\text{II}}$ में कुल लागत \[Rs36000\] है।
अत: कुल लाभ बाजार ${\text{I}} = $ आय- लागत
$ \Rightarrow \operatorname{Rs} 46000 - \operatorname{Rs} 31000$
\[ = Rs15000\]
अत: कुल लाभ बाजार ${\text{II}} = $ आय- लागत
$\Rightarrow \operatorname{Rs} 53000 - Rs36000 $
$= \operatorname{Rs} 17000 $
प्रश्न 11 आव्यूह $X$ ज्ञात कीजिए यदि $\mathbf{X = \left[ {\begin{array}{*{20}{c}} 1&2&3 \\ 4&5&6 \end{array}} \right]\left[ {\begin{array}{*{20}{c}} { - 7}&{ - 8}&{ - 9} \\ 2&4&6 \end{array}} \right]}$ है|
उत्तर: माना, $X = \left[ {\begin{array}{*{20}{l}} a&b \\ c&d \end{array}} \right]$
इस प्रकार $X = \left[ {\begin{array}{*{20}{l}} 1&2&3 \\ 4&5&6 \end{array}} \right]\left[ {\begin{array}{*{20}{c}} { - 7}&{ - 8}&{ - 9} \\ 2&4&6 \end{array}} \right]$
$\Rightarrow \left[ {\begin{array}{*{20}{l}} a&b \\ c&d \end{array}} \right]\left[ {\begin{array}{*{20}{l}} 1&2&3 \\ 4&5&6 \end{array}} \right] = \left[ {\begin{array}{*{20}{c}} { - 7}&{ - 8}&{ - 9} \\ 2&4&6 \end{array}} \right] $
$\Rightarrow \left[ {\begin{array}{*{20}{c}} {a + 4b}&{2a + 5b}&{3a + 6b} \\ {c + 4d}&{2c + 5d}&{3c + 6d} \end{array}} \right] = \left[ {\begin{array}{*{20}{c}} { - 7}&{ - 8}&{ - 9} \\ 2&4&6 \end{array}} \right] $
यदि दो आव्यूह सामान है तो उनके सगत अवयव भी सामान होते है.
इस प्रकार
$\begin{array}{*{20}{c}} {a + 4c = - 7}&{2a + 5c = - 8}&{3a + 6c = - 9} \\ {b + 4d = 2}&{2b + 5d = 4}&{3b + 6d = 6} \end{array}$
हल करने पर
$a + 4c = - 7 \Rightarrow $
$a = - 7 - 4c $
$2a + 5c = - 8 $
$\Rightarrow - 14 - 8c + 5c = - 8$
$\Rightarrow - 3c = 6 $
$\Rightarrow c = - 2 $
$\therefore a = - 7 - 4( - 2) = - 7 + 8 = 1 $
$\Rightarrow a = 1$
हल करने पर
$b + 4d = 2 $
$\Rightarrow b = 2 - 4d $
$2b + 5d = 4 $
$\Rightarrow 4 - 8d + 5d = 4 $
$\Rightarrow - 3d = 0 $
$\Rightarrow d = 0 $
$\therefore b = 2 - 4(0) = 2 $
$\Rightarrow b = 2$
अतः $a = 1,b = - 2,c = 2d = 0$
$\therefore X = \left[ {\begin{array}{*{20}{c}} 1&{ - 2} \\ 2&0 \end{array}} \right]$
प्रश्न 12 यदि $A$ तथा $B$ समान कोटि के वर्ग आव्यूह इस प्रकार हैं कि $AB = BA$ है तो गणितीय आगमन द्वारा सिद्ध कीजिए कि $A{B^{\prime \prime }} = {B^{\prime \prime }}A$ होगा। इसके अतिरिक्त सिद्ध कीजिए कि समस्त $n \in N$ के लिए $\mathbf{{(AB)^{\prime \prime }} = {A^{\prime \prime }}{B^{\prime \prime }}}$ होगा।
निम्लिखित प्रश्रों में सही उत्तर चुनिए:
उतर: यहाँ $P(n) = A{B^{\prime \prime }} = {B^n}A$
इसीलिए \[{\text{P(1) = A B = B A}}\]
अतः परिणाम \[n = 1\] के लिए सत्य है |
माना परिणाम $n = k$ के लिए सत्य है |
इसीलिए $P(k) = A{B^k} = {B^k}A$
अब हमें सिद्ध करना है परिणाम$n = k + 1$ के लिए सत्य है |
अर्थात $P(k + 1) = A{B^{k + 1}} = {B^{k + 1}}A$
${\text{ L}}{\text{.H}}{\text{.S }} = A{B^{k + 1}} $
$= A{B^k}B \ldots \ldots \ldots \ldots \ldots \ldots .\left[ {A{B^k} = {B^k}A} \right] $ $ = {B^k}BA \ldots \ldots \ldots \ldots \ldots \ldots ..[AB = BA] $
$= {B^{k + 1}}A = R.H.S $
अतः परिणाम $n = k + 1$ के लिए सत्य है |
गणितीय आगमन के सिद्धात प्रामाणित होता है कि, $A{B^n} = {B^n}A$ समस्त प्राकृत संख्याओ कि लिए सत्य है ।
${(AB)^n} = {A^n}{B^n}$
यहां $P(n) = {(AB)^n} = {A^n}{B^n}$
इसीलिए $P(1) = {(AB)^1} = {A^1}{B^1}$
अतः परिणाम \[n = 1\] के लिए सत्य है |
माना परिणाम $n = k$ के लिए सत्य है |
इसीलिए $P(k) = {(AB)^k} = {A^k}{B^k}$
अब हमें सिद्ध करना है परिणाम $n = k + 1$ के लिए भी सत्य है ।
अर्थात $P(k + 1) = {(AB)^{k + 1}} = {A^{k + 1}}{B^{k + 1}}$
${\text{L}}{\text{. }}H.S = {(AB)^{k + 1}} $
$= {(AB)^k}AB \ldots \ldots \ldots \ldots .\left[ {{{(AB)}^k} = {A^k}{B^k}} \right] $
$= {A^k}A{B^k}B \ldots \ldots \ldots \ldots \ldots .[AB = BA] $
$= {A^{k + 1}}{B^{k + 1}} = R.H.S $
अतः परिणाम $n = k + 1$ के लिए सत्य है |
गणितीय आगमन के सिद्धात प्रामाणित होता है कि$,{(AB)^n} = {A^n}{B^n}$ समस्त प्राकृत संख्याओ कि लिए सत्य है ।
प्रश्न 13 यदि $\mathbf{A = \left[ {\begin{array}{*{20}{c}} \alpha &\beta \\ \gamma &{ - \alpha } \end{array}} \right]}$ इस प्रकार है कि ${A^2} = I$ तो
$\mathbf{I + {\alpha ^2} + \beta \gamma = 0}$
$\mathbf{I - {\alpha ^2} + \beta \gamma = 0}$
$\mathbf{I - {\alpha ^2} - \beta \gamma = 0}$
$\mathbf{I + {\alpha ^2} - \beta \gamma = 0}$
उत्तर: उत्तर 13 विकल्प (C) सही है
दिया गया है ${A^2} = I$
$\Rightarrow \left[ {\begin{array}{*{20}{c}} \alpha &\beta \\ \gamma &{ - \alpha } \end{array}} \right]\left[ {\begin{array}{*{20}{c}} \alpha &\beta \\ \gamma &{ - \alpha } \end{array}} \right] = \left[ {\begin{array}{*{20}{c}} 1&0 \\ 0&1 \end{array}} \right] $
$\Rightarrow \left[ {\begin{array}{*{20}{c}} {{\alpha ^2} + \beta \gamma }&{\alpha \beta - \beta \gamma } \\ {\alpha \gamma - \alpha \gamma }&{\beta \gamma + {\alpha ^2}} \end{array}} \right] = \left[ {\begin{array}{*{20}{l}} 1&0 \\ 0&1 \end{array}} \right] $
अतः ${\alpha ^2} + \beta \gamma = 1$
प्रश्न 14 यदि एक आव्यूह सममित तथा विषम सममित दोनों ही है तो :
एक विकर्ण आव्यूह है
एक शून्ये आव्यूह है
एक वर्ग आव्यूह है
इनमें से कोई नहीं
उत्तर: विकल्प (B) सही है।
एक शून्ये आव्यूह एक आव्यूह सममित तथा विषम सममित दोनों ही है।
प्रश्न 15 यदि $A$ एक वर्ग आव्यूह इस प्रकार है कि ${A^2} = A$ तो $\left( {I + {A^3}} \right) - 7A$ बराबर है:
A
I - A
I
3A
उत्तर: विकल्प (C) सही है।
NCERT Solutions for Class 12 Maths Chapter 3 Matrices in Hindi
Chapter-wise NCERT Solutions are provided everywhere on the internet with an aim to help the students to gain a comprehensive understanding. Class 12 Maths Chapter 3 solution Hindi medium is created by our in-house experts keeping the understanding ability of all types of candidates in mind. NCERT textbooks and solutions are built to give a strong foundation to every concept. These NCERT Solutions for Class 12 Maths Chapter 3 in Hindi ensure a smooth understanding of all the concepts including the advanced concepts covered in the textbook.
NCERT Solutions for Class 12 Maths Chapter 3 in Hindi medium PDF download are easily available on our official website (vedantu.com). Upon visiting the website, you have to register on the website with your phone number and email address. Then you will be able to download all the study materials of your preference in a click. You can also download the Class 12 Maths Matrices solution Hindi medium from Vedantu app as well by following the similar procedures, but you have to download the app from Google play store before doing that.
NCERT Solutions in Hindi medium have been created keeping those students in mind who are studying in a Hindi medium school. These NCERT Solutions for Class 12 Maths Matrices in Hindi medium pdf download have innumerable benefits as these are created in simple and easy-to-understand language. The best feature of these solutions is a free download option. Students of Class 12 can download these solutions at any time as per their convenience for self-study purpose.
These solutions are nothing but a compilation of all the answers to the questions of the textbook exercises. The answers/solutions are given in a stepwise format and very well researched by the subject matter experts who have relevant experience in this field. Relevant diagrams, graphs, illustrations are provided along with the answers wherever required. In nutshell, NCERT Solutions for Class 12 Maths in Hindi come really handy in exam preparation and quick revision as well prior to the final examinations.