Courses
Courses for Kids
Free study material
Offline Centres
More
Store Icon
Store

NCERT Solutions for Class 12 Maths Chapter 4 Determinants Ex 4.1

ffImage
banner

NCERT Solutions for Class 12 Maths Chapter 4 -Determinants Exercise 4.1 - FREE PDF Download

NCERT Class 12 Maths Exercise 4.1 Solutions offered by Vedantu are compiled by learned teaching professionals according to the latest CBSE syllabus. These solutions for Class 12 Maths Exercise 4.1 are available in PDF format to help students gain access to them from anywhere and at any time. Our Class 12 Maths NCERT Solutions consists of shortcut techniques as well as elaborate explanations. You can download the NCERT Solutions PDF from our portal for all subjects and fetch higher grades on your boards.

toc-symbolTable of Content
toggle-arrow


Glance on NCERT Solutions Maths Chapter 4 Exercise 4.1 Class 12 | Vedantu

  • Exercise 4.1 of Chapter 4 in the NCERT Class 12 Maths book focuses on the calculation and properties of determinants, primarily for 2x2 and 3x3 matrices, Understanding minor and cofactor of an element.

  • The problems in 4.1 Maths Class 12 help students understand the basic concepts and applications of determinants.

  • There are links to video tutorials explaining class 12 chapter 4 Exercise 4.1 -Determinants for better understanding.

  • There are five examples and eight questions covered in NCERT Maths Class 10 Chapter 4 Exercise 4.1 Determinants.


Topics Covered in Class 12 Maths Chapter 4 Exercise 4.1

  • Introduction to determinants

  • Determinant of a 2x2 Matrix

  • Determinants of a 3x3 Matrix

  • Properties of Determinants

  • Minors and Cofactors

Competitive Exams after 12th Science
tp-imag
bottom-arrow
tp-imag
bottom-arrow
tp-imag
bottom-arrow
tp-imag
bottom-arrow
tp-imag
bottom-arrow
tp-imag
bottom-arrow

Access NCERT Solutions for Class 12 Maths Chapter 4 - Determinants Exercise 4.1 PDF

Exercise (4.1)

1. Evaluate the determinant: $\begin{vmatrix}2 & 4 \\ -5& -1 \\\end{vmatrix}$

Ans: Solving the determinant  $\begin{vmatrix}2 & 4 \\ -5& -1 \\\end{vmatrix}$ we have:

$\Rightarrow \begin{vmatrix} 2 & 4 \\ -5& -1 \\ \end{vmatrix}=2(-1)-4(-5)$ $\Rightarrow \begin{vmatrix} 2 & 4 \\ -5& -1 \\ \end{vmatrix}=-2+20$ $\Rightarrow \begin{vmatrix} 2 & 4 \\ -5& -1 \\ \end{vmatrix}=18$

2. Evaluate the determinants.

 i. \[\left| \begin{matrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \\ \end{matrix} \right|\] Ans: Solving the determinant

$\left| \begin{matrix} \cos \theta  & -\sin \theta   \\ \sin \theta  & \cos \theta   \\ \end{matrix} \right|$


We have: $\Rightarrow \left| \begin{matrix} \cos \theta  & -\sin \theta   \\ \sin \theta  & \cos \theta   \\ \end{matrix} \right|=\left( \cos \theta  \right)\left( \cos \theta  \right)-\left( -\sin \theta  \right)\left( \sin \theta  \right)$


\[\Rightarrow \left| \begin{matrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \\ \end{matrix} \right|=\text{ }{{\cos }^{2}}\theta +{{\sin }^{2}}\theta \] We know, \[{{\cos }^{2}}\theta +{{\sin }^{2}}\theta =1\] \[\therefore \left| \begin{matrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \\ \end{matrix} \right|=1\] ii. \[\left| \begin{matrix} {{\text{x}}^{\text{2}}}\text{-x+1} & \text{x-1} \\ \text{x+1} & \text{x+1} \\ \end{matrix} \right|\]

Ans: Solving the determinant

$\left| \begin{matrix} {{\text{x}}^{\text{2}}}\text{-x+1} & \text{x-1}  \\ \text{x+1} & \text{x+1}  \\ \end{matrix} \right|$, 

We have: $\Rightarrow \left| \begin{matrix} {{\text{x}}^{\text{2}}}\text{-x+1} & \text{x-1}  \\ \text{x+1} & \text{x+1}  \\ \end{matrix} \right|\text{=}\left( {{\text{x}}^{\text{2}}}\text{-x+1} \right)\left( \text{x+1} \right)\text{-}\left( \text{x-1} \right)\left( \text{x+1} \right)$ 

$\Rightarrow \left| \begin{matrix} {{\text{x}}^{\text{2}}}\text{-x+1} & \text{x-1}  \\ \text{x+1} & \text{x+1}  \\ \end{matrix} \right|\text{= }{{\text{x}}^{\text{3}}}\text{-}{{\text{x}}^{\text{2}}}\text{+x+}{{\text{x}}^{\text{2}}}\text{-x+1-}\left( {{\text{x}}^{\text{2}}}\text{-1} \right)$ 

So, $\left| \begin{matrix} {{\text{x}}^{\text{2}}}\text{-x+1} & \text{x-1}  \\ \text{x+1} & \text{x+1}  \\ \end{matrix} \right|\text{= }{{\text{x}}^{\text{3}}}\text{+1-}{{\text{x}}^{\text{2}}}\text{+1}$

$\therefore \left| \begin{matrix} {{\text{x}}^{\text{2}}}\text{-x+1} & \text{x-1}  \\ \text{x+1} & \text{x+1}  \\ \end{matrix} \right|\text{= }{{\text{x}}^{\text{3}}}\text{-}{{\text{x}}^{\text{2}}}\text{+2}$.


3. If $\text{A=}$\[\left| \begin{matrix}1 & 2  \\   4 & 2  \\ \end{matrix} \right|\], then show that \[\left| \text{2A} \right|\text{=4}\left| \text{A} \right|\].

Ans: Given that,\[\text{A=}\left[ \begin{matrix} \text{1} & \text{2} \\ \text{4} & \text{2} \\ \end{matrix} \right]\] Multiplying $\text{A}$ by $2$, we have: \[\Rightarrow \text{2A= 2}\left[ \begin{matrix} \text{1} & \text{2} \\ \text{4} & \text{2} \\ \end{matrix} \right]\text{=}\left[ \begin{matrix} \text{2} & \text{4} \\ \text{8} & \text{4} \\ \end{matrix} \right]\] \[\Rightarrow \text{2A=}\left[ \begin{matrix} \text{2} & \text{4} \\ \text{8} & \text{4} \\ \end{matrix} \right]\] \[\therefore \] L.H.S \[\text{=}\left| \text{2A} \right|\text{=}\left| \begin{matrix} \text{2} & \text{4} \\ \text{8} & \text{4} \\ \end{matrix} \right|\] \[\Rightarrow \left| \text{2A} \right|\text{=}2\times 4-4\times 8\] \[\Rightarrow \left| \text{2A} \right|\text{=}8-32\] \[\therefore \left| \text{2A} \right|\text{=}-24\] The value of determinant $\text{A}$ is \[\Rightarrow \left| \text{A} \right|\text{=}\left| \begin{matrix} \text{1} & \text{2} \\ \text{4} & \text{2} \\ \end{matrix} \right|\] \[\Rightarrow \left| \text{A} \right|\text{=}2-8\] \[\therefore \left| \text{A} \right|\text{=}-6\] R.H.S is given as $\text{4}\left| \text{A} \right|$. \[\therefore \text{4}\left| \text{A} \right|\text{=4 }\!\!\times\!\!\text{ }\left( \text{-6} \right)\text{=-24}\] Hence, we have L.H.S $=$ R.H.S \[\therefore \left| \text{2A} \right|\text{=4}\left| \text{A} \right|\].

4. If \[\text{A=}\left[ \begin{matrix} 1 & 0 & 1  \\  0 & 1 & 2  \\ 0 & 0 & 4  \\  \end{matrix} \right]\], then show that \[\left| {\text{3A}} \right|\text{=27}\left| \text{A} \right|\].


Ans: Given, 

\[\text{A=}\left[ \begin{matrix} \text{1} & \text{0} & \text{1} \\ \text{0} & \text{1} & \text{2} \\ \text{0} & \text{0} & \text{4} \\ \end{matrix} \right]\] Determining the value of determinant $\text{A}$, by expanding along the first column, i.e., \[\text{C1}\], we get: \[\Rightarrow \left| \text{A} \right|\text{=1}\left| \begin{matrix} \text{1} & \text{2} \\ \text{0} & \text{4} \\ \end{matrix} \right|\text{-0}\left| \begin{matrix} \text{0} & \text{1} \\ \text{0} & \text{4} \\ \end{matrix} \right|\text{+0}\left| \begin{matrix} \text{0} & \text{1} \\ \text{1} & \text{2} \\ \end{matrix} \right|\] \[\Rightarrow \left| \text{A} \right|\text{=}1\left( 4-0 \right)-0+0\] \[\Rightarrow \left| \text{A} \right|\text{=4}\] \[\therefore 27\left| \text{A} \right|\text{=27}\times \text{4}=\text{108}\] ……(1) The value of $\left| 3\text{A} \right|$ is obtained as: \[\begin{align} & \Rightarrow \text{3A=3}\left[ \begin{matrix} \text{1} & \text{0} & \text{1} \\ \text{0} & \text{1} & \text{2} \\ \text{0} & \text{0} & \text{4} \\ \end{matrix} \right] \\ & \Rightarrow \text{3A=}\left[ \begin{matrix} \text{3} & \text{0} & \text{3} \\ \text{0} & \text{3} & \text{6} \\ \text{0} & \text{0} & \text{12} \\ \end{matrix} \right] \\ \end{align}\] \[\therefore \left| \text{3A} \right|\text{=3}\left| \begin{matrix} \text{3} & \text{6} \\ \text{0} & \text{12} \\ \end{matrix} \right|\text{-0}\left| \begin{matrix} \text{0} & \text{3} \\ \text{0} & \text{12} \\ \end{matrix} \right|\text{+0}\left| \begin{matrix} \text{0} & \text{3} \\ \text{3} & \text{6} \\ \end{matrix} \right|\] \[\Rightarrow \text{3}\left( \text{36-0} \right)\text{+0+0}\] \[\Rightarrow \left| \text{3A} \right|\text{=3}\times \text{36}\] Thus, \[\left| \text{3A} \right|\text{=}108\] ……(2) From equations (1) and (2), we have: \[\left| \text{3A} \right|\text{=27}\left| \text{A} \right|\]

Hence proved.

5. Evaluate the determinants

i. \[\left| \begin{matrix} \text{3} & \text{-1} & \text{-2} \\ \text{0} & \text{0} & \text{-1} \\ \text{3} & \text{-5} & \text{0} \\ \end{matrix} \right|\]

Ans:Let \[\text{A=}\left| \begin{matrix} \text{3} & \text{-1} & \text{-2} \\ \text{0} & \text{0} & \text{-1} \\ \text{3} & \text{-5} & \text{0} \\ \end{matrix} \right|\] Determining the value of $\text{A}$ by expanding along the second row, we have: \[\Rightarrow \left| \text{A} \right|\text{=}-0\left| \begin{matrix} -1 & -2 \\ -5 & 0 \\ \end{matrix} \right|+0\left| \begin{matrix} 3 & -2 \\ 3 & 0 \\ \end{matrix} \right|-\left( -1 \right)\left| \begin{matrix} 3 & -1 \\ 3 & -5 \\ \end{matrix} \right|\] \[\Rightarrow \left| \text{A} \right|\text{=}\left( \text{-15+3} \right)\] \[\therefore \left| \text{A} \right|\text{=-12}\]


ii.\[\left| \begin{matrix} 3 & -4 & 5 \\ 1 & 1 & -2 \\ 2 & 3 & 1 \\ \end{matrix} \right|\]

Ans: Let \[\text{A=}\left| \begin{matrix} \text{3} & \text{-4} & \text{5} \\ \text{1} & \text{1} & \text{-2} \\ \text{2} & \text{3} & \text{1} \\ \end{matrix} \right|\] Determining the value of $\text{A}$ by expanding along the first row, we have: \[\Rightarrow \left| \text{A} \right|\text{=3}\left| \begin{matrix} \text{1} & \text{-2} \\ \text{3} & \text{1} \\ \end{matrix} \right|\text{+4}\left| \begin{matrix} \text{1} & \text{-2} \\ \text{2} & \text{1} \\ \end{matrix} \right|\text{+5}\left| \begin{matrix} \text{1} & \text{1} \\ \text{2} & \text{3} \\ \end{matrix} \right|\] \[\Rightarrow \left| \text{A} \right|\text{=3}\left( \text{1+6} \right)\text{+4}\left( \text{1+4} \right)\text{+5}\left( \text{3-2} \right)\] \[\Rightarrow \left| \text{A} \right|\text{=21+20+5}\] \[\therefore \left| \text{A} \right|\text{=}46\]

iii. \[\left| \begin{matrix} \text{0} & \text{1} & \text{2} \\ \text{-1} & \text{0} & \text{-3} \\ \text{-2} & \text{3} & \text{0} \\ \end{matrix} \right|\]

Ans: Let \[\text{A=}\left| \begin{matrix} \text{0} & \text{1} & \text{2} \\ \text{-1} & \text{0} & \text{-3} \\ \text{-2} & \text{3} & \text{0} \\ \end{matrix} \right|\] Determining the value of $\text{A}$ by expanding along the first row, we have: \[\Rightarrow \left| \text{A} \right|\text{=0}\left| \begin{matrix} \text{0} & \text{-3} \\ \text{3} & \text{0} \\ \end{matrix} \right|\text{-1}\left| \begin{matrix} \text{-1} & \text{-3} \\ \text{-2} & \text{0} \\ \end{matrix} \right|\text{+2}\left| \begin{matrix} \text{-1} & \text{0} \\ \text{-2} & \text{3} \\ \end{matrix} \right|\] \[\Rightarrow \left| \text{A} \right|\text{=0}\left( 9 \right)-\left( -6 \right)+2\left( -3 \right)\] \[\therefore \left| \text{A} \right|\text{=0}\]

iv. $\left| \begin{matrix} \text{2} & \text{-1} & \text{-2} \\ \text{0} & \text{2} & \text{-1} \\ \text{3} & \text{-5} & \text{0} \\ \end{matrix} \right|$

Ans: Let $\text{A=}\left| \begin{matrix} \text{2} & \text{-1} & \text{-2} \\ \text{0} & \text{2} & \text{-1} \\ \text{3} & \text{-5} & \text{0} \\ \end{matrix} \right|$ Determining the value of $\text{A}$ by expanding along the first column, we have: \[\Rightarrow \left| \text{A} \right|\text{=2}\left| \begin{matrix} \text{2} & \text{-1} \\ \text{-5} & \text{0} \\ \end{matrix} \right|\text{-0}\left| \begin{matrix} \text{-1} & \text{-2} \\ \text{-5} & \text{0} \\ \end{matrix} \right|\text{+3}\left| \begin{matrix} \text{-1} & \text{-2} \\ \text{2} & \text{-1} \\ \end{matrix} \right|\] \[\Rightarrow \left| \text{A} \right|\text{=}2\left( -5 \right)-0+3\left( 5 \right)\] \[\Rightarrow \left| \text{A} \right|\text{=}-\text{10+15}\] \[\therefore \left| \text{A} \right|\text{=5}\]

6. If \[\text{A=}\left[ \begin{matrix} 1 & 1 & -2  \\   2 & 1 & -3  \\ 5 & 4 & -9  \\ \end{matrix} \right]\], find \[\left| \text{A} \right|\].

Ans: Given,\[\text{A=}\left[ \begin{matrix} \text{1} & \text{1} & \text{-2} \\ \text{2} & \text{1} & \text{-3} \\ \text{5} & \text{4} & \text{-9} \\ \end{matrix} \right]\] Determining the value of $\text{A}$ by expanding along the first row, we have: \[\Rightarrow \left| \text{A} \right|\text{=1}\left| \begin{matrix} \text{1} & \text{-3} \\ \text{4} & \text{-9} \\ \end{matrix} \right|\text{-1}\left| \begin{matrix} \text{2} & \text{-3} \\ \text{5} & \text{-9} \\ \end{matrix} \right|\text{-2}\left| \begin{matrix} \text{2} & \text{1} \\ \text{5} & \text{4} \\ \end{matrix} \right|\] \[\Rightarrow \left| \text{A} \right|\text{=}1\left( -9+12 \right)-1\left( -18+15 \right)-2\left( 8-5 \right)\] \[\Rightarrow \left| \text{A} \right|\text{=}3+3-6\] \[\therefore \left| \text{A} \right|\text{=}0\]

7. Find values of \[x\] , if

i. \[\left| \begin{matrix} \text{2} & \text{4} \\ \text{5} & \text{1} \\ \end{matrix} \right|\text{=}\left| \begin{matrix} \text{2x} & \text{4} \\ \text{6} & \text{x} \\ \end{matrix} \right|\] Ans: Given, \[\left| \begin{matrix} \text{2} & \text{4} \\ \text{5} & \text{1} \\ \end{matrix} \right|\text{=}\left| \begin{matrix} \text{2x} & \text{4} \\ \text{6} & \text{x} \\ \end{matrix} \right|\] Solving it, we have: \[\Rightarrow \left( 2\times 1 \right)-\left( 5\times 4 \right)=\left( 2x\times x \right)-\left( 6\times 4 \right)\] \[\Rightarrow 2-20=2{{x}^{2}}-24\] \[\Rightarrow -18+24=2{{x}^{2}}\] \[\Rightarrow 3={{x}^{2}}\] Applying square root on both the sides, we obtain: \[\Rightarrow \text{x = }\!\!\pm\!\!\text{ }\sqrt{\text{3}}\] ii. \[\left| \begin{matrix} \text{2} & \text{3} \\ \text{4} & \text{5} \\ \end{matrix} \right|\text{=}\left| \begin{matrix} \text{x} & \text{3} \\ \text{2x} & \text{5} \\ \end{matrix} \right|\] Ans: Given, \[\left| \begin{matrix} \text{2} & \text{3} \\ \text{4} & \text{5} \\ \end{matrix} \right|\text{=}\left| \begin{matrix} \text{x} & \text{3} \\ \text{2x} & \text{5} \\ \end{matrix} \right|\] Solving it, we have: \[\Rightarrow \left( \text{2 }\!\!\times\!\!\text{ 5} \right)-\left( \text{3 }\!\!\times\!\!\text{ 4} \right)\text{=}\left( \text{x }\!\!\times\!\!\text{ 5} \right)-\left( \text{3 }\!\!\times\!\!\text{ 2x} \right)\] \[\Rightarrow \text{10}-\text{12=5x}-\text{6x}\] \[\Rightarrow -\text{2=}-\text{x}\] Multiplying by $\left( -1 \right)$ on both the sides, we obtain: \[\Rightarrow \text{x = 2}\]

8. If \[\left| \begin{matrix} x & 2  \\ 18 & x  \\ \end{matrix} \right|\text{=}\left| \begin{matrix} 6 & 2 \\  18 & 6  \\ \end{matrix} \right|\], then \[x\] is equal to

  1. \[\text{6}\]

  2. \[\text{ }\!\!\pm\!\!\text{ 6}\]

  3. \[\text{-6}\]

  4. \[\text{0}\]

Ans: Given,\[\left| \begin{matrix} \text{x} & \text{2} \\ \text{18} & \text{x} \\ \end{matrix} \right|\text{=}\left| \begin{matrix} \text{6} & \text{2} \\ \text{18} & \text{6} \\ \end{matrix} \right|\] Solving it, we have: \[\Rightarrow {{\text{x}}^{\text{2}}}-\text{36 = 36}-\text{36}\] \[\Rightarrow {{\text{x}}^{\text{2}}}-\text{36=0}\] \[\Rightarrow {{\text{x}}^{\text{2}}}\text{=36}\] Applying square root on both the sides, we obtain: \[\Rightarrow \text{x= }\!\!\pm\!\!\text{ 6}\] Hence, B. \[\text{ }\!\!\pm\!\!\text{ 6}\] is the correct answer.



Conclusion

Vedantu's NCERT Solutions for Class 12 Maths Chapter 4 - Determinants, Exercise 4.1, provides a complete understanding of determinants and their properties. It's important to focus on the basic concepts and methods of calculating determinants, as these are fundamental for solving more complex problems. Practice each question thoroughly to build a strong foundation. Pay special attention to the different types of determinant problems to ensure you're well-prepared for the exams.


Class 12 Maths Chapter 4: Exercises Breakdown

S.No.

Chapter 4 - Determinants Exercises in PDF Format

1

Class 12 Maths Chapter 4 Exercise 4.2 - 10 Questions & Solutions (4 Short Answers, 10 Long Answers)

2

Class 12 Maths Chapter 4 Exercise 4.3 - 5 Questions & Solutions (2 Short Answers, 3 Long Answers)

3

Class 12 Maths Chapter 4 Exercise 4.4 - 5 Questions & Solutions (2 Short Answers, 3 Long Answers)

4

Class 12 Maths Chapter 4 Exercise 4.5 - 18 Questions & Solutions (4 Short Answers, 14 Long Answers)



CBSE Class 12 Maths Chapter 4 Other Study Materials



NCERT Solutions for Class 12 Maths | Chapter-wise List

Given below are the chapter-wise NCERT 12 Maths solutions PDF. Using these chapter-wise class 12th maths ncert solutions, you can get clear understanding of the concepts from all chapters.




Related Links for NCERT Class 12 Maths in Hindi

Explore these essential links for NCERT Class 12 Maths in Hindi, providing detailed solutions, explanations, and study resources to help students excel in their mathematics exams.




Important Related Links for NCERT Class 12 Maths

FAQs on NCERT Solutions for Class 12 Maths Chapter 4 Determinants Ex 4.1

1. What is the best solution book for Exercise 4.1 of  Chapter 4 Class 12 Maths? 

Vedantu's NCERT Solutions are the finest study materials for Exercise 4.1 of  Chapter 4 Class 12 Maths. These solutions are designed to help students understand the exercise questions and make the exam preparation process more fun. The content thoroughly covers all of the solutions and practise problems from Chapter 4's first exercise. The answers are simple to comprehend and error-free. Look no further since this is the most up-to-date, accurate, and reliable online math study material available. The PDF of the Solutions may be obtained for free from Vedantu's official website or the Vedantu app.

2. Can you please provide a detailed Stepwise Study Plan to ace Class 12 Maths Chapter 4 Exercise 4.1? 

Before solving problems from Exercise 4.1 of  Chapter 4 Class 12 Maths, the first step is to memorise the formulae and comprehend how they are used. Then, complete Exercise 4.1 by solving all of the questions. To help you with this exercise, you may use Vedantu's NCERT Solutions for Exercise 4.1 by going to the page NCERT Solutions Class 12 Maths Exercise 4.1 or using the Vedantu app; these solutions are accessible for free. Last but not the least, previous year questions from this exercise should be practised in order to ace the CBSE Board Exam.

3. Do I need to practice all the questions provided in Exercise 4.1 of  Chapter 4 Class 12 Maths? 

From an examination standpoint, each question in NCERT of Exercise 4.1 of  Chapter 4 Class 12 Maths is essential. To do well in the Maths exam, you must practise all of the different types of questions included in Exercise 4.1. You will learn something new from each question. For the best results on the Maths exam, practise the problems you find difficult many times and focus more on your areas of weakness.

4. Is it sufficient to practice Exercise 4.1 of  Chapter 4 Class 12 Maths or do I need to practice it from other reference books too? 

To ace Class 12 Maths Board exams, you must, first, be clear with all the questions of Exercise 4.1 from the NCERT Maths standard textbook. It is always better to practice more, so after completing NCERT questions, you can practice the most important questions from other reference books such as RD Sharma and RS Aggarwal. The more you practice, the more you will strengthen your preparation of concepts from Exercise 4.1. Thus, to become a Maths topper in Class 12, you must also practice additional questions based on Exercise 4.1. 

5. What are the most important questions in Exercise 4.1 of  Chapter 4 Class 12 Maths? 

Exercise 4.1 of Class 12 Maths contains various different kinds of questions on Determinants. The most important types of questions given in this exercise are as follows- finding a determinant when a matrix (having elements such as natural numbers, fractions, decimals or trigonometric identities); proving an equation having matrices and determinants; finding the value of 'x' when an equation having two equal matrices are given; determining the value of a determinant. By solving each of these types of questions, you will be able to understand the concept of determinants better. 

6. Why are determinants important in exercise 4.1 class 12?

Determinants are important class 12 ex 4.1 because they are used to solve systems of linear equations, find the area of geometric shapes, and determine whether a matrix is invertible.

7. How can Vedantu's NCERT Solutions help with exercise 4.1 class 12 maths?

Vedantu's solutions provide step-by-step explanations, making it easier to understand how to calculate determinants and apply their properties. They offer clear examples and practice problems to help you master the concepts.

8. Are there any tips for solving determinant problems for exercise 4.1 class 12?

Yes, here are a few tips:

  • Always double-check your calculations, especially the signs.

  • Use properties of determinants to simplify calculations.

  • Practice different types of problems to become more comfortable with the process.

9. What if I get stuck on a problem in exercise 4.1 class 12?

If you get stuck in ex 4.1 class 12  refer to the step-by-step solutions provided by Vedantu. They break down each problem into manageable steps and explain the reasoning behind each step. You can also ask your teacher for help or discuss it with classmates.