Courses
Courses for Kids
Free study material
Offline Centres
More
Store Icon
Store

NCERT Solutions for Class 12 Maths Chapter 4 Exercise 4.4 - Determinants

ffImage
widget title icon
Latest Updates

widget icon
Enrol Now :
JEE Test Series
widget icon
Grab Your Seat :
JEE Pro Course
widget icon
Register Today :
JEE One to One Coaching

NCERT Solutions for Class 12 Maths Chapter 4 Exercise 4.4 Determinants - FREE PDF Download

toc-symbol
Table of Content
1. NCERT Solutions for Class 12 Maths Chapter 4 Exercise 4.4 Determinants - FREE PDF Download
2. Glance on NCERT Solutions Class 12 Maths Chapter 4 Exercise 4.4 | Vedantu
3. Important Formulas Used in Class 12 Chapter 4 Exercise 4.4
4. Access NCERT Solutions for Class 12 Maths Chapter 4 - Determinants Exercise 4.4
5. Conclusion
6. Class 12 Maths Chapter 4: Exercises Breakdown
7. CBSE Class 12 Maths Chapter 4 Other Study Materials
8. NCERT Solutions for Class 12 Maths | Chapter-wise List
9. Related Links for NCERT Class 12 Maths in Hindi
10. Important Related Links for NCERT Class 12 Maths
FAQs

NCERT solutions for exercise 4.4 class 12 chapter 4 "Determinants" deals with the  key concepts such as the condition for the existence of the inverse of a matrix, adjoint and inverse of a matrix, and nonsingular matrices. This chapter provides a strong foundation for understanding how to work with matrices and their properties.


Vedantu’s NCERT Solutions  offer clear and detailed explanations on these topics. Class 12 Ex 4.4 gives an insight of how to compute a given structure of linear equations with the help of determinants. The entire NCERT Class 12 Maths solutions from vedantu has been updated according to the 2024-25 syllabus by our masters. 


Glance on NCERT Solutions Class 12 Maths Chapter 4 Exercise 4.4 | Vedantu

  • NCERT solutions of exercise 4.4 class 12 maths of chapter determinants, deals with the topics inverse of a matrix, condition for existence of inverse of a matrix, adjoint of a matrix, singular matrix and non singular matrix.

  • Inverse of a matrix A is another matrix denoted by $ A^{-1} $ such that when A is multiplied by $ A^{-1} $ the result is the identity matrix ie in mathematically ,

$ A\times A^{-1}= A^{-1}\times A=I $

  • Conditions for Existence of an Inverse of a matrix:

  • A matrix must be square (same number of rows and columns) and have a non-zero determinant to have an inverse.

  • A singular matrix is a square matrix that does not have an inverse. This occurs when the determinant of the matrix is zero. ie,$\left | A \right |$=0.

  • A non-singular matrix is a square matrix that has an inverse. This occurs when the determinant of the matrix is non-zero.

  • The adjoint (or adjugate) of a square matrix is the transpose of its cofactor matrix.

  • This article Determinants ex 4.4 class 12 contains chapter notes, important questions, exemplar solutions, exercises and video links for Chapter - Determinants, which you can download as PDFs.

  • There are 18 fully solved questions and solutions in class 12th Maths chapter 4 Determinants.


Important Formulas Used in Class 12 Chapter 4 Exercise 4.4

  • Inverse of a square matrix 𝐴 :

  • $A^{-1}=\dfrac{1}{|A|}\times adj(A)$

Competitive Exams after 12th Science
tp-imag
bottom-arrow
tp-imag
bottom-arrow
tp-imag
bottom-arrow
tp-imag
bottom-arrow
tp-imag
bottom-arrow
tp-imag
bottom-arrow

Access NCERT Solutions for Class 12 Maths Chapter 4 - Determinants Exercise 4.4

1. Find the adjoint of each of the matrices. \[\mathbf{\left[ \begin{matrix} \text{1} & \text{2}  \\ \text{3} & \text{4}  \\ \end{matrix} \right]}\]

Ans: Let \[\text{A=}\left[ \begin{matrix} \text{1} & \text{2}  \\ \text{3} & \text{4}  \\ \end{matrix} \right]\]

Since, Cofactor of \[{{\text{a}}_{ij}}\] is \[{{\text{A}}_{ij}}\text{=}{{\left( \text{-1} \right)}^{\text{i+j}}}{{\text{M}}_{ij}}\].

Thus,

\[\Rightarrow {{\text{A}}_{11}}\text{=}{{\left( \text{-1} \right)}^{1+1}}{{\text{M}}_{11}}={{\left( \text{-1} \right)}^{2}}{{\text{M}}_{11}}\]

\[\Rightarrow {{A}_{11}}\text{=4}\]

\[\Rightarrow {{\text{A}}_{12}}\text{=}{{\left( \text{-1} \right)}^{1+2}}{{\text{M}}_{12}}={{\left( \text{-1} \right)}^{3}}{{\text{M}}_{12}}\]

\[\Rightarrow {{A}_{12}}=-3\]

\[\Rightarrow {{\text{A}}_{21}}\text{=}{{\left( \text{-1} \right)}^{2+1}}{{\text{M}}_{21}}={{\left( \text{-1} \right)}^{3}}{{\text{M}}_{21}}\]

\[\Rightarrow {{\text{A}}_{21}}\text{=}-2\]

\[\Rightarrow {{\text{A}}_{22}}\text{=}{{\left( \text{-1} \right)}^{2+2}}{{\text{M}}_{22}}={{\left( \text{-1} \right)}^{4}}{{\text{M}}_{22}}\]

\[\Rightarrow {{\text{A}}_{22}}=1\]

We know that adjoint of a matrix is the transpose of its cofactor matrix.

Thus,\[\text{adjA=}{{\left[ \begin{matrix} {{\text{A}}_{11}} & {{\text{A}}_{12}}  \\ {{\text{A}}_{21}} & {{\text{A}}_{22}}  \\ \end{matrix} \right]}^{T}}\]

\[\therefore adjA\text{=}\left[ \begin{matrix} \text{4} & \text{-2}  \\ \text{-3} & \text{1}  \\ \end{matrix} \right]\].


2. Find adjoint of each of the matrices \[\mathbf{\left[ \begin{matrix} \text{1} & \text{-1} & \text{2}  \\ \text{2} & \text{3} & \text{5}  \\ \text{-2} & \text{0} & \text{1}  \\ \end{matrix} \right]}\].

Ans: Let \[\text{A=}\left[ \begin{matrix} \text{1} & \text{-1} & \text{2}  \\ \text{2} & \text{3} & \text{5}  \\ \text{-2} & \text{0} & \text{1}  \\ \end{matrix} \right]\]

Since, Cofactor of \[{{\text{a}}_{ij}}\] is \[{{\text{A}}_{ij}}\text{=}{{\left( \text{-1} \right)}^{\text{i+j}}}{{\text{M}}_{ij}}\].

Thus,

\[\Rightarrow {{\text{A}}_{11}}\text{=}{{\left( \text{-1} \right)}^{1+1}}{{\text{M}}_{11}}={{\left( \text{-1} \right)}^{2}}{{\text{M}}_{11}}\]

\[\Rightarrow {{A}_{11}}\text{=}\left| \begin{matrix} \text{3} & \text{5}  \\ \text{0} & \text{1}  \\ \end{matrix} \right|=3-0=3\]

\[\Rightarrow {{\text{A}}_{12}}\text{=}{{\left( \text{-1} \right)}^{1+2}}{{\text{M}}_{12}}={{\left( \text{-1} \right)}^{3}}{{\text{M}}_{12}}\]

\[\Rightarrow {{A}_{12}}=\left| \begin{matrix} \text{2} & \text{5}  \\ \text{-2} & \text{1}  \\ \end{matrix} \right|=-\left( \text{2+10} \right)=-12\]

\[\Rightarrow {{\text{A}}_{13}}\text{=}{{\left( \text{-1} \right)}^{1+3}}{{\text{M}}_{13}}={{\left( \text{-1} \right)}^{4}}{{\text{M}}_{13}}\]

\[\Rightarrow {{A}_{13}}=\left| \begin{matrix} 2 & 3  \\ -2 & 0  \\ \end{matrix} \right|\text{=0+6=6}\]

Similarly,

\[\Rightarrow {{\text{A}}_{21}}\text{=}{{\left( \text{-1} \right)}^{2+1}}{{\text{M}}_{21}}={{\left( \text{-1} \right)}^{3}}{{\text{M}}_{21}}\]

\[\Rightarrow {{\text{A}}_{21}}\text{=}\left| \begin{matrix} \text{-1} & \text{2}  \\ \text{0} & \text{1}  \\ \end{matrix} \right|=-\left( -1-0 \right)\text{=1}\]

\[\Rightarrow {{\text{A}}_{22}}\text{=}{{\left( \text{-1} \right)}^{2+2}}{{\text{M}}_{22}}={{\left( \text{-1} \right)}^{4}}{{\text{M}}_{22}}\]

\[\Rightarrow {{\text{A}}_{22}}=\left| \begin{matrix} \text{1} & \text{2}  \\ -2 & \text{1}  \\ \end{matrix} \right|\text{=1+4=5}\]

\[\Rightarrow {{\text{A}}_{23}}\text{=}{{\left( \text{-1} \right)}^{2+3}}{{\text{M}}_{23}}={{\left( \text{-1} \right)}^{5}}{{\text{M}}_{23}}\]

\[\Rightarrow {{\text{A}}_{23}}\text{=}\left| \begin{matrix} \text{1} & \text{-1}  \\ \text{-2} & 0  \\ \end{matrix} \right|\text{=}\left( 0-2 \right)\text{=2}\]

and

\[\Rightarrow {{\text{A}}_{31}}\text{=}{{\left( \text{-1} \right)}^{3+1}}{{\text{M}}_{31}}={{\left( \text{-1} \right)}^{4}}{{\text{M}}_{31}}\]

\[\Rightarrow {{\text{A}}_{31}}=\left| \begin{matrix} -1 & \text{2}  \\ \text{2} & \text{5}  \\ \end{matrix} \right|=-5-4=-9\]

\[\Rightarrow {{\text{A}}_{32}}\text{=}{{\left( \text{-1} \right)}^{3+2}}{{\text{M}}_{32}}={{\left( \text{-1} \right)}^{5}}{{\text{M}}_{32}}\]

\[\Rightarrow {{\text{A}}_{32}}=\left| \begin{matrix} \text{1} & \text{2}  \\ \text{2} & \text{5}  \\ \end{matrix} \right|=-\left( 5-4 \right)=-1\]

\[\Rightarrow {{\text{A}}_{33}}\text{=}{{\left( \text{-1} \right)}^{3+3}}{{\text{M}}_{33}}={{\left( \text{-1} \right)}^{6}}{{\text{M}}_{33}}\]

\[\Rightarrow {{\text{A}}_{33}}=\left| \begin{matrix} \text{1} & \text{-1}  \\ \text{2} & \text{3}  \\ \end{matrix} \right|\text{=3+2=5}\].

We know that adjoint of a matrix is the transpose of its cofactor matrix.

Thus, \[\text{adjA=}{{\left[ \begin{matrix} A11 & A\text{12} & A\text{13}  \\ A\text{21} & {{\text{A}}_{\text{22}}} & A23  \\ A\text{31} & {{\text{A}}_{\text{32}}} & A\text{33}  \\ \end{matrix} \right]}^{T}}\text{=}\left[ \begin{matrix} \text{3} & -12 & 6  \\ 1 & \text{5} & 2  \\ -9 & -1 & \text{5}  \\ \end{matrix} \right]\]


3. Verify \[\mathbf{\text{A}\left( \text{adjA} \right)\text{=}\left( \text{adjA} \right)\text{A=}\left| \text{A} \right|I}\]. \[\mathbf{\left[ \begin{matrix} \text{2} & \text{3}  \\ \text{-4} & \text{-6}  \\ \end{matrix} \right]}\]

Ans: Given,\[\text{A=}\,\left[ \begin{matrix} \text{2} & \text{3}  \\ \text{-4} & \text{-6}  \\ \end{matrix} \right]\]

\[\therefore \left| \text{A} \right|=-12-\left( -12 \right)\]

\[\Rightarrow \left| \text{A} \right|=0\]

Hence, \[\left| A \right|I=0\left[ \begin{matrix} 1 & 0  \\ 0 & 1  \\ \end{matrix} \right]\]

\[\Rightarrow \left| A \right|I=\left[ \begin{matrix} 0 & 0  \\ 0 & 0  \\ \end{matrix} \right]\]

Since, Cofactor of \[{{\text{a}}_{ij}}\] is \[{{\text{A}}_{ij}}\text{=}{{\left( \text{-1} \right)}^{\text{i+j}}}{{\text{M}}_{ij}}\].

Then,

\[\Rightarrow {{\text{A}}_{11}}\text{=}{{\left( \text{-1} \right)}^{1+1}}{{\text{M}}_{11}}={{\left( \text{-1} \right)}^{2}}{{\text{M}}_{11}}\]

\[\Rightarrow {{A}_{11}}\text{=}-6\]

\[\Rightarrow {{\text{A}}_{12}}\text{=}{{\left( \text{-1} \right)}^{1+2}}{{\text{M}}_{12}}={{\left( \text{-1} \right)}^{3}}{{\text{M}}_{12}}\]

\[\Rightarrow {{A}_{12}}=4\]

\[\Rightarrow {{\text{A}}_{21}}\text{=}{{\left( \text{-1} \right)}^{2+1}}{{\text{M}}_{21}}={{\left( \text{-1} \right)}^{3}}{{\text{M}}_{21}}\]

\[\Rightarrow {{\text{A}}_{21}}\text{=}-3\]

\[\Rightarrow {{\text{A}}_{22}}\text{=}{{\left( \text{-1} \right)}^{2+2}}{{\text{M}}_{22}}={{\left( \text{-1} \right)}^{4}}{{\text{M}}_{22}}\]

\[\Rightarrow {{\text{A}}_{22}}=2\]

Cofactor matrix is $\left[ \begin{matrix} -6 & 4  \\ -3 & 2  \\ \end{matrix} \right]$.

We know that adjoint of a matrix is the transpose of its cofactor matrix.

Thus, \[\text{adj}\,\text{A=}\,\left[ \begin{matrix} -6 & -3  \\ 4 & \text{2}  \\ \end{matrix} \right]\]

Now, multiplying $A$ with its adjoint, we have:

\[\Rightarrow \text{A}\left( \text{adjA} \right)\text{=}\left[ \begin{matrix} \text{2} & \text{3}  \\ \text{-4} & \text{-6}  \\ \end{matrix} \right]\left[ \begin{matrix} -6 & -3  \\ 4 & \text{2}  \\ \end{matrix} \right]\]

\[\Rightarrow \text{A}\left( \text{adjA} \right)\text{=}\left[ \begin{matrix} -12+12 & -6+6  \\ 24-24 & 12-12  \\ \end{matrix} \right]\]

\[\therefore \text{A}\left( \text{adjA} \right)\text{=}\left[ \begin{matrix} \text{0} & \text{0}  \\ \text{0} & \text{0}  \\ \end{matrix} \right]\]

Similarly, multiplying \[\left( adjA \right)\] with \[A\], we get:

\[\Rightarrow \left( \text{adjA} \right)\text{A=}\left[ \begin{matrix} -6 & -3  \\ 4 & \text{2}  \\ \end{matrix} \right]\left[ \begin{matrix} \text{2} & \text{3}  \\ -4 & -6  \\ \end{matrix} \right]\]

\[\Rightarrow \left( \text{adjA} \right)\text{A=}\left[ \begin{matrix} -12+12 & -18+18  \\ 8-8 & 12-12  \\ \end{matrix} \right]\]

\[\therefore \left( \text{adjA} \right)\text{A=}\left[ \begin{matrix} \text{0} & \text{0}  \\ \text{0} & \text{0}  \\ \end{matrix} \right]\]

Thus, \[\text{A}\left( \text{adjA} \right)\text{=}\left( \text{adjA} \right)\text{A=}\left| \text{A} \right|I\]

Hence verified.


4. Verify \[\mathbf{\text{A}\left( \text{adjA} \right)\text{=}\left( \text{adjA} \right)\text{A=}\left| \text{A} \right|I}\]. \[\mathbf{\left[ \begin{matrix} \text{1} & -1 & \text{2}  \\ \text{3} & \text{0} & -2  \\ \text{1} & \text{0} & \text{3}  \\ \end{matrix} \right]}\].

Ans: Let \[\text{A=}\left[ \begin{matrix} \text{1} & \text{-1} & \text{2}  \\ \text{3} & \text{0} & \text{-2}  \\ \text{1} & \text{0} & \text{3}  \\ \end{matrix} \right]\]

\[\Rightarrow \left| \text{A} \right|\text{=1}\left( \text{0-0} \right)\text{+1}\left( \text{9+2} \right)\text{+2}\left( \text{0-0} \right)\]

\[\therefore \left| \text{A} \right|\text{=11}\]

\[\left| \text{A} \right|\text{I=11}\left[ \begin{matrix} \text{1} & \text{0} & \text{0}  \\ \text{0} & \text{1} & \text{0}  \\ \text{0} & \text{0} & \text{1}  \\ \end{matrix} \right]\text{=}\left[ \begin{matrix} \text{11} & \text{0} & \text{0}  \\ \text{0} & \text{11} & \text{0}  \\ \text{0} & \text{0} & \text{11}  \\ \end{matrix} \right]\]

Since, Cofactor of \[{{\text{a}}_{ij}}\] is \[{{\text{A}}_{ij}}\text{=}{{\left( \text{-1} \right)}^{\text{i+j}}}{{\text{M}}_{ij}}\].

Thus,

\[\Rightarrow {{\text{A}}_{11}}\text{=}{{\left( \text{-1} \right)}^{1+1}}{{\text{M}}_{11}}={{\left( \text{-1} \right)}^{2}}{{\text{M}}_{11}}\]

\[\Rightarrow {{A}_{11}}\text{=0}\]

\[\Rightarrow {{\text{A}}_{12}}\text{=}{{\left( \text{-1} \right)}^{1+2}}{{\text{M}}_{12}}={{\left( \text{-1} \right)}^{3}}{{\text{M}}_{12}}\]

\[\Rightarrow {{A}_{12}}=-\left( 9+2 \right)=-11\]

\[\Rightarrow {{\text{A}}_{13}}\text{=}{{\left( \text{-1} \right)}^{1+3}}{{\text{M}}_{13}}={{\left( \text{-1} \right)}^{4}}{{\text{M}}_{13}}\]

\[\Rightarrow {{A}_{13}}=0\]

Similarly,

\[\Rightarrow {{\text{A}}_{21}}\text{=}{{\left( \text{-1} \right)}^{2+1}}{{\text{M}}_{21}}={{\left( \text{-1} \right)}^{3}}{{\text{M}}_{21}}\]

\[\Rightarrow {{\text{A}}_{21}}\text{=}-\left( -3+0 \right)=3\]

\[\Rightarrow {{\text{A}}_{22}}\text{=}{{\left( \text{-1} \right)}^{2+2}}{{\text{M}}_{22}}={{\left( \text{-1} \right)}^{4}}{{\text{M}}_{22}}\]

\[\Rightarrow {{\text{A}}_{22}}=3-2=1\]

\[\Rightarrow {{\text{A}}_{23}}\text{=}{{\left( \text{-1} \right)}^{2+3}}{{\text{M}}_{23}}={{\left( \text{-1} \right)}^{5}}{{\text{M}}_{23}}\]

\[\Rightarrow {{\text{A}}_{23}}\text{=}-\left( 0+1 \right)=-1\]

and

\[\Rightarrow {{\text{A}}_{31}}\text{=}{{\left( \text{-1} \right)}^{3+1}}{{\text{M}}_{31}}={{\left( \text{-1} \right)}^{4}}{{\text{M}}_{31}}\]

\[\Rightarrow {{\text{A}}_{31}}=2-0=2\]

\[\Rightarrow {{\text{A}}_{32}}\text{=}{{\left( \text{-1} \right)}^{3+2}}{{\text{M}}_{32}}={{\left( \text{-1} \right)}^{5}}{{\text{M}}_{32}}\]

\[\Rightarrow {{\text{A}}_{32}}=-\left( -2-6 \right)=8\]

\[\Rightarrow {{\text{A}}_{33}}\text{=}{{\left( \text{-1} \right)}^{3+3}}{{\text{M}}_{33}}={{\left( \text{-1} \right)}^{6}}{{\text{M}}_{33}}\]

\[\Rightarrow {{\text{A}}_{33}}=0+3=3\].

Cofactor matrix is \[\left[ \begin{matrix} 0 & -11 & 0  \\ 3 & 1 & -1  \\ 2 & 8 & 3  \\ \end{matrix} \right]\].

We know that adjoint of a matrix is the transpose of its cofactor matrix.

\[\Rightarrow adjA={{\left[ \begin{matrix} 0 & -11 & 0  \\ 3 & 1 & -1  \\ 2 & 8 & 3  \\ \end{matrix} \right]}^{T}}\]

\[\therefore \text{adj}\,\text{A=}\left[ \begin{matrix} \text{0} & 3 & 2  \\ -11 & \text{1} & \text{8}  \\ \text{0} & -1 & \text{3}  \\ \end{matrix} \right]\]

Now, multiplying $A$ with its adjoint, we have:

\[\Rightarrow \text{A}\left( \text{adj}\,\text{A} \right)\text{=}\left[ \begin{matrix} \text{1} & \text{-1} & \text{2}  \\ \text{3} & \text{0} & \text{-2}  \\ \text{1} & \text{0} & \text{3}  \\ \end{matrix} \right]\left[ \begin{matrix} \text{0} & \text{3} & \text{2}  \\ \text{-11} & \text{1} & \text{8}  \\ \text{0} & \text{-1} & \text{3}  \\ \end{matrix} \right]\]

\[\Rightarrow \text{A}\left( \text{adj}\,\text{A} \right)\text{=}\left[ \begin{matrix} \text{0+11+0} & \text{3-1-2} & \text{2-8+6}  \\ \text{0+0+0} & \text{9+0+2} & \text{6+0-6}  \\ \text{0+0+0} & \text{3+0-3} & \text{2+0+9}  \\ \end{matrix} \right]\]

\[\therefore \text{A}\left( \text{adj}\,\text{A} \right)\text{=}\left[ \begin{matrix} \text{11} & \text{0} & \text{0}  \\ \text{0} & \text{11} & \text{0}  \\ \text{0} & \text{0} & \text{11}  \\ \end{matrix} \right]\]

Similarly, multiplying \[\left( adjA \right)\] with \[A\], we get:

\[\Rightarrow \left( \text{adj}\,\text{A} \right)\text{A=}\left[ \begin{matrix} \text{0} & \text{3} & \text{2}  \\ \text{-11} & \text{1} & \text{8}  \\ \text{0} & \text{-1} & \text{3}  \\ \end{matrix} \right]\left[ \begin{matrix} \text{1} & \text{-1} & \text{2}  \\ \text{3} & \text{0} & \text{-2}  \\ \text{1} & \text{0} & \text{3}  \\ \end{matrix} \right]\]

\[\Rightarrow \left( \text{adj}\,\text{A} \right)\text{A=}\left[ \begin{matrix} \text{0+9+2} & \text{0+0+0} & \text{0-6+6}  \\ \text{-11+3+8} & \text{11+0+0} & \text{-22-2+24}  \\ \text{0-3+3} & \text{0+0+0} & \text{0+2+9}  \\ \end{matrix} \right]\]

\[\therefore \left( \text{adj}\,\text{A} \right)\text{A=}\left[ \begin{matrix} \text{11} & \text{0} & \text{0}  \\ \text{0} & \text{11} & \text{0}  \\ \text{0} & \text{0} & \text{11}  \\ \end{matrix} \right]\]

Thus, \[\text{A}\left( \text{adjA} \right)\text{=}\left( \text{adjA} \right)\text{A=}\left| \text{A} \right|I\]

Hence verified.


5. Find the inverse of each of the matrices (if it exists). $\mathbf{\left[ \begin{matrix} 2 & -2  \\ 4 & 3  \\ \end{matrix} \right]}$

Ans: Let \[\text{A=}\left[ \begin{matrix} 2 & -2  \\ 4 & 3  \\ \end{matrix} \right]\]

\[\Rightarrow \left| \text{A} \right|=6+8\]

\[\therefore \left| \text{A} \right|=14\]

Since, Cofactor of \[{{\text{a}}_{ij}}\] is \[{{\text{A}}_{ij}}\text{=}{{\left( \text{-1} \right)}^{\text{i+j}}}{{\text{M}}_{ij}}\].

Then,

\[\Rightarrow {{\text{A}}_{11}}\text{=}{{\left( \text{-1} \right)}^{1+1}}{{\text{M}}_{11}}={{\left( \text{-1} \right)}^{2}}{{\text{M}}_{11}}\]

\[\Rightarrow {{\text{A}}_{11}}\text{=3}\]

\[\Rightarrow {{\text{A}}_{12}}\text{=}{{\left( \text{-1} \right)}^{1+2}}{{\text{M}}_{12}}={{\left( \text{-1} \right)}^{3}}{{\text{M}}_{12}}\]

\[\Rightarrow {{\text{A}}_{12}}\text{=-4}\]

\[\Rightarrow {{\text{A}}_{21}}\text{=}{{\left( \text{-1} \right)}^{2+1}}{{\text{M}}_{21}}={{\left( \text{-1} \right)}^{3}}{{\text{M}}_{21}}\]

\[\Rightarrow {{\text{A}}_{21}}=2\]

\[\Rightarrow {{\text{A}}_{22}}\text{=}{{\left( \text{-1} \right)}^{2+2}}{{\text{M}}_{22}}={{\left( \text{-1} \right)}^{4}}{{\text{M}}_{22}}\]

\[\Rightarrow {{\text{A}}_{22}}=2\]

Cofactor matrix is $\left[ \begin{matrix} 3 & -4  \\ 2 & 2  \\ \end{matrix} \right]$.

We know that adjoint of a matrix is the transpose of its cofactor matrix.

\[\therefore \text{adjA=}\left[ \begin{matrix} 3 & 2  \\ -4 & 2  \\ \end{matrix} \right]\]

Hence, the inverse of the matrix $A$ is given by,

\[\Rightarrow {{\text{A}}^{\text{-1}}}\text{=}\dfrac{\text{1}}{\left| \text{A} \right|}\text{adjA}\]

\[\therefore {{\text{A}}^{\text{-1}}}\text{=}\dfrac{\text{1}}{\text{14}}\left[ \begin{matrix} 3 & 2  \\ \text{-4} & 2  \\ \end{matrix} \right]\].


6. Find the inverse of each of the matrices (if it exists). \[\mathbf{\left[ \begin{matrix} \text{-1} & \text{5}  \\ \text{-3} & \text{2}  \\ \end{matrix} \right]}\]

Ans: Let \[\text{A=}\left[ \begin{matrix} \text{-1} & \text{5}  \\ \text{-3} & \text{2}  \\ \end{matrix} \right]\]

\[\Rightarrow \left| \text{A} \right|=-2+15\]

\[\therefore \left| \text{A} \right|=13\]

Since, Cofactor of \[{{\text{a}}_{ij}}\] is \[{{\text{A}}_{ij}}\text{=}{{\left( \text{-1} \right)}^{\text{i+j}}}{{\text{M}}_{ij}}\].

Then,

\[\Rightarrow {{\text{A}}_{11}}\text{=}{{\left( \text{-1} \right)}^{1+1}}{{\text{M}}_{11}}={{\left( \text{-1} \right)}^{2}}{{\text{M}}_{11}}\]

\[\Rightarrow {{\text{A}}_{11}}\text{=2}\]

\[\Rightarrow {{\text{A}}_{12}}\text{=}{{\left( \text{-1} \right)}^{1+2}}{{\text{M}}_{12}}={{\left( \text{-1} \right)}^{3}}{{\text{M}}_{12}}\]

\[\Rightarrow {{\text{A}}_{12}}\text{=3}\]

\[\Rightarrow {{\text{A}}_{21}}\text{=}{{\left( \text{-1} \right)}^{2+1}}{{\text{M}}_{21}}={{\left( \text{-1} \right)}^{3}}{{\text{M}}_{21}}\]

\[\Rightarrow {{\text{A}}_{21}}=-5\]

\[\Rightarrow {{\text{A}}_{22}}\text{=}{{\left( \text{-1} \right)}^{2+2}}{{\text{M}}_{22}}={{\left( \text{-1} \right)}^{4}}{{\text{M}}_{22}}\]

\[\Rightarrow {{\text{A}}_{22}}=-1\]

Cofactor matrix is $\left[ \begin{matrix} 2 & 3  \\ -5 & -1  \\ \end{matrix} \right]$.

We know that adjoint of a matrix is the transpose of its cofactor matrix.

\[\therefore \text{adjA=}\left[ \begin{matrix} \text{2} & \text{-5}  \\ \text{3} & \text{-1}  \\ \end{matrix} \right]\]

Hence, the inverse of the matrix $A$ is given by,

\[\Rightarrow {{\text{A}}^{\text{-1}}}\text{=}\dfrac{\text{1}}{\left| \text{A} \right|}\text{adjA}\]

\[\therefore {{\text{A}}^{\text{-1}}}\text{=}\dfrac{\text{1}}{\text{13}}\left[ \begin{matrix} \text{2} & \text{-5}  \\ \text{3} & \text{-1}  \\ \end{matrix} \right]\].


7. Find the inverse of each of the matrices (if it exists). \[\mathbf{\left[ \begin{matrix} \text{1} & \text{2} & \text{3}  \\ \text{0} & \text{2} & \text{4}  \\ \text{0} & \text{0} & \text{5}  \\ \end{matrix} \right]}\]

Ans: Let \[\text{A=}\left[ \begin{matrix} \text{1} & \text{2} & \text{3}  \\ \text{0} & \text{2} & \text{4}  \\ \text{0} & \text{0} & \text{5}  \\ \end{matrix} \right]\]

Then,

\[\Rightarrow \left| \text{A} \right|\text{=1}\left( 10-0 \right)-2\left( 0-0 \right)\text{+3}\left( 0-0 \right)\]

\[\therefore \left| \text{A} \right|\text{=10}\]

Since, Cofactor of \[{{\text{a}}_{ij}}\] is \[{{\text{A}}_{ij}}\text{=}{{\left( \text{-1} \right)}^{\text{i+j}}}{{\text{M}}_{ij}}\].

Thus,

\[\Rightarrow {{\text{A}}_{11}}\text{=}{{\left( \text{-1} \right)}^{1+1}}{{\text{M}}_{11}}={{\left( \text{-1} \right)}^{2}}{{\text{M}}_{11}}\]

\[\Rightarrow {{A}_{11}}\text{=}10-0=10\]

\[\Rightarrow {{\text{A}}_{12}}\text{=}{{\left( \text{-1} \right)}^{1+2}}{{\text{M}}_{12}}={{\left( \text{-1} \right)}^{3}}{{\text{M}}_{12}}\]

\[\Rightarrow {{A}_{12}}=-\left( 0+0 \right)=0\]

\[\Rightarrow {{\text{A}}_{13}}\text{=}{{\left( \text{-1} \right)}^{1+3}}{{\text{M}}_{13}}={{\left( \text{-1} \right)}^{4}}{{\text{M}}_{13}}\]

\[\Rightarrow {{A}_{13}}\text{=0}\]

Similarly,

\[\Rightarrow {{\text{A}}_{21}}\text{=}{{\left( \text{-1} \right)}^{2+1}}{{\text{M}}_{21}}={{\left( \text{-1} \right)}^{3}}{{\text{M}}_{21}}\]

\[\Rightarrow {{\text{A}}_{21}}\text{=}-\left( 10-0 \right)\text{=}-10\]

\[\Rightarrow {{\text{A}}_{22}}\text{=}{{\left( \text{-1} \right)}^{2+2}}{{\text{M}}_{22}}={{\left( \text{-1} \right)}^{4}}{{\text{M}}_{22}}\]

\[\Rightarrow {{\text{A}}_{22}}=5-0=5\]

\[\Rightarrow {{\text{A}}_{23}}\text{=}{{\left( \text{-1} \right)}^{2+3}}{{\text{M}}_{23}}={{\left( \text{-1} \right)}^{5}}{{\text{M}}_{23}}\]

\[\Rightarrow {{\text{A}}_{23}}\text{=}-\left( 0-0 \right)=0\]

And

\[\Rightarrow {{\text{A}}_{31}}\text{=}{{\left( \text{-1} \right)}^{3+1}}{{\text{M}}_{31}}={{\left( \text{-1} \right)}^{4}}{{\text{M}}_{31}}\]

\[\Rightarrow {{\text{A}}_{31}}=8-6=2\]

\[\Rightarrow {{\text{A}}_{32}}\text{=}{{\left( \text{-1} \right)}^{3+2}}{{\text{M}}_{32}}={{\left( \text{-1} \right)}^{5}}{{\text{M}}_{32}}\]

\[\Rightarrow {{\text{A}}_{32}}=-\left( 4-0 \right)=-4\]

\[\Rightarrow {{\text{A}}_{33}}\text{=}{{\left( \text{-1} \right)}^{3+3}}{{\text{M}}_{33}}={{\left( \text{-1} \right)}^{6}}{{\text{M}}_{33}}\]

\[\Rightarrow {{\text{A}}_{33}}=2-0=2\].

Cofactor matrix is $\left[ \begin{matrix} 10 & 0 & 0  \\ -10 & 5 & 0  \\ 2 & -4 & 2  \\ \end{matrix} \right]$.

We know that adjoint of a matrix is the transpose of its cofactor matrix.

\[\therefore \text{adjA=}\left[ \begin{matrix} \text{10} & -10 & \text{2}  \\ \text{0} & \text{5} & -4  \\ \text{0} & \text{0} & \text{2}  \\ \end{matrix} \right]\]

Hence, the inverse of the matrix $A$ is given by,

\[\Rightarrow {{\text{A}}^{\text{-1}}}\text{=}\dfrac{\text{1}}{\left| \text{A} \right|}\text{adjA}\]

\[\therefore {{\text{A}}^{\text{-1}}}=\dfrac{\text{1}}{\text{10}}\left[ \begin{matrix} \text{10} & \text{-10} & \text{2}  \\ \text{0} & \text{5} & \text{-4}  \\ \text{0} & \text{0} & \text{2}  \\ \end{matrix} \right]\]


8. Find the inverse of each of the matrices (if it exists). \[\mathbf{\left[ \begin{matrix} \text{1} & \text{0} & \text{0}  \\ \text{3} & \text{3} & \text{0}  \\ \text{5} & \text{2} & \text{-1}  \\ \end{matrix} \right]}\]

Ans: Let \[\text{A=}\left[ \begin{matrix} \text{1} & \text{0} & \text{0}  \\ \text{3} & \text{3} & \text{0}  \\ \text{5} & \text{2} & \text{-1}  \\ \end{matrix} \right]\]

Then,

\[\Rightarrow \left| \text{A} \right|\text{=1}\left( -3-0 \right)\text{-0+0}\]

\[\therefore \left| \text{A} \right|=-3\]

Since, Cofactor of \[{{\text{a}}_{ij}}\] is \[{{\text{A}}_{ij}}\text{=}{{\left( \text{-1} \right)}^{\text{i+j}}}{{\text{M}}_{ij}}\].

Thus,

\[\Rightarrow {{\text{A}}_{11}}\text{=}{{\left( \text{-1} \right)}^{1+1}}{{\text{M}}_{11}}={{\left( \text{-1} \right)}^{2}}{{\text{M}}_{11}}\]

\[\Rightarrow {{A}_{11}}\text{=}-3-0=-3\]

\[\Rightarrow {{\text{A}}_{12}}\text{=}{{\left( \text{-1} \right)}^{1+2}}{{\text{M}}_{12}}={{\left( \text{-1} \right)}^{3}}{{\text{M}}_{12}}\]

\[\Rightarrow {{A}_{12}}=-\left( -3-0 \right)=3\]

\[\Rightarrow {{\text{A}}_{13}}\text{=}{{\left( \text{-1} \right)}^{1+3}}{{\text{M}}_{13}}={{\left( \text{-1} \right)}^{4}}{{\text{M}}_{13}}\]

\[\Rightarrow {{A}_{13}}=6-15=-9\]

Similarly,

\[\Rightarrow {{\text{A}}_{21}}\text{=}{{\left( \text{-1} \right)}^{2+1}}{{\text{M}}_{21}}={{\left( \text{-1} \right)}^{3}}{{\text{M}}_{21}}\]

\[\Rightarrow {{\text{A}}_{21}}\text{=}-\left( 0+0 \right)=0\]

\[\Rightarrow {{\text{A}}_{22}}\text{=}{{\left( \text{-1} \right)}^{2+2}}{{\text{M}}_{22}}={{\left( \text{-1} \right)}^{4}}{{\text{M}}_{22}}\]

\[\Rightarrow {{\text{A}}_{22}}=-1-0=-1\]

\[\Rightarrow {{\text{A}}_{23}}\text{=}{{\left( \text{-1} \right)}^{2+3}}{{\text{M}}_{23}}={{\left( \text{-1} \right)}^{5}}{{\text{M}}_{23}}\]

\[\Rightarrow {{\text{A}}_{23}}\text{=}-\left( 2-0 \right)=-2\]

and

\[\Rightarrow {{\text{A}}_{31}}\text{=}{{\left( \text{-1} \right)}^{3+1}}{{\text{M}}_{31}}={{\left( \text{-1} \right)}^{4}}{{\text{M}}_{31}}\]

\[\Rightarrow {{\text{A}}_{31}}=0-0=0\]

\[\Rightarrow {{\text{A}}_{32}}\text{=}{{\left( \text{-1} \right)}^{3+2}}{{\text{M}}_{32}}={{\left( \text{-1} \right)}^{5}}{{\text{M}}_{32}}\]

\[\Rightarrow {{\text{A}}_{32}}=-\left( 0-0 \right)=0\]

\[\Rightarrow {{\text{A}}_{33}}\text{=}{{\left( \text{-1} \right)}^{3+3}}{{\text{M}}_{33}}={{\left( \text{-1} \right)}^{6}}{{\text{M}}_{33}}\]

\[\Rightarrow {{\text{A}}_{33}}=3-0=3\].

Cofactor matrix is $\left[ \begin{matrix} -3 & 3 & -9  \\ 0 & -1 & -2  \\ 0 & 0 & 3  \\ \end{matrix} \right]$.

We know that adjoint of a matrix is the transpose of its cofactor matrix.

\[\Rightarrow adjA={{\left[ \begin{matrix} -3 & 3 & -9  \\ 0 & -1 & -2  \\ 0 & 0 & 3  \\ \end{matrix} \right]}^{T}}\]

\[\therefore \text{adjA=}\left[ \begin{matrix} \text{-3} & \text{0} & \text{0}  \\ \text{3} & \text{-1} & \text{0}  \\ \text{-9} & \text{-2} & \text{3}  \\ \end{matrix} \right]\]

Hence, the inverse of the matrix $A$ is given by,

\[\Rightarrow {{\text{A}}^{\text{-1}}}\text{=}\dfrac{\text{1}}{\left| \text{A} \right|}\text{adjA}\]

\[\therefore {{\text{A}}^{\text{-1}}}\text{=}\dfrac{\text{1}}{\text{10}}\left[ \begin{matrix} \text{-3} & \text{0} & \text{0}  \\ \text{3} & \text{-1} & \text{0}  \\ \text{-9} & \text{-2} & \text{3}  \\ \end{matrix} \right]\]


9. Find the inverse of each of the matrices (if it exists). \[\mathbf{\left[ \begin{matrix} \text{2} & \text{1} & \text{3}  \\ \text{4} & \text{-1} & \text{0}  \\ \text{-7} & \text{2} & \text{1}  \\ \end{matrix} \right]}\]

Ans: Let \[\text{A=}\left[ \begin{matrix} \text{2} & \text{1} & \text{3}  \\ \text{4} & \text{-1} & \text{0}  \\ \text{-7} & \text{2} & \text{1}  \\ \end{matrix} \right]\]

Thus,

\[\Rightarrow \left| \text{A} \right|\text{=2}\left( \text{-1-0} \right)\text{-1}\left( \text{4-0} \right)\text{+3}\left( \text{8-7} \right)\]

\[\Rightarrow \left| A \right|=2\left( -1 \right)-1\left( 4 \right)+3\left( 1 \right)\]

\[\therefore \left| \text{A} \right|=-3\]

Since, Cofactor of \[{{\text{a}}_{ij}}\] is \[{{\text{A}}_{ij}}\text{=}{{\left( \text{-1} \right)}^{\text{i+j}}}{{\text{M}}_{ij}}\].

Thus,

\[\Rightarrow {{\text{A}}_{11}}\text{=}{{\left( \text{-1} \right)}^{1+1}}{{\text{M}}_{11}}={{\left( \text{-1} \right)}^{2}}{{\text{M}}_{11}}\]

\[\Rightarrow {{A}_{11}}\text{=}-1-0=-1\]

\[\Rightarrow {{\text{A}}_{12}}\text{=}{{\left( \text{-1} \right)}^{1+2}}{{\text{M}}_{12}}={{\left( \text{-1} \right)}^{3}}{{\text{M}}_{12}}\]

\[\Rightarrow {{A}_{12}}=-\left( 4-0 \right)=-4\]

\[\Rightarrow {{\text{A}}_{13}}\text{=}{{\left( \text{-1} \right)}^{1+3}}{{\text{M}}_{13}}={{\left( \text{-1} \right)}^{4}}{{\text{M}}_{13}}\]

\[\Rightarrow {{A}_{13}}=8-7=1\]

Similarly,

\[\Rightarrow {{\text{A}}_{21}}\text{=}{{\left( \text{-1} \right)}^{2+1}}{{\text{M}}_{21}}={{\left( \text{-1} \right)}^{3}}{{\text{M}}_{21}}\]

\[\Rightarrow {{\text{A}}_{21}}\text{=}-\left( 1-6 \right)=5\]

\[\Rightarrow {{\text{A}}_{22}}\text{=}{{\left( \text{-1} \right)}^{2+2}}{{\text{M}}_{22}}={{\left( \text{-1} \right)}^{4}}{{\text{M}}_{22}}\]

\[\Rightarrow {{\text{A}}_{22}}=2+21=23\]

\[\Rightarrow {{\text{A}}_{23}}\text{=}{{\left( \text{-1} \right)}^{2+3}}{{\text{M}}_{23}}={{\left( \text{-1} \right)}^{5}}{{\text{M}}_{23}}\]

\[\Rightarrow {{\text{A}}_{23}}\text{=}-\left( 4+7 \right)=-11\]

and

\[\Rightarrow {{\text{A}}_{31}}\text{=}{{\left( \text{-1} \right)}^{3+1}}{{\text{M}}_{31}}={{\left( \text{-1} \right)}^{4}}{{\text{M}}_{31}}\]

\[\Rightarrow {{\text{A}}_{31}}=0+3=3\]

\[\Rightarrow {{\text{A}}_{32}}\text{=}{{\left( \text{-1} \right)}^{3+2}}{{\text{M}}_{32}}={{\left( \text{-1} \right)}^{5}}{{\text{M}}_{32}}\]

\[\Rightarrow {{\text{A}}_{32}}=-\left( 0-12 \right)=12\]

\[\Rightarrow {{\text{A}}_{33}}\text{=}{{\left( \text{-1} \right)}^{3+3}}{{\text{M}}_{33}}={{\left( \text{-1} \right)}^{6}}{{\text{M}}_{33}}\]

\[\Rightarrow {{\text{A}}_{33}}=-2-4=-6\].

Cofactor matrix is $\left[ \begin{matrix} -1 & -4 & 1  \\ 5 & 23 & -11  \\ 3 & 12 & -6  \\ \end{matrix} \right]$.

We know that adjoint of a matrix is the transpose of its cofactor matrix.

$\Rightarrow adjA={{\left[ \begin{matrix} -1 & -4 & 1  \\ 5 & 23 & -11  \\ 3 & 12 & -6  \\ \end{matrix} \right]}^{T}}$

\[\therefore \text{adjA=}\left[ \begin{matrix} \text{-1} & \text{5} & \text{3}  \\ \text{-4} & \text{23} & \text{12}  \\ \text{1} & \text{-11} & \text{-6}  \\ \end{matrix} \right]\]

Hence, the inverse of the matrix $A$ is given by,

\[\Rightarrow {{\text{A}}^{\text{-1}}}\text{=}\dfrac{\text{1}}{\left| \text{A} \right|}\text{adjA}\]

\[\therefore {{\text{A}}^{\text{-1}}}\text{=}\dfrac{\text{1}}{\text{10}}\left[ \begin{matrix} \text{-1} & \text{5} & \text{3}  \\ \text{-4} & \text{23} & \text{12}  \\ \text{1} & \text{-11} & \text{-6}  \\ \end{matrix} \right]\]


10. Find the inverse of each of the matrices (if it exists). \[\mathbf{\left[ \begin{matrix} \text{1} & \text{-1} & \text{2}  \\ \text{0} & \text{2} & \text{-3}  \\ \text{3} & \text{-2} & \text{4}  \\ \end{matrix} \right]}\]

Ans: Let \[\text{A=}\left[ \begin{matrix} \text{1} & \text{-1} & \text{2}  \\ \text{0} & \text{2} & \text{-3}  \\ \text{3} & \text{-2} & \text{4}  \\ \end{matrix} \right]\]

Expanding along column \[{{\text{C}}_{1}}\],

\[\Rightarrow \left| \text{A} \right|\text{=1}\left( 8-6 \right)\text{-0+3}\left( 3-4 \right)\]

\[\therefore \left| \text{A} \right|=-1\]

Since, Cofactor of \[{{\text{a}}_{ij}}\] is \[{{\text{A}}_{ij}}\text{=}{{\left( \text{-1} \right)}^{\text{i+j}}}{{\text{M}}_{ij}}\].

Thus,

\[\Rightarrow {{\text{A}}_{11}}\text{=}{{\left( \text{-1} \right)}^{1+1}}{{\text{M}}_{11}}={{\left( \text{-1} \right)}^{2}}{{\text{M}}_{11}}\]

\[\Rightarrow {{A}_{11}}\text{=8-6=2}\]

\[\Rightarrow {{\text{A}}_{12}}\text{=}{{\left( \text{-1} \right)}^{1+2}}{{\text{M}}_{12}}={{\left( \text{-1} \right)}^{3}}{{\text{M}}_{12}}\]

\[\Rightarrow {{A}_{12}}=-\left( 0+9 \right)=-9\]

\[\Rightarrow {{\text{A}}_{13}}\text{=}{{\left( \text{-1} \right)}^{1+3}}{{\text{M}}_{13}}={{\left( \text{-1} \right)}^{4}}{{\text{M}}_{13}}\]

\[\Rightarrow {{A}_{13}}=0-6=-6\]

Similarly,

\[\Rightarrow {{\text{A}}_{21}}\text{=}{{\left( \text{-1} \right)}^{2+1}}{{\text{M}}_{21}}={{\left( \text{-1} \right)}^{3}}{{\text{M}}_{21}}\]

\[\Rightarrow {{\text{A}}_{21}}\text{=}-\left( -4+4 \right)=0\]

\[\Rightarrow {{\text{A}}_{22}}\text{=}{{\left( \text{-1} \right)}^{2+2}}{{\text{M}}_{22}}={{\left( \text{-1} \right)}^{4}}{{\text{M}}_{22}}\]

\[\Rightarrow {{\text{A}}_{22}}=4-6=-2\]

\[\Rightarrow {{\text{A}}_{23}}\text{=}{{\left( \text{-1} \right)}^{2+3}}{{\text{M}}_{23}}={{\left( \text{-1} \right)}^{5}}{{\text{M}}_{23}}\]

\[\Rightarrow {{\text{A}}_{23}}\text{=}-\left( -2+3 \right)=-1\]

and

\[\Rightarrow {{\text{A}}_{31}}\text{=}{{\left( \text{-1} \right)}^{3+1}}{{\text{M}}_{31}}={{\left( \text{-1} \right)}^{4}}{{\text{M}}_{31}}\]

\[\Rightarrow {{\text{A}}_{31}}=3-4=-1\]

\[\Rightarrow {{\text{A}}_{32}}\text{=}{{\left( \text{-1} \right)}^{3+2}}{{\text{M}}_{32}}={{\left( \text{-1} \right)}^{5}}{{\text{M}}_{32}}\]

\[\Rightarrow {{\text{A}}_{32}}=-\left( -3-0 \right)=3\]

\[\Rightarrow {{\text{A}}_{33}}\text{=}{{\left( \text{-1} \right)}^{3+3}}{{\text{M}}_{33}}={{\left( \text{-1} \right)}^{6}}{{\text{M}}_{33}}\]

\[\Rightarrow {{\text{A}}_{33}}=2-0=2\].

Cofactor matrix is \[\left[ \begin{matrix} 2 & -9 & -6  \\ 0 & -2 & -1  \\ -1 & 3 & 2  \\ \end{matrix} \right]\].

We know that adjoint of a matrix is the transpose of its cofactor matrix.

\[\Rightarrow adjA={{\left[ \begin{matrix} 2 & -9 & -6  \\ 0 & -2 & -1  \\ -1 & 3 & 2  \\ \end{matrix} \right]}^{T}}\]

\[\Rightarrow adjA=\left[ \begin{matrix} 2 & 0 & -1  \\ -9 & -2 & 3  \\ -6 & -1 & 2  \\ \end{matrix} \right]\]

The inverse of the matrix $A$ is given by,

\[\Rightarrow {{\text{A}}^{\text{-1}}}\text{=}\dfrac{\text{1}}{\left| \text{A} \right|}\text{adjA}\]

$\therefore A^{-1}=-1\begin{bmatrix}2 &0  &-1 \\ -9 &-2  &3 \\ -6 &-1  &2 \end{bmatrix}$

$\text{Hence},A^{-1}=\begin{bmatrix}-2 &0  &1 \\ 9 &2  &-3 \\ 6 &1  &-2 \end{bmatrix}$


11. Find the inverse of each of the matrices (if it exists). \[\mathbf{\left[ \begin{matrix} \text{1} & \text{0} & \text{0}  \\ \text{0} & \text{cos}\,\text{a} & \text{sin}\,\text{a}  \\ \text{0} & \text{sin}\,\text{a} & \text{-cos}\,\text{a}  \\ \end{matrix} \right]}\]

Ans: Let \[\text{A=}\left[ \begin{matrix} \text{1} & \text{0} & \text{0}  \\ \text{0} & \text{cos a} & \text{sin a}  \\ \text{0} & \text{sin a} & \text{-cos a}  \\ \end{matrix} \right]\]

Expanding along column, \[{{C}_{1}}\]

\[\Rightarrow \left| \text{A} \right|\text{=1}\left( \text{-co}{{\text{s}}^{\text{2}}}\text{a-si}{{\text{n}}^{\text{2}}}\text{a} \right)\]

\[\Rightarrow \left| \text{A} \right|=-\left( \text{co}{{\text{s}}^{\text{2}}}\text{a+si}{{\text{n}}^{\text{2}}}\text{a} \right)\]

\[\therefore \left| \text{A} \right|=-1\]

Since, Cofactor of \[{{\text{a}}_{ij}}\] is \[{{\text{A}}_{ij}}\text{=}{{\left( \text{-1} \right)}^{\text{i+j}}}{{\text{M}}_{ij}}\].

Thus,

\[\Rightarrow {{\text{A}}_{11}}\text{=}{{\left( \text{-1} \right)}^{1+1}}{{\text{M}}_{11}}={{\left( \text{-1} \right)}^{2}}{{\text{M}}_{11}}\]

\[\Rightarrow {{A}_{11}}\text{=}-\text{co}{{\text{s}}^{\text{2}}}\text{a}-\text{si}{{\text{n}}^{\text{2}}}\text{a=}-1\]

\[\Rightarrow {{\text{A}}_{12}}\text{=}{{\left( \text{-1} \right)}^{1+2}}{{\text{M}}_{12}}={{\left( \text{-1} \right)}^{3}}{{\text{M}}_{12}}\]

\[\Rightarrow {{A}_{12}}=0\]

\[\Rightarrow {{\text{A}}_{13}}\text{=}{{\left( \text{-1} \right)}^{1+3}}{{\text{M}}_{13}}={{\left( \text{-1} \right)}^{4}}{{\text{M}}_{13}}\]

\[\Rightarrow {{A}_{13}}=0\]

Similarly,

\[\Rightarrow {{\text{A}}_{21}}\text{=}{{\left( \text{-1} \right)}^{2+1}}{{\text{M}}_{21}}={{\left( \text{-1} \right)}^{3}}{{\text{M}}_{21}}\]

\[\Rightarrow {{\text{A}}_{21}}\text{=0}\]

\[\Rightarrow {{\text{A}}_{22}}\text{=}{{\left( \text{-1} \right)}^{2+2}}{{\text{M}}_{22}}={{\left( \text{-1} \right)}^{4}}{{\text{M}}_{22}}\]

\[\Rightarrow {{\text{A}}_{22}}=-\cos a\]

\[\Rightarrow {{\text{A}}_{23}}\text{=}{{\left( \text{-1} \right)}^{2+3}}{{\text{M}}_{23}}={{\left( \text{-1} \right)}^{5}}{{\text{M}}_{23}}\]

\[\Rightarrow {{\text{A}}_{23}}\text{=}-\sin a\]

and

\[\Rightarrow {{\text{A}}_{31}}\text{=}{{\left( \text{-1} \right)}^{3+1}}{{\text{M}}_{31}}={{\left( \text{-1} \right)}^{4}}{{\text{M}}_{31}}\]

\[\Rightarrow {{\text{A}}_{31}}=0\]

\[\Rightarrow {{\text{A}}_{32}}\text{=}{{\left( \text{-1} \right)}^{3+2}}{{\text{M}}_{32}}={{\left( \text{-1} \right)}^{5}}{{\text{M}}_{32}}\]

\[\Rightarrow {{\text{A}}_{32}}=-\sin a\]

\[\Rightarrow {{\text{A}}_{33}}\text{=}{{\left( \text{-1} \right)}^{3+3}}{{\text{M}}_{33}}={{\left( \text{-1} \right)}^{6}}{{\text{M}}_{33}}\]

\[\Rightarrow {{\text{A}}_{33}}=\cos a\].

Cofactor matrix is \[\left[ \begin{matrix} -1 & 0 & 0  \\ 0 & -\cos a & -\sin a  \\ 0 & -\sin a & \cos a  \\ \end{matrix} \right]\].

We know that adjoint of a matrix is the transpose of its cofactor matrix.

\[\Rightarrow adjA={{\left[ \begin{matrix} -1 & 0 & 0  \\ 0 & -\cos a & -\sin a  \\ 0 & -\sin a & \cos a  \\ \end{matrix} \right]}^{T}}\]

\[\therefore \text{adjA=}\left[ \begin{matrix} \text{-1} & \text{0} & \text{0}  \\ \text{0} & \text{-cos}\,\text{a} & \text{-sin}\,\text{a}  \\ \text{0} & \text{-sin}\,\text{a} & \text{cos}\,\text{a}  \\ \end{matrix} \right]\]

The inverse of the matrix $A$ is given by,

\[\Rightarrow {{\text{A}}^{\text{-1}}}\text{=}\dfrac{\text{1}}{\left| \text{A} \right|}\text{adjA}\]

\[\therefore {{\text{A}}^{\text{-1}}}\text{=}-\text{1}\left[ \begin{matrix} \text{-1} & \text{0} & \text{0}  \\ \text{0} & \text{-cos}\,\text{a} & \text{-sin}\,\text{a}  \\ \text{0} & \text{-sin}\,\text{a} & \text{cos}\,\text{a}  \\ \end{matrix} \right]\]

Hence, \[{{\text{A}}^{-1}}\text{=}\left[ \begin{matrix} \text{1} & \text{0} & \text{0}  \\ \text{0} & \text{cos}\,\text{a} & \text{sin}\,\text{a}  \\ \text{0} & \text{sin}\,\text{a} & \text{-cos}\,\text{a}  \\ \end{matrix} \right]\].


12. Let \[\mathbf{\text{A=}\left[ \begin{matrix} \text{3} & \text{7}  \\ \text{2} & \text{5}  \\ \end{matrix} \right]}\] and \[\mathbf{\text{B=}\left[ \begin{matrix} \text{6} & \text{8}  \\ \text{7} & \text{9}  \\ \end{matrix} \right]}\] . Verify that \[\mathbf{{{\left( \text{AB} \right)}^{\text{-1}}}\text{=}{{\text{B}}^{\text{-1}}}{{\text{A}}^{\text{-1}}}}\].

Ans: Let \[\text{A=}\left[ \begin{matrix} \text{3} & \text{7}  \\ \text{2} & \text{5}  \\ \end{matrix} \right]\]

Thus, determining the value of \[\left| \text{A} \right|\],

\[\Rightarrow \left| \text{A} \right|\text{=}15-14\]

\[\therefore \left| \text{A} \right|=1\]

Since, Cofactor of \[{{\text{a}}_{ij}}\] is \[{{\text{A}}_{ij}}\text{=}{{\left( \text{-1} \right)}^{\text{i+j}}}{{\text{M}}_{ij}}\].

Thus,

\[\Rightarrow {{\text{A}}_{11}}\text{=}{{\left( \text{-1} \right)}^{1+1}}{{\text{M}}_{11}}={{\left( \text{-1} \right)}^{2}}{{\text{M}}_{11}}\]

\[\Rightarrow {{\text{A}}_{11}}\text{=5}\]

\[\Rightarrow {{\text{A}}_{12}}\text{=}{{\left( \text{-1} \right)}^{1+2}}{{\text{M}}_{12}}={{\left( \text{-1} \right)}^{3}}{{\text{M}}_{12}}\]

\[\Rightarrow {{\text{A}}_{12}}\text{=}-2\]

\[\Rightarrow {{\text{A}}_{21}}\text{=}{{\left( \text{-1} \right)}^{2+1}}{{\text{M}}_{21}}={{\left( \text{-1} \right)}^{3}}{{\text{M}}_{21}}\]

\[\Rightarrow {{\text{A}}_{21}}=-7\]

\[\Rightarrow {{\text{A}}_{22}}\text{=}{{\left( \text{-1} \right)}^{2+2}}{{\text{M}}_{22}}={{\left( \text{-1} \right)}^{4}}{{\text{M}}_{22}}\]

\[\Rightarrow {{\text{A}}_{22}}=3\]

We know that adjoint of a matrix is the transpose of its cofactor matrix.

\[\therefore \text{adjA=}{{\left[ \begin{matrix} \text{5} & -2  \\ -7 & \text{3}  \\ \end{matrix} \right]}^{T}}\]

\[\Rightarrow \text{adjA=}\left[ \begin{matrix} \text{5} & -7  \\ -2 & \text{3}  \\ \end{matrix} \right]\]

The inverse of a matrix is given by, \[{{\text{A}}^{\text{-1}}}\text{=}\dfrac{\text{1}}{\left| \text{A} \right|}\text{adjA}\]

Hence, \[{{\text{A}}^{\text{-1}}}\text{=}\left[ \begin{matrix} \text{5} & \text{-7}  \\ \text{-2} & \text{3}  \\ \end{matrix} \right]\]

For \[\text{B=}\left[ \begin{matrix} \text{6} & \text{8}  \\ \text{7} & \text{9}  \\ \end{matrix} \right]\]

\[\Rightarrow \left| \text{B} \right|\text{=54}-\text{56}\]

\[\therefore \left| \text{B} \right|\text{=}-\text{2}\]

Thus,

\[\Rightarrow {{\text{A}}_{11}}\text{=}{{\left( \text{-1} \right)}^{1+1}}{{\text{M}}_{11}}={{\left( \text{-1} \right)}^{2}}{{\text{M}}_{11}}\]

\[\Rightarrow {{\text{A}}_{11}}\text{=9}\]

\[\Rightarrow {{\text{A}}_{12}}\text{=}{{\left( \text{-1} \right)}^{1+2}}{{\text{M}}_{12}}={{\left( \text{-1} \right)}^{3}}{{\text{M}}_{12}}\]

\[\Rightarrow {{\text{A}}_{12}}\text{=}-7\]

\[\Rightarrow {{\text{A}}_{21}}\text{=}{{\left( \text{-1} \right)}^{2+1}}{{\text{M}}_{21}}={{\left( \text{-1} \right)}^{3}}{{\text{M}}_{21}}\]

\[\Rightarrow {{\text{A}}_{21}}=-8\]

\[\Rightarrow {{\text{A}}_{22}}\text{=}{{\left( \text{-1} \right)}^{2+2}}{{\text{M}}_{22}}={{\left( \text{-1} \right)}^{4}}{{\text{M}}_{22}}\]

\[\Rightarrow {{\text{A}}_{22}}=6\]

We know that adjoint of a matrix is the transpose of its cofactor matrix.

\[\therefore \text{adjA=}{{\left[ \begin{matrix} 9 & -7  \\ -8 & 6  \\ \end{matrix} \right]}^{T}}\]

\[\Rightarrow \text{adjA=}\left[ \begin{matrix} 9 & -8  \\ -7 & 6  \\ \end{matrix} \right]\]

Hence, \[\text{adjB=}\left[ \begin{matrix} \text{9} & \text{-8}  \\ \text{-7} & \text{6}  \\ \end{matrix} \right]\]

\[\therefore {{\text{B}}^{\text{-1}}}\text{=}\dfrac{\text{1}}{\left| \text{B} \right|}\text{adjB=}-\dfrac{\text{1}}{\text{2}}\left[ \begin{matrix} \text{9} & -\text{8}  \\ -\text{7} & \text{6}  \\ \end{matrix} \right]\]

Thus, \[{{\text{B}}^{\text{-1}}}=\left[ \begin{matrix} -\dfrac{\text{9}}{\text{2}} & \text{4}  \\ \dfrac{\text{7}}{\text{2}} & -\text{3}  \\ \end{matrix} \right]\].

Now, multiplying ${{B}^{-1}}$ and ${{A}^{-1}}$, we get:

\[\Rightarrow {{\text{B}}^{\text{-1}}}{{\text{A}}^{\text{-1}}}\text{=}\left[ \begin{matrix} \text{-}\dfrac{\text{9}}{\text{2}} & \text{4}  \\ \dfrac{\text{7}}{\text{2}} & \text{-3}  \\ \end{matrix} \right]\left[ \begin{matrix} \text{5} & \text{-7}  \\ \text{-2} & \text{3}  \\ \end{matrix} \right]\]

\[\Rightarrow {{\text{B}}^{\text{-1}}}{{\text{A}}^{\text{-1}}}\text{=}\left[ \begin{matrix} \text{-}\dfrac{\text{45}}{\text{2}}\text{-8} & \dfrac{\text{63}}{\text{2}}\text{+12}  \\ \dfrac{\text{35}}{\text{2}}\text{+6} & \text{-}\dfrac{\text{49}}{\text{2}}\text{-9}  \\ \end{matrix} \right]\]

\[\therefore {{\text{B}}^{\text{-1}}}{{\text{A}}^{\text{-1}}}\text{=}\left[ \begin{matrix} \text{-}\dfrac{\text{61}}{\text{2}} & \dfrac{\text{87}}{\text{2}}  \\ \dfrac{\text{47}}{\text{2}} & \text{-}\dfrac{\text{67}}{\text{2}}  \\ \end{matrix} \right]\]   ……(1)

Similarly, multiplying the matrices $A$ and $B$, we get:

\[\Rightarrow \text{AB=}\left[ \begin{matrix} \text{3} & \text{7}  \\ \text{2} & \text{5}  \\ \end{matrix} \right]\left[ \begin{matrix} \text{6} & \text{8}  \\ \text{7} & \text{9}  \\ \end{matrix} \right]\]

\[\Rightarrow \text{AB=}\left[ \begin{matrix} \text{18+49} & \text{24+63}  \\ \text{12+35} & \text{16+45}  \\ \end{matrix} \right]\]

\[\therefore \text{AB=}\left[ \begin{matrix} \text{67} & \text{87}  \\ \text{47} & \text{61}  \\ \end{matrix} \right]\]

The value of \[\left| \text{AB} \right|\] is 

\[\Rightarrow \left| \text{AB} \right|\text{=67 }\!\!\times\!\!\text{ 61-87 }\!\!\times\!\!\text{ 47}\]

\[\Rightarrow \left| \text{AB} \right|\text{=4087-4089}\]

\[\therefore \left| \text{AB} \right|=-2\]

The adjoint of $\left( AB \right)$ is given by,

\[\Rightarrow \text{adj}\left( \text{AB} \right)\text{=}\left[ \begin{matrix} \text{61} & \text{-87}  \\\text{-47} & \text{67}  \\\end{matrix} \right]\]

Thus, the inverse is,

\[\Rightarrow {{\left( \text{AB} \right)}^{\text{-1}}}\text{=}\dfrac{\text{1}}{\left| \text{AB} \right|}\text{adj}\left( \text{AB} \right)\]

\[\Rightarrow {{\left( \text{AB} \right)}^{\text{-1}}}-\dfrac{\text{1}}{\text{2}}\left[ \begin{matrix} \text{61} & \text{-87}  \\ \text{-47} & \text{67}  \\ \end{matrix} \right]\]

\[\therefore {{\left( \text{AB} \right)}^{\text{-1}}}\text{=}\left[ \begin{matrix} \text{-}\dfrac{\text{61}}{\text{2}} & \dfrac{\text{87}}{\text{2}}  \\ \dfrac{\text{47}}{\text{2}} & \text{-}\dfrac{\text{67}}{\text{2}}  \\ \end{matrix} \right]\]   ……. (2)

From (1) and (2), we have:

\[{{\left( \text{AB} \right)}^{\text{-1}}}\text{=}{{\text{B}}^{\text{-1}}}{{\text{A}}^{\text{-1}}}\]

Hence proved.


13. If $A = \begin{bmatrix} 3&1 \\ -1 &2 \end{bmatrix} , \text{show that}\;\; A^2-5A+7I=0. \text{Hence find} A^{-1}$.

Ans: Given, \[\text{A=}\left[ \begin{matrix} \text{3} & \text{1}  \\ \text{-1} & \text{2}  \\ \end{matrix} \right]\]

We can write, \[{{\text{A}}^{\text{2}}}\text{=A}\text{.A}\]

\[\Rightarrow {{\text{A}}^{\text{2}}}\text{=}\left[ \begin{matrix} \text{3} & \text{1}  \\ \text{-1} & \text{2}  \\ \end{matrix} \right]\left[ \begin{matrix} \text{3} & \text{1}  \\ \text{-1} & \text{2}  \\ \end{matrix} \right]\]

\[\Rightarrow {{\text{A}}^{\text{2}}}\text{=}\left[ \begin{matrix} \text{9-1} & \text{3+2}  \\ \text{-3-2} & \text{-1+4}  \\ \end{matrix} \right]\]

\[\Rightarrow {{\text{A}}^{\text{2}}}\text{=}\left[ \begin{matrix} \text{8} & \text{5}  \\ \text{-5} & \text{3}  \\ \end{matrix} \right]\]

\[\therefore \] The value of \[{{\text{A}}^{\text{2}}}\text{-5A+7I}\] is:

\[\Rightarrow {{\text{A}}^{\text{2}}}\text{-5A+7I=}\left[ \begin{matrix} \text{8} & \text{5}  \\ \text{-5} & \text{3}  \\ \end{matrix} \right]\text{-5}\left[ \begin{matrix} \text{3} & \text{1}  \\ \text{-1} & \text{2}  \\ \end{matrix} \right]\text{+7}\left[ \begin{matrix} \text{1} & \text{0}  \\ \text{0} & \text{1}  \\ \end{matrix} \right]\]

\[\Rightarrow {{\text{A}}^{\text{2}}}\text{-5A+7I=}\left[ \begin{matrix} \text{-7} & \text{0}  \\ \text{0} & \text{-7}  \\ \end{matrix} \right]\text{+}\left[ \begin{matrix} \text{7} & \text{0}  \\ \text{0} & \text{7}  \\ \end{matrix} \right]\]

\[\therefore {{\text{A}}^{\text{2}}}\text{-5A+7I=}\left[ \begin{matrix} \text{0} & \text{0}  \\ \text{0} & \text{0}  \\ \end{matrix} \right]\]

Hence, \[{{\text{A}}^{\text{2}}}\text{-5A+7I=0}\]

\[\Rightarrow {{\text{A}}^{\text{2}}}\text{-5A=-7I}\]

Multiplying by \[{{\text{A}}^{\text{-1}}}\] on both the sides, we have:

\[\Rightarrow \text{AA}\left( {{\text{A}}^{\text{-1}}} \right)-\text{5A}{{\text{A}}^{\text{-1}}}\text{=}-\text{7I}{{\text{A}}^{\text{-1}}}\]    

\[\Rightarrow \text{A}\left( \text{A}{{\text{A}}^{\text{-1}}} \right)-\text{5I=}-\text{7I}{{\text{A}}^{\text{-1}}}\]

\[\Rightarrow \text{AI}-\text{5I=}-\text{7I}{{\text{A}}^{\text{-1}}}\]

\[\Rightarrow {{\text{A}}^{\text{-1}}}\text{=}-\dfrac{\text{1}}{\text{7}}\left( \text{A}-\text{5I} \right)\]

\[\Rightarrow {{\text{A}}^{\text{-1}}}\text{=}\dfrac{\text{1}}{\text{7}}\left( \text{5I}-\text{A} \right)\]

\[\Rightarrow {{\text{A}}^{\text{-1}}}\text{=}\dfrac{\text{1}}{\text{7}}\left( \left[ \begin{matrix} \text{5} & \text{0}  \\ \text{0} & \text{5}  \\ \end{matrix} \right]-\left[ \begin{matrix} \text{3} & \text{1}  \\ \text{-1} & \text{2}  \\ \end{matrix} \right] \right)\]

\[\therefore {{\text{A}}^{\text{-1}}}\text{=}\dfrac{\text{1}}{\text{7}}\left[ \begin{matrix} \text{2} & \text{-1}  \\ \text{1} & \text{3}  \\ \end{matrix} \right]\]


14. For the matrix\[\mathbf{\text{A=}\left[ \begin{matrix} \text{3} & \text{2}  \\ \text{1} & \text{1}  \\ \end{matrix} \right]}\] .find the number \[\mathbf{\text{a}}\] and \[\mathbf{\text{b}}\] such that. \[\mathbf{{{\text{A}}^{\text{2}}}\text{+aA+bI=0}}\].

Ans: Given \[\text{A=}\left[ \begin{matrix} \text{3} & \text{2}  \\ \text{1} & \text{1}  \\ \end{matrix} \right]\]

We can write, \[{{\text{A}}^{\text{2}}}\text{=A}\text{.A}\]

\[\therefore {{\text{A}}^{\text{2}}}\text{=}\left[ \begin{matrix} \text{3} & \text{2}  \\ \text{1} & \text{1}  \\ \end{matrix} \right]\left[ \begin{matrix} \text{3} & \text{2}  \\ \text{1} & \text{1}  \\ \end{matrix} \right]\]

\[\Rightarrow {{\text{A}}^{\text{2}}}\text{=}\left[ \begin{matrix} \text{9+2} & \text{6+2}  \\ \text{3+1} & \text{2+1}  \\ \end{matrix} \right]\]

\[\Rightarrow {{\text{A}}^{\text{2}}}\text{=}\left[ \begin{matrix} \text{11} & \text{8}  \\ \text{4} & \text{3}  \\ \end{matrix} \right]\]

Solving \[{{\text{A}}^{\text{2}}}\text{+aA+bI=0}\] by multiplying the whole equation by \[{{A}^{-1}}\].

\[\Rightarrow \left( \text{AA} \right){{\text{A}}^{\text{-1}}}\text{+aA}{{\text{A}}^{\text{-1}}}\text{+bI}{{\text{A}}^{\text{-1}}}\text{=0}\]

\[\Rightarrow \text{A}\left( \text{A}{{\text{A}}^{\text{-1}}} \right)\text{+aI+b}\left( \text{I}{{\text{A}}^{\text{-1}}} \right)\text{=0}\]

\[\Rightarrow \text{AI+aI+b}{{\text{A}}^{\text{-1}}}\text{=0}\]

\[\Rightarrow \text{A+aI=-b}{{\text{A}}^{\text{-1}}}\]

\[\Rightarrow {{\text{A}}^{\text{-1}}}\text{=}\dfrac{\text{1}}{\text{b}}\left( \text{A+aI} \right)\]

Now, determining the value of  \[{{\text{A}}^{\text{-1}}}\].

We know that the adjoint of a square matrix is the transpose of its cofactor matrix.

Hence, the adjoint of matrix $A$ is:

$\therefore adjA=\left[ \begin{matrix} 1 & -2  \\ -1 & 3  \\ \end{matrix} \right]$

The inverse is given by, \[{{\text{A}}^{\text{-1}}}\text{=}\dfrac{\text{1}}{\left| \text{A} \right|}adjA\].

\[\Rightarrow {{\text{A}}^{\text{-1}}}\text{=}\dfrac{\text{1}}{\text{1}}\left[ \begin{matrix} \text{1} & \text{-2}  \\ \text{-1} & \text{3}  \\ \end{matrix} \right]\]

\[\therefore {{\text{A}}^{\text{-1}}}\text{=}\left[ \begin{matrix} \text{1} & \text{-2}  \\ \text{-1} & \text{3}  \\ \end{matrix} \right]\]

Thus,

\[\Rightarrow \left[ \begin{matrix} \text{1} & \text{-2}  \\ \text{-1} & \text{3}  \\ \end{matrix} \right]\text{=-}\dfrac{\text{1}}{\text{b}}\left( \left[ \begin{matrix} \text{3} & \text{2}  \\ \text{1} & \text{1}  \\ \end{matrix} \right]\text{+}\left[ \begin{matrix} \text{a} & \text{0}  \\ \text{0} & \text{a}  \\ \end{matrix} \right] \right)\]

\[\Rightarrow \left[ \begin{matrix} \text{1} & \text{-2}  \\ \text{-1} & \text{3}  \\ \end{matrix} \right]\text{=-}\dfrac{\text{1}}{\text{b}}\left[ \begin{matrix} \text{3+a} & \text{2}  \\ \text{1} & \text{1+a}  \\ \end{matrix} \right]\]

\[\Rightarrow \left[ \begin{matrix} \text{1} & \text{-2}  \\ \text{-1} & \text{3}  \\ \end{matrix} \right]\text{=}\left[ \begin{matrix} \dfrac{\text{-3-a}}{\text{b}} & \text{-}\dfrac{\text{2}}{\text{b}}  \\ \text{-}\dfrac{\text{1}}{\text{b}} & \dfrac{\text{-1-a}}{\text{b}}  \\ \end{matrix} \right]\]

Equating the corresponding elements of the two matrices, we get:

\[\Rightarrow \text{-}\dfrac{\text{1}}{\text{b}}\text{=-1}\]

\[\therefore \text{b=1}\]

\[\Rightarrow \dfrac{\text{-3-a}}{\text{b}}=1\]

\[\therefore \text{a=}-4\]

Thus, \[-4\] and \[1\] are the required values of \[\text{a}\] and \[\text{b}\] respectively.


15. For the matrix \[\mathbf{\text{A=}\left[ \begin{matrix} \text{1} & \text{1} & \text{1}  \\ \text{1} & \text{2} & \text{-3}  \\ \text{2} & \text{-1} & \text{3}  \\ \end{matrix} \right]}\] show that \[\mathbf{{{\text{A}}^{\text{3}}}\text{-6}{{\text{A}}^{\text{2}}}\text{+5A+11I=0}}\] . Hence, \[\mathbf{{{\text{A}}^{\text{-1}}}}\].

Ans: Given, \[\text{A=}\left[ \begin{matrix} \text{1} & \text{1} & \text{1}  \\ \text{1} & \text{2} & \text{-3}  \\ \text{2} & \text{-1} & \text{3}  \\ \end{matrix} \right]\]

\[\Rightarrow {{\text{A}}^{\text{2}}}\text{=}\left[ \begin{matrix} \text{1} & \text{1} & \text{1}  \\ \text{1} & \text{2} & \text{-3}  \\ \text{2} & \text{-1} & \text{3}  \\ \end{matrix} \right]\left[ \begin{matrix} \text{1} & \text{1} & \text{1}  \\ \text{1} & \text{2} & \text{-3}  \\ \text{2} & \text{-1} & \text{3}  \\ \end{matrix} \right]\]

\[\Rightarrow {{\text{A}}^{\text{2}}}\text{=}\left[ \begin{matrix} \text{1+1+1} & \text{1+2-1} & \text{1-3+3}  \\ \text{1+2-6} & \text{1+4+3} & \text{1-6-9}  \\ \text{2-1+6} & \text{2-2-3} & \text{2+3+9}  \\ \end{matrix} \right]\]

\[\therefore {{\text{A}}^{\text{2}}}\text{=}\left[ \begin{matrix} \text{4} & \text{2} & \text{1}  \\ \text{-3} & \text{8} & \text{-14}  \\ \text{7} & \text{-3} & \text{14}  \\ \end{matrix} \right]\]

\[\Rightarrow {{\text{A}}^{\text{3}}}\text{=}{{\text{A}}^{\text{2}}}\text{.A=}\left[ \begin{matrix} \text{4} & \text{2} & \text{1}  \\ \text{-3} & \text{8} & \text{-14}  \\ \text{7} & \text{-3} & \text{14}  \\ \end{matrix} \right]\left[ \begin{matrix} \text{1} & \text{1} & \text{1}  \\ \text{1} & \text{2} & \text{-3}  \\ \text{2} & \text{-1} & \text{3}  \\ \end{matrix} \right]\]

\[\Rightarrow {{\text{A}}^{\text{3}}}\text{=}\left[ \begin{matrix} \text{4+2+2} & \text{4+4-1} & \text{4-6+3}  \\ \text{-3+8-28} & \text{-3+16+14} & \text{-3-24-42}  \\ \text{7-3+28} & \text{7-6-14} & \text{7+9+42}  \\ \end{matrix} \right]\]

\[\therefore {{\text{A}}^{\text{3}}}\text{=}\left[ \begin{matrix} \text{8} & \text{7} & \text{1}  \\ \text{-23} & \text{27} & \text{-69}  \\ \text{32} & \text{-13} & \text{58}  \\ \end{matrix} \right]\]

Substituting the values for \[{{\text{A}}^{\text{3}}}\], \[{{\text{A}}^{2}}\] and \[\text{A}\] in \[{{\text{A}}^{\text{3}}}\text{-6}{{\text{A}}^{\text{2}}}\text{+5A+11I}\], we have:

\[\Rightarrow {{\text{A}}^{\text{3}}}\text{-6}{{\text{A}}^{\text{2}}}\text{+5A+11I=}\left[ \begin{matrix} \text{8} & \text{7} & \text{1}  \\ \text{-23} & \text{27} & \text{-69}  \\ \text{32} & \text{-13} & \text{58}  \\ \end{matrix} \right]\text{-6}\left[ \begin{matrix} \text{4} & \text{2} & \text{1}  \\ \text{-3} & \text{8} & \text{-14}  \\ \text{7} & \text{-3} & \text{14}  \\ \end{matrix} \right]\text{+5}\left[ \begin{matrix} \text{1} & \text{1} & \text{1}  \\ \text{1} & \text{2} & \text{-3}  \\ \text{2} & \text{-1} & \text{3}  \\ \end{matrix} \right]\text{+11}\left[ \begin{matrix} \text{1} & \text{0} & \text{0}  \\ \text{0} & \text{1} & \text{0}  \\ \text{0} & \text{0} & \text{1}  \\ \end{matrix} \right]\]

\[\Rightarrow {{\text{A}}^{\text{3}}}\text{-6}{{\text{A}}^{\text{2}}}\text{+5A+11I=}\left[ \begin{matrix} \text{8} & \text{7} & \text{1}  \\ \text{-23} & \text{27} & \text{-69}  \\ \text{32} & \text{-13} & \text{58}  \\ \end{matrix} \right]\text{-}\left[ \begin{matrix} \text{24} & \text{12} & \text{6}  \\ \text{-18} & \text{48} & \text{-84}  \\ \text{42} & \text{-18} & \text{84}  \\ \end{matrix} \right]\text{+}\left[ \begin{matrix} \text{5} & \text{5} & \text{5}  \\ \text{5} & \text{10} & \text{-15}  \\ \text{2} & \text{-5} & \text{15}  \\ \end{matrix} \right]\text{+11}\left[ \begin{matrix} \text{11} & \text{0} & \text{0}  \\ \text{0} & \text{11} & \text{0}  \\ \text{0} & \text{0} & \text{11}  \\ \end{matrix} \right]\]

\[\Rightarrow {{\text{A}}^{\text{3}}}\text{-6}{{\text{A}}^{\text{2}}}\text{+5A+11I=}\left[ \begin{matrix} \text{24} & \text{12} & \text{6}  \\ \text{-18} & \text{48} & \text{-84}  \\ \text{42} & \text{-18} & \text{84}  \\ \end{matrix} \right]\text{-}\left[ \begin{matrix} \text{24} & \text{12} & \text{6}  \\ \text{-18} & \text{48} & \text{-84}  \\ \text{42} & \text{-18} & \text{84}  \\ \end{matrix} \right]\]

\[\therefore {{\text{A}}^{\text{3}}}\text{-6}{{\text{A}}^{\text{2}}}\text{+5A+11I=}\left[ \begin{matrix} \text{0} & \text{0} & \text{0}  \\ \text{0} & \text{0} & \text{0}  \\ \text{0} & \text{0} & \text{0}  \\ \end{matrix} \right]\text{=0}\]

Thus, \[{{\text{A}}^{\text{3}}}\text{-6}{{\text{A}}^{\text{2}}}\text{+5A+11I=0}\]

Since, \[{{\text{A}}^{\text{3}}}\text{-6}{{\text{A}}^{\text{2}}}\text{+5A+11I=0}\]. 

Multiplying the whole equation by \[{{A}^{-1}}\], we have:

\[\Rightarrow \left( \text{AAA} \right){{\text{A}}^{\text{-1}}}\text{-6}\left( \text{AA} \right){{\text{A}}^{\text{-1}}}\text{+5A}{{\text{A}}^{\text{-1}}}\text{+11I}{{\text{A}}^{\text{-1}}}\text{=0}\] 

\[\Rightarrow \text{AA}\left( \text{A}{{\text{A}}^{\text{-1}}} \right)\text{-6A}\left( \text{A}{{\text{A}}^{\text{-1}}} \right)\text{+5}\left( \text{A}{{\text{A}}^{\text{-1}}} \right)\text{=11}\left( \text{I}{{\text{A}}^{\text{-1}}} \right)\]

\[\Rightarrow {{\text{A}}^{\text{2}}}\text{-6A+5I=-11}{{\text{A}}^{\text{-1}}}\]

\[\Rightarrow {{\text{A}}^{\text{-1}}}\text{=-}\dfrac{\text{1}}{\text{11}}\left( {{\text{A}}^{\text{2}}}\text{-6A+5I} \right)\]   …. (1)

Now, \[{{\text{A}}^{\text{2}}}\text{-6A+5I}\] is given by:

\[\Rightarrow {{\text{A}}^{\text{2}}}\text{-6A+5I=}\left[ \begin{matrix} \text{4} & \text{2} & \text{1}  \\ \text{-3} & \text{8} & \text{-14}  \\ \text{7} & \text{-3} & \text{14}  \\ \end{matrix} \right]\text{-6}\left[ \begin{matrix} \text{1} & \text{1} & \text{1}  \\ \text{1} & \text{2} & \text{-3}  \\ \text{2} & \text{-1} & \text{3}  \\ \end{matrix} \right]\text{+5}\left[ \begin{matrix} \text{1} & \text{0} & \text{0}  \\ \text{0} & \text{1} & \text{0}  \\ \text{0} & \text{0} & \text{1}  \\ \end{matrix} \right]\]

\[\Rightarrow {{\text{A}}^{\text{2}}}\text{-6A+5I=}\left[ \begin{matrix} \text{4} & \text{2} & \text{1}  \\ \text{-3} & \text{8} & \text{-14}  \\ \text{7} & \text{-3} & \text{14}  \\ \end{matrix} \right]\text{-}\left[ \begin{matrix} \text{6} & \text{6} & \text{6}  \\ \text{6} & \text{12} & \text{-18}  \\ \text{12} & \text{6} & \text{18}  \\ \end{matrix} \right]\text{+}\left[ \begin{matrix} \text{5} & \text{0} & \text{0}  \\ \text{0} & \text{5} & \text{0}  \\ \text{0} & \text{0} & \text{5}  \\ \end{matrix} \right]\]

\[\Rightarrow {{\text{A}}^{\text{2}}}\text{-6A+5I=}\left[ \begin{matrix} \text{4} & \text{2} & \text{1}  \\ \text{-3} & \text{13} & \text{-14}  \\ \text{7} & \text{-3} & \text{19}  \\ \end{matrix} \right]\text{-}\left[ \begin{matrix} \text{6} & \text{6} & \text{6}  \\ \text{6} & \text{12} & \text{-18}  \\ \text{12} & \text{-6} & \text{18}  \\ \end{matrix} \right]\]

\[\therefore {{\text{A}}^{\text{2}}}\text{-6A+5I=}\left[ \begin{matrix} \text{3} & \text{-4} & \text{-5}  \\ \text{-9} & \text{1} & \text{4}  \\ \text{-5} & \text{3} & \text{1}  \\ \end{matrix} \right]\]

Substituting for \[{{\text{A}}^{\text{2}}}\text{-6A+5I}\] equation (1), we get

\[\Rightarrow {{\text{A}}^{\text{-1}}}\text{=-}\dfrac{\text{1}}{\text{11}}\left[ \begin{matrix} \text{3} & \text{-4} & \text{-5}  \\ \text{-9} & \text{1} & \text{4}  \\ \text{-5} & \text{3} & \text{1}  \\ \end{matrix} \right]\]

\[\therefore {{\text{A}}^{\text{-1}}}\text{=}\dfrac{\text{1}}{\text{11}}\left[ \begin{matrix} \text{-3} & \text{4} & \text{5}  \\ \text{9} & \text{-1} & \text{-4}  \\ \text{5} & \text{-3} & \text{-1}  \\ \end{matrix} \right]\]


16. If \[\mathbf{\text{A=}\left[ \begin{matrix} \text{2} & \text{-1} & \text{1}  \\ \text{-1} & \text{2} & \text{-1}  \\ \text{1} & \text{-1} & \text{2}  \\ \end{matrix} \right]}\] verify that \[\mathbf{{{\text{A}}^{\text{3}}}\text{-6}{{\text{A}}^{\text{2}}}\text{+9A+4I=0}}\] and hence find \[\mathbf{{{\text{A}}^{\text{-1}}}}\].

Ans: Given,\[\text{A=}\left[ \begin{matrix} \text{2} & \text{-1} & \text{1}  \\ \text{-1} & \text{2} & \text{-1}  \\ \text{1} & \text{-1} & \text{2}  \\ \end{matrix} \right]\]

\[\Rightarrow {{\text{A}}^{\text{2}}}\text{=}\left[ \begin{matrix} \text{2} & \text{-1} & \text{1}  \\ \text{-1} & \text{2} & \text{-1}  \\ \text{1} & \text{-1} & \text{2}  \\ \end{matrix} \right]\left[ \begin{matrix} \text{2} & \text{-1} & \text{1}  \\ \text{-1} & \text{2} & \text{-1}  \\ \text{1} & \text{-1} & \text{2}  \\ \end{matrix} \right]\]

\[\Rightarrow {{\text{A}}^{\text{2}}}\text{=}\left[ \begin{matrix} \text{4+1+1} & \text{-2-2-1} & \text{2+1+2}  \\ \text{-2-2-1} & \text{1+4+1} & \text{-1-2-2}  \\ \text{2+1+2} & \text{-1-2-2} & \text{1+1+4}  \\ \end{matrix} \right]\]

\[\therefore {{\text{A}}^{\text{2}}}\text{=}\left[ \begin{matrix} \text{6} & \text{-5} & \text{5}  \\ \text{-5} & \text{6} & \text{-5}  \\ \text{5} & \text{-5} & \text{6}  \\ \end{matrix} \right]\]

Similarly,

\[\Rightarrow {{\text{A}}^{\text{3}}}\text{=}{{\text{A}}^{\text{2}}}\text{A=}\left[ \begin{matrix} \text{6} & \text{-5} & \text{5}  \\ \text{-5} & \text{6} & \text{-5}  \\ \text{5} & \text{-5} & \text{6}  \\ \end{matrix} \right]\left[ \begin{matrix} \text{2} & \text{-1} & \text{1}  \\ \text{-1} & \text{2} & \text{-1}  \\ \text{1} & \text{-1} & \text{2}  \\ \end{matrix} \right]\]

\[\Rightarrow {{\text{A}}^{\text{3}}}\text{=}\left[ \begin{matrix} \text{12+5+5} & \text{-6-10-5} & \text{6+5+10}  \\ \text{-10-6-5} & \text{5+12+5} & \text{-5-6-10}  \\ \text{10+5+6} & \text{-5-10-6} & \text{5+5+12}  \\ \end{matrix} \right]\]

\[\therefore {{\text{A}}^{\text{3}}}\text{=}\left[ \begin{matrix} \text{22} & \text{-21} & \text{21}  \\ \text{-21} & \text{22} & \text{-21}  \\ \text{21} & \text{-21} & \text{22}  \\ \end{matrix} \right]\]

Now, \[{{\text{A}}^{\text{3}}}\text{-6}{{\text{A}}^{\text{2}}}\text{+9A-4I}\] is given by:

\[\Rightarrow {{\text{A}}^{\text{3}}}\text{-6}{{\text{A}}^{\text{2}}}\text{+9A-4I=}\left[ \begin{matrix} \text{22} & \text{-21} & \text{21}  \\ \text{-21} & \text{22} & \text{-21}  \\ \text{21} & \text{-21} & \text{22}  \\ \end{matrix} \right]\text{-6}\left[ \begin{matrix} \text{6} & \text{-5} & \text{5}  \\ \text{-5} & \text{6} & \text{-5}  \\ \text{5} & \text{-5} & \text{6}  \\ \end{matrix} \right]\text{+9}\left[ \begin{matrix} \text{2} & \text{-1} & \text{1}  \\ \text{-1} & \text{2} & \text{-1}  \\ \text{1} & \text{-1} & \text{2}  \\ \end{matrix} \right]\text{-4}\left[ \begin{matrix} \text{1} & \text{0} & \text{0}  \\ \text{0} & \text{1} & \text{0}  \\ \text{0} & \text{0} & \text{1}  \\ \end{matrix} \right]\]

\[\Rightarrow {{\text{A}}^{\text{3}}}\text{-6}{{\text{A}}^{\text{2}}}\text{+9A-4I=}\left[ \begin{matrix} \text{22} & \text{-21} & \text{21}  \\ \text{-21} & \text{22} & \text{-21}  \\ \text{21} & \text{-21} & \text{22}  \\ \end{matrix} \right]\text{-}\left[ \begin{matrix} \text{36} & \text{-30} & \text{30}  \\ \text{-30} & \text{36} & \text{-30}  \\ \text{30} & \text{-30} & \text{36}  \\ \end{matrix} \right]\text{+}\left[ \begin{matrix} \text{18} & \text{-9} & \text{9}  \\ \text{-9} & \text{18} & \text{-9}  \\ \text{9} & \text{-9} & \text{18}  \\ \end{matrix} \right]\text{-}\left[ \begin{matrix} \text{4} & \text{0} & \text{0}  \\ \text{0} & \text{4} & \text{0}  \\ \text{0} & \text{0} & \text{4}  \\ \end{matrix} \right]\]

\[\Rightarrow {{\text{A}}^{3}}\text{-6}{{\text{A}}^{\text{2}}}\text{+9A-4I=}\left[ \begin{matrix} \text{40} & \text{-30} & \text{30}  \\ \text{-30} & \text{40} & \text{-30}  \\ \text{30} & \text{-30} & \text{40}  \\ \end{matrix} \right]\text{-}\left[ \begin{matrix} \text{40} & \text{-30} & \text{30}  \\ \text{-30} & \text{40} & \text{-30}  \\ \text{30} & \text{-30} & \text{40}  \\ \end{matrix} \right]\text{=}\left[ \begin{matrix} \text{0} & \text{0} & \text{0}  \\ \text{0} & \text{0} & \text{0}  \\ \text{0} & \text{0} & \text{0}  \\ \end{matrix} \right]\]

\[\therefore {{\text{A}}^{\text{3}}}\text{-6}{{\text{A}}^{\text{2}}}\text{+9A-4I=0}\]

Since, \[{{\text{A}}^{\text{3}}}\text{-6}{{\text{A}}^{\text{2}}}\text{+9A-4I=0}\]. 

Multiplying the whole equation by \[{{A}^{-1}}\], we have:

\[\Rightarrow \left( \text{AAA} \right){{\text{A}}^{\text{-1}}}\text{-6}\left( \text{AA} \right){{\text{A}}^{\text{-1}}}\text{+9A}{{\text{A}}^{\text{-1}}}\text{-4I}{{\text{A}}^{\text{-1}}}\text{=0}\] 

\[\Rightarrow \text{AA}\left( \text{A}{{\text{A}}^{\text{-1}}} \right)\text{-6A}\left( \text{A}{{\text{A}}^{\text{-1}}} \right)\text{+9}\left( \text{A}{{\text{A}}^{\text{-1}}} \right)\text{=4}\left( \text{I}{{\text{A}}^{\text{-1}}} \right)\]

\[\Rightarrow \text{AAI-6AI+9I=4}{{\text{A}}^{\text{-1}}}\]

\[\Rightarrow {{\text{A}}^{\text{2}}}\text{-6A+9I=4}{{\text{A}}^{\text{-1}}}\]

\[\Rightarrow {{\text{A}}^{\text{-1}}}\text{=}\dfrac{\text{1}}{\text{4}}\left( {{\text{A}}^{\text{2}}}\text{-6A+9I} \right)\]   …... (1)

Now, \[{{\text{A}}^{\text{2}}}\text{-6A+9I}\] is given by:

\[{{\text{A}}^{\text{2}}}\text{-6A+9I=}\left[ \begin{matrix} \text{6} & \text{-5} & \text{5}  \\ \text{-5} & \text{6} & \text{-5}  \\ \text{5} & \text{-5} & \text{6}  \\ \end{matrix} \right]\text{-6}\left[ \begin{matrix} \text{2} & \text{-1} & \text{1}  \\ \text{-1} & \text{2} & \text{-1}  \\ \text{1} & \text{-1} & \text{2}  \\ \end{matrix} \right]\text{+9}\left[ \begin{matrix} \text{0} & \text{0} & \text{0}  \\ \text{0} & \text{0} & \text{0}  \\ \text{0} & \text{0} & \text{0}  \\ \end{matrix} \right]\]

\[{{\text{A}}^{\text{2}}}\text{-6A+9I=}\left[ \begin{matrix} \text{6} & \text{-5} & \text{5}  \\ \text{-5} & \text{6} & \text{-5}  \\ \text{5} & \text{-5} & \text{6}  \\ \end{matrix} \right]\text{-}\left[ \begin{matrix} \text{12} & \text{-6} & \text{6}  \\ \text{-6} & \text{12} & \text{-6}  \\ \text{6} & \text{-6} & \text{12}  \\ \end{matrix} \right]\text{+}\left[ \begin{matrix} \text{9} & \text{0} & \text{0}  \\ \text{0} & \text{9} & \text{0}  \\ \text{0} & \text{0} & \text{9}  \\ \end{matrix} \right]\]

\[\therefore {{\text{A}}^{\text{2}}}\text{-6A+9I=}\left[ \begin{matrix} \text{3} & \text{1} & \text{-1}  \\ \text{1} & \text{3} & \text{1}  \\ \text{-1} & \text{3} & \text{3}  \\ \end{matrix} \right]\]

Substituting for \[{{\text{A}}^{\text{2}}}\text{-6A+9I}\] equation (1), we get

\[{{\text{A}}^{\text{-1}}}\text{=}\dfrac{\text{1}}{\text{4}}\left[ \begin{matrix} \text{3} & \text{1} & \text{-1}  \\ \text{1} & \text{3} & \text{1}  \\ \text{-1} & \text{3} & \text{3}  \\ \end{matrix} \right]\].


17. Let \[\mathbf{\text{A}}\] be nonsingular square matrix of order \[\mathbf{\text{3 }\!\!\times\!\!\text{ 3}}\] . Then \[\mathbf{\left| \text{adjA} \right|}\] is equal to

  1. \[\mathbf{\left| \text{A} \right|}\]

  2. \[\mathbf{{{\left| \text{A} \right|}^{\text{2}}}}\]

  3. \[\mathbf{{{\left| \text{A} \right|}^{\text{3}}}}\]

  4. \[\mathbf{\text{3}\left| \text{A} \right|}\]

Ans: Given $A$ is a nonsingular square matrix, i.e., it is a square matrix whose determinant is not equal to zero.

The inverse of a matrix is given as \[{{\text{A}}^{\text{-1}}}\text{=}\dfrac{\text{1}}{\left| \text{A} \right|}adjA\].

$ \Rightarrow {{A}^{-1}}A=\dfrac{1}{\left| A \right|}adjA$ 

$\Rightarrow \left| A \right|I=adjA$

The adjoint of matrix $A$ is given by,

\[\Rightarrow \left( \text{adjA} \right)\text{=A=}\left| \text{A} \right|\text{I=}\left[ \begin{matrix} \left| \text{A} \right| & \text{0} & \text{0}  \\ \text{0} & \left| \text{A} \right| & \text{0}  \\ \text{0} & \text{0} & \left| \text{A} \right|  \\ \end{matrix} \right]\]

\[\Rightarrow \left| \left( \text{adjA} \right)\text{A} \right|\text{=}\left[ \begin{matrix} \left| \text{A} \right| & \text{0} & \text{0}  \\ \text{0} & \left| \text{A} \right| & \text{0}  \\ \text{0} & \text{0} & \left| \text{A} \right|  \\ \end{matrix} \right]\]

\[\Rightarrow \left| \text{adjA} \right|\left| \text{A} \right|\text{=}{{\left| \text{A} \right|}^{\text{3}}}\left| \begin{matrix} \text{1} & \text{0} & \text{0}  \\ \text{0} & \text{1} & \text{0}  \\ \text{0} & \text{0} & \text{1}  \\ \end{matrix} \right|\text{=}{{\left| \text{A} \right|}^{\text{3}}}\left( \text{I} \right)\]

\[\therefore \left| \text{adjA} \right|\text{=}{{\left| \text{A} \right|}^{\text{3}}}\]

Hence, B. \[{{\left| \text{A} \right|}^{\text{2}}}\] is the correct answer.


18. If \[\mathbf{\text{A}}\] is an invertible matrix of order \[\mathbf{\text{2}}\] , then \[\mathbf{\text{det}\left( {{\text{A}}^{\text{-1}}} \right)}\] is equal to

  1. \[\mathbf{\text{det}\left( \text{A} \right)}\]

  2. \[\mathbf{\dfrac{\text{1}}{\text{det}\left( \text{A} \right)}}\]

  3. \[\mathbf{\text{1}}\]

  4. \[\mathbf{\text{0}}\]

Ans: Since \[\text{A}\] is an invertible matrix, thus \[{{\text{A}}^{\text{-1}}}\] exists and it is given by: \[{{\text{A}}^{\text{-1}}}\text{=}\dfrac{\text{1}}{\left| \text{A} \right|}\text{adjA}\].

As matrix \[\text{A}\] is of order \[\text{2}\], 

$\therefore $ Let \[\text{A=}\left[ \begin{matrix} \text{a} & \text{b}  \\ \text{c} & \text{d}  \\ \end{matrix} \right]\] .

Hence, \[\left| \text{A} \right|\text{=ad-bc}\].

The adjoint of \[\text{A}\] would be, \[\text{adjA=}\left[ \begin{matrix} \text{d} & \text{-b}  \\ \text{-c} & \text{a}  \\ \end{matrix} \right]\] .

Now, the inverse of the matrix is given by:

\[\Rightarrow {{\text{A}}^{\text{-1}}}\text{=}\dfrac{\text{1}}{\left| \text{A} \right|}\text{adjA}\]

\[\Rightarrow {{\text{A}}^{\text{-1}}}\text{=}\left[ \begin{matrix} \dfrac{\text{d}}{\left| \text{A} \right|} & \dfrac{\text{-b}}{\left| \text{A} \right|}  \\ \dfrac{\text{-c}}{\left| \text{A} \right|} & \dfrac{\text{a}}{\left| \text{A} \right|}  \\ \end{matrix} \right]\]

\[\Rightarrow {{\text{A}}^{\text{-1}}}\text{=}\left[ \begin{matrix} \dfrac{\text{d}}{\left| \text{A} \right|} & \dfrac{\text{-b}}{\left| \text{A} \right|}  \\ \dfrac{\text{-c}}{\left| \text{A} \right|} & \dfrac{\text{a}}{\left| \text{A} \right|}  \\ \end{matrix} \right]\]

\[\Rightarrow \left| {{\text{A}}^{\text{-1}}} \right|\text{=}\dfrac{\text{1}}{\left| {{\text{A}}^{\text{2}}} \right|}\left| \begin{matrix} \text{d} & \text{-b}  \\ \text{-c} & \text{a}  \\ \end{matrix} \right|\]

\[\Rightarrow \left| {{\text{A}}^{\text{-1}}} \right|=\dfrac{\text{1}}{\left| {{\text{A}}^{\text{2}}} \right|}\left( \text{ad-bc} \right)\]

\[\Rightarrow \left| {{\text{A}}^{\text{-1}}} \right|\text{=}\dfrac{\text{1}}{\left| {{\text{A}}^{\text{2}}} \right|}\text{.}\left| \text{A} \right|\]

\[\therefore \left| {{\text{A}}^{\text{-1}}} \right|\text{=}\dfrac{\text{1}}{\left| \text{A} \right|}\]

Thus, \[\text{det}\left( {{\text{A}}^{\text{-1}}} \right)\text{=}\dfrac{\text{1}}{\text{det}\left( \text{A} \right)}\].

Hence, B. \[\dfrac{\text{1}}{\text{det}\left( \text{A} \right)}\] is the correct answer.


Conclusion

The NCERT Solutions for Exercise 4.4 Class 12 Maths by Vedantu provide a comprehensive understanding of important concepts such as the condition for the existence of the inverse of a matrix, the adjoint and inverse of a matrix, and nonsingular matrices. These exercise 4.4 class 12 maths solutions are crucial for mastering the topic of determinants and their applications. Students should focus on understanding the conditions under which a matrix is invertible, how to calculate the adjoint, and the properties of nonsingular matrices. Practicing 4.4 maths class 12 solutions will enhance your problem-solving skills and help you perform better in exams. For a better understanding, Vedantu’s detailed explanations and step-by-step solutions and resources are available for free.


Class 12 Maths Chapter 4: Exercises Breakdown

S.No.

Chapter 4 - Determinants Exercises in PDF Format

1

Class 12 Maths Chapter 4 Exercise 4.1 - 8 Questions & Solutions (3 Short Answers, 5 Long Answers)

2

Class 12 Maths Chapter 4 Exercise 4.2 - 10 Questions & Solutions (4 Short Answers, 10 Long Answers)

3

Class 12 Maths Chapter 4 Exercise 4.3 - 5 Questions & Solutions (2 Short Answers, 3 Long Answers)

4

Class 12 Maths Chapter 4 Exercise 4.5 - 18 Questions & Solutions (4 Short Answers, 14 Long Answers)



CBSE Class 12 Maths Chapter 4 Other Study Materials



NCERT Solutions for Class 12 Maths | Chapter-wise List

Given below are the chapter-wise NCERT 12 Maths solutions PDF. Using these chapter-wise class 12th maths ncert solutions, you can get clear understanding of the concepts from all chapters.




Related Links for NCERT Class 12 Maths in Hindi

Explore these essential links for NCERT Class 12 Maths in Hindi, providing detailed solutions, explanations, and study resources to help students excel in their mathematics exams.




Important Related Links for NCERT Class 12 Maths

FAQs on NCERT Solutions for Class 12 Maths Chapter 4 Exercise 4.4 - Determinants

1. What is the main focus of ex 4.4 class 12?

The main focus of Exercise 4.4 in Class 12 Maths is on finding the adjoint and inverse of a matrix. It also covers understanding the properties of nonsingular matrices. Mastering these concepts is essential for solving complex linear algebra problems.

2. How do you determine if a matrix is invertible in 4.4 maths class 12?

A matrix is invertible if its determinant is non-zero. This means the matrix has a unique inverse. Calculating the determinant helps in identifying whether the matrix can be inverted.

3. What is the adjoint of a matrix in class 12 maths ex 4.4?

The adjoint of a matrix is the transpose of its cofactor matrix. This involves replacing each element with its cofactor and then taking the transpose. It's a crucial step in finding the inverse of a matrix.

4. Why is it important to understand class 12 maths ex 4.4 concepts?

Understanding these concepts is crucial for solving systems of linear equations. They also have applications in various advanced mathematical problems and real-world scenarios, such as computer graphics and engineering.

5. What is a nonsingular matrix in class 12 maths ex 4.4?

A nonsingular matrix is a square matrix with a non-zero determinant. This property ensures that the matrix has an inverse. Nonsingular matrices play a vital role in linear algebra and related fields.

6. Can Vedantu’s exercise 4.4 class 12 maths solutions help in exam preparation?

Yes, Vedantu’s solutions provide clear explanations and step-by-step methods. They are very useful for exams, as they help students understand the concepts thoroughly and practice effectively.

7. What should I focus on while studying exercise 4.4 class 12 maths solutions?

Focus on understanding the conditions for the existence of an inverse. Learn how to compute the adjoint and the properties of nonsingular matrices. These are key areas that will help in mastering the exercise.