Courses
Courses for Kids
Free study material
Offline Centres
More
Store Icon
Store

NCERT Solutions For Class 12 Maths Chapter 5 Exercise 5.5 - Continuity and Differentiability

ffImage
widget title icon
Latest Updates

widget icon
Enrol Now :
JEE Test Series
widget icon
Grab Your Seat :
JEE Pro Course
widget icon
Register Today :
JEE One to One Coaching

NCERT Solutions for Class 12 Chapter 5 Maths Exercise 5.5 - FREE PDF Download

The NCERT Solutions for Class 5 Exercise 5.5 Class 12 Maths Continuity and Differentiability provides complete solutions to the problems in the Exercise. These NCERT Solutions are intended to assist students with the CBSE Class 12 board examination. Students should thoroughly study this NCERT solution in order to solve all types of questions based on Relation and Functions. By completing these practice questions with the NCERT Maths Solutions Chapter 5 Exercise 5.5 Class 12, you will be better prepared to understand all of the different types of questions that may be asked in the Class 12 board exams.

toc-symbol
Table of Content
1. NCERT Solutions for Class 12 Chapter 5 Maths Exercise 5.5 - FREE PDF Download
2. Glance for Ex 5.5 Class 12 Maths Chapter 5: Continuity and Differentiability
3. Formula Used
4. Access PDF for Maths NCERT Chapter 5 Continuity and Differentiability Exercise 5.5 Class 12
5. Conclusion
6. Class 12 Maths Chapter 5: Exercises Breakdown
7. CBSE Class 12 Maths Chapter 5 Other Study Materials
8. NCERT Solutions for Class 12 Maths | Chapter-wise List
9. Related Links for NCERT Class 12 Maths in Hindi
10. Important Related Links for NCERT Class 12 Maths
FAQs


Glance for Ex 5.5 Class 12 Maths Chapter 5: Continuity and Differentiability

  • In this article, you will Grasp the connection between continuity and differentiability. A function can only be differentiable at a point if it's continuous at that point.

  • Solidify your understanding of continuity, a property that ensures a function's graph has no "holes" or "jumps" at specific points.

  • Explore the concept of differentiability, a stronger property where a continuous function also has a smooth, well-defined slope at each point in its domain (except maybe for a few exceptional points).

  • Introduce you to logarithmic differentiation, a powerful technique for differentiating functions involving exponential or logarithmic terms.

  • Determine whether a given function is continuous, differentiable, or both at a specific point or within a given interval.


Formula Used

Continuity: A function f(x) is continuous at a point x = c if:

  • lim_(x->c) f(x) exists (limit as x approaches c of f(x) exists)

  • AND lim_(x->c) f(x) = f(c) (the limit equals the function's value at c)


Differentiability:

  • Power Rule: $\dfrac{d}{dx}(x^n)=nx^{n-1}$

  • Sum/Difference Rule: $\dfrac{d}{dx} (f(x) \pm g(x)) = \dfrac{d}{dx} (f(x)) \pm \dfrac{d}{dx} (g(x))$

  • Product Rule: $\dfrac{d}{dx} (f(x) g(x)) = f(x) \dfrac{d}{dx} \left(g(x)) + g(x) \dfrac{d}{dx} (f(x)\right)$

  • Quotient Rule: $\dfrac{d}{dx} \dfrac{f(x)}{g(x)} = \dfrac{g(x) \dfrac{d}{dx} (f(x)) - f(x) \dfrac{d}{dx} (g(x))}{(g(x))^2}$

  • Chain Rule: $\dfrac{d}{dx} f(g(x)) = f^\prime (g(x)) g^\prime(x)$

Competitive Exams after 12th Science
tp-imag
bottom-arrow
tp-imag
bottom-arrow
tp-imag
bottom-arrow
tp-imag
bottom-arrow
tp-imag
bottom-arrow
tp-imag
bottom-arrow

Access PDF for Maths NCERT Chapter 5 Continuity and Differentiability Exercise 5.5 Class 12

Exercise 5.5

1. Find the derivative of the function $\text{y=cosx }\!\!\times\!\!\text{ cos2x }\!\!\times\!\!\text{ cos3x}$ with respect to $\mathbf{x}$.

Ans.

The given function is $\text{y=cosx }\!\!\times\!\!\text{ cos2x }\!\!\times\!\!\text{ cos3x}$.

First, taking logarithm both sides of the equation give,

$\text{logy=log(cosx }\!\!\times\!\!\text{ cos2x }\!\!\times\!\!\text{ cos3x)}$

$\Rightarrow \text{logy=log(cosx)+log(cos2x)+log(cos3x)}$, by the property of logarithm.

Now, differentiating both sides of the equation with respect to $\text{x}$ gives

$\dfrac{\text{1}}{\text{y}}\dfrac{\text{dy}}{\text{dx}}\text{=}\dfrac{\text{1}}{\text{cosx}}\text{ }\!\!\times\!\!\text{ }\dfrac{\text{d}}{\text{dx}}\text{(cosx)+}\dfrac{\text{1}}{\text{cos2x}}\text{ }\!\!\times\!\!\text{ }\dfrac{\text{d}}{\text{dx}}\text{(cos2x)+}\dfrac{\text{1}}{\text{cos3x}}\text{ }\!\!\times\!\!\text{ }\dfrac{\text{d}}{\text{dx}}\text{(cos3x)} $ 

$\Rightarrow \dfrac{\text{dy}}{\text{dx}}\text{=y}\left[ \text{-}\dfrac{\text{sinx}}{\text{cosx}}\text{-}\dfrac{\text{sin2x}}{\text{cos2x}}\text{ }\!\!\times\!\!\text{ }\dfrac{\text{d}}{\text{dx}}\text{(2x)-}\dfrac{\text{sin3x}}{\text{cos3x}}\text{ }\!\!\times\!\!\text{ }\dfrac{\text{d}}{\text{dx}}\text{(3x)} \right] $ 

Therefore,

$\dfrac{\text{dy}}{\text{dx}}\text{=-cos }\!\!\times\!\!\text{ cos2x }\!\!\times\!\!\text{ cos3x}\left[ \text{tanx+2tan2x+3tan3x} \right]$.

 2. Find the derivative of the function  $\mathbf{y=}\sqrt{\dfrac{\mathbf{(x-1)(x-2)}}{\mathbf{(x-3)(x-4)(x-5)}}}$  with respect to $\mathbf{x}$.

Ans.

The given function is $\text{y=}\sqrt{\dfrac{\text{(x-1)(x-2)}}{\text{(x-3)(x-4)(x-5)}}}$.

First taking logarithm both sides of the equation give

$\text{logy=log}\sqrt{\dfrac{\text{(x-1)(x-2)}}{\text{(x-3)(x-4)(x-5)}}} $ 

$\Rightarrow \text{logy=}\dfrac{\text{1}}{\text{2}}\text{log}\left[ \dfrac{\text{(x-1)(x-2)}}{\text{(x-3)(x-4)(x-5)}} \right] $ 

$\Rightarrow \text{logy=}\dfrac{\text{1}}{\text{2}}\left[ \text{log }\!\!\{\!\!\text{ (x-1)(x-2) }\!\!\}\!\!\text{ -log }\!\!\{\!\!\text{ (x-3)(x-4)(x-5) }\!\!\}\!\!\text{ } \right] $ 

$\Rightarrow \text{logy=}\dfrac{\text{1}}{\text{2}}\text{ }\!\![\!\!\text{ log(x-1)+log(x-2)-log(x-3)-log(x-4)-log(x-5) }\!\!]\!\!\text{ } $ 

Now, differentiating both sides of the equation with respect to $\text{x}$ give

$\dfrac{\text{dy}}{\text{dx}}=\dfrac{\text{1}}{\text{2}}\dfrac{\text{d}}{\text{dx}}\text{ }\!\![\!\!\text{ log(x-1)+log(x-2)-log(x-3)-log(x-4)-log(x-5) }\!\!]\!\!\text{ }$.

$\dfrac{\text{1}}{\text{y}}\dfrac{\text{dy}}{\text{dx}}\text{=}\dfrac{\text{1}}{\text{2}}\left[ \dfrac{\text{1}}{\text{x-1}}\text{ }\!\!\times\!\!\text{ }\dfrac{\text{d}}{\text{dx}}\text{(x-1)+}\dfrac{\text{1}}{\text{x-2}}\text{ }\!\!\times\!\!\text{ }\dfrac{\text{d}}{\text{dx}}\text{(x-2)-}\dfrac{\text{1}}{\text{x-3}}\text{ }\!\!\times\!\!\text{ }\dfrac{\text{d}}{\text{dx}}\text{(x-3)-}\dfrac{\text{1}}{\text{x-4}}\text{ }\!\!\times\!\!\text{ }\dfrac{\text{d}}{\text{dx}}\text{(x-4)} \right. $ 

$\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left. \text{-}\dfrac{\text{1}}{\text{x-5}}\text{ }\!\!\times\!\!\text{ }\dfrac{\text{d}}{\text{dx}}\text{(x-5)} \right] $ 

$\Rightarrow \dfrac{\text{dy}}{\text{dx}}\text{=}\dfrac{\text{y}}{\text{2}}\left( \dfrac{\text{1}}{\text{x-1}}\text{+}\dfrac{\text{1}}{\text{x-2}}\text{+}\dfrac{\text{1}}{\text{x-3}}\text{+}\dfrac{\text{1}}{\text{x-4}}\text{+}\dfrac{\text{1}}{\text{x-5}} \right)$

Therefore,

$\dfrac{\text{dy}}{\text{dx}}\text{=}\dfrac{\text{1}}{\text{2}}\sqrt{\dfrac{\text{(x-1)(x-2)}}{\text{(x-3)(x-4)(x-5)}}}\left[ \dfrac{\text{1}}{\text{x-1}}\text{+}\dfrac{\text{1}}{\text{x-2}}\text{+}\dfrac{\text{1}}{\text{x-3}}\text{+}\dfrac{\text{1}}{\text{x-4}}\text{+}\dfrac{\text{1}}{\text{x-5}} \right]$.

3. Find the derivative of the function $\text{y=(logx}{{\text{)}}^{\text{cosx}}}$ with respect to $\mathbf{x}$.

Ans.

The given function is $\text{y=(logx}{{\text{)}}^{\text{cosx}}}$.

First, taking logarithm both sides of the equation give 

$\text{logy=cosx}\text{.log(logx)}$.

Now, differentiating both sides of the equation with respect to $\text{x}$ give

$\dfrac{\text{1}}{\text{y}}\text{ }\!\!\times\!\!\text{ }\dfrac{\text{dy}}{\text{dx}}\text{=}\dfrac{\text{d}}{\text{dx}}\text{(cosx) }\!\!\times\!\!\text{ log(logx)+cosx }\!\!\times\!\!\text{ }\dfrac{\text{d}}{\text{dx}}\left[ \text{log(logx)} \right]$

$\Rightarrow \dfrac{\text{1}}{\text{y}}\text{ }\!\!\times\!\!\text{ }\dfrac{\text{dy}}{\text{dx}}\text{=-sinxlog(logx)+cosx }\!\!\times\!\!\text{ }\dfrac{\text{1}}{\text{logx}}\text{ }\!\!\times\!\!\text{ }\dfrac{\text{d}}{\text{dx}}\text{(logx)}$, by applying the chain rule.

$\Rightarrow \dfrac{\text{dy}}{\text{dx}}\text{=y}\left[ \text{-sinxlog(logx)+}\dfrac{\text{cosx}}{\text{logx}}\text{ }\!\!\times\!\!\text{ }\dfrac{\text{1}}{\text{x}} \right]$

Therefore,

$\dfrac{\text{dy}}{\text{dx}}\text{=(logx}{{\text{)}}^{\text{cosx}}}\left[ \dfrac{\text{cosx}}{\text{xlogx}}\text{-sin }\!\!\times\!\!\text{ log(logx)} \right]$.

4. Determine the derivative of the function $\text{y=}{{\text{x}}^{\mathbf{x}}}\text{-}{{\text{2}}^{\text{sinx}}}$ with respect to $\mathbf{x}$.

Ans.

The given function is $\text{y=}{{\text{x}}^{\text{x}}}\text{-}{{\text{2}}^{\text{sinx}}}$.

Now, let ${{\text{x}}^{\text{x}}}\text{=u}$                                                                      …… (1)

and ${{\text{2}}^{\text{sinx}}}\text{=v}$.                                                                           …… (2)

Therefore, $\text{y=u-v}$.                                                                 …… (3)

Then differentiating the equation (3) with respect to $\text{x}$ gives

$\dfrac{\text{dy}}{\text{dx}}\text{=}\dfrac{\text{du}}{\text{dx}}-\dfrac{\text{dv}}{\text{dx}}$                                                                       …… (4)

Now, taking logarithm both sides of the equation (1) give

$\text{log}\left( \text{u} \right)=\log \left( {{\text{x}}^{\text{x}}} \right) $ 

$\Rightarrow \log \text{u=xlogx} $ 

Differentiating both sides of the equation with respect to $\text{x}$ gives

$\dfrac{\text{1}}{\text{u}}\dfrac{\text{du}}{\text{dx}}\text{=}\left[ \dfrac{\text{d}}{\text{dx}}\text{(x) }\!\!\times\!\!\text{ logx+x }\!\!\times\!\!\text{ }\dfrac{\text{d}}{\text{dx}}\text{(logx)} \right] $ 

$\Rightarrow \dfrac{\text{du}}{\text{dx}}\text{=u}\left[ \text{1 }\!\!\times\!\!\text{ logx+x }\!\!\times\!\!\text{ }\dfrac{\text{1}}{\text{x}} \right] $ 

$\Rightarrow \dfrac{\text{du}}{\text{dx}}\text{=}{{\text{x}}^{\text{x}}}\text{(logx+1)} $ 

$\Rightarrow \dfrac{\text{du}}{\text{dx}}\text{=}{{\text{x}}^{\text{x}}}\text{(1+logx)}$                                                      …… (5) 

Now, taking logarithm both sides of the equation (2) give

$\text{log}\left( {{\text{2}}^{\text{sinx}}} \right)\text{=logv}$

$\Rightarrow \text{logv=sinx }\!\!\times\!\!\text{ log2}$.

Differentiating both sides of the equation with respect to $\text{x}$, give

$\dfrac{\text{1}}{\text{v}}\text{ }\!\!\times\!\!\text{ }\dfrac{\text{dv}}{\text{dx}}\text{=log2 }\!\!\times\!\!\text{ }\dfrac{\text{d}}{\text{dx}}\text{(sinx}) $ 

$\Rightarrow \dfrac{\text{dv}}{\text{dx}}\text{=vlog2cosx} $ 

$\Rightarrow \dfrac{\text{dv}}{\text{dx}}\text{=}{{\text{2}}^{\text{sinx}}}\text{cosxlog2}$                                                 …… (6)      

Therefore, from the equation (4), (5) and (6) give

$\dfrac{\text{dy}}{\text{dx}}\text{=}{{\text{x}}^{\text{x}}}\text{(1+logx)-}{{\text{2}}^{\text{sinx}}}\text{cosxlog}2$.

5. Find the derivative of the function $\mathbf{y=(x+3}{{\mathbf{)}}^{\mathbf{2}}}{{\mathbf{(x+4)}}^{\mathbf{3}}}{{\mathbf{(x+5)}}^{\mathbf{4}}}$ with respect to $\mathbf{x}$.

Ans. 

The given function is $\text{y=(x+3}{{\text{)}}^{\text{2}}}{{\text{(x+4)}}^{\text{3}}}{{\text{(x+5)}}^{\text{4}}}$.

First, taking logarithm both sides of the equation give

$\text{logy=log}\left[ {{\text{(x+3)}}^{\text{2}}}{{\text{(x+4)}}^{\text{3}}}{{\text{(x+5)}}^{\text{4}}} \right]$

$\Rightarrow \text{logy=2log(x+3)+3log(x+4)+4log(x+5)}$

Now, differentiating both sides of the equation with respect to $\text{x}$, give

$\dfrac{\text{1}}{\text{y}}\text{ }\!\!\times\!\!\text{ }\dfrac{\text{dy}}{\text{dy}}\text{=2 }\!\!\times\!\!\text{ }\dfrac{\text{1}}{\text{x-3}}\text{ }\!\!\times\!\!\text{ }\dfrac{\text{d}}{\text{dz}}\text{(x+3)+3 }\!\!\times\!\!\text{ }\dfrac{\text{1}}{\text{x+4}}\text{ }\!\!\times\!\!\text{ }\dfrac{\text{d}}{\text{dx}}\text{(x+4)+4 }\!\!\times\!\!\text{ }\dfrac{\text{1}}{\text{x+5}}\text{ }\!\!\times\!\!\text{ }\dfrac{\text{d}}{\text{dx}}\text{(x+5)} $ 

$\Rightarrow \dfrac{\text{dy}}{\text{dx}}\text{=y}\left[ \dfrac{\text{2}}{\text{x+3}}\text{+}\dfrac{\text{3}}{\text{x+4}}\text{+}\dfrac{\text{4}}{\text{x+5}} \right] $ 

$\Rightarrow \dfrac{\text{dy}}{\text{dx}}\text{=(x+3}{{\text{)}}^{\text{2}}}{{\text{(x+4)}}^{\text{3}}}{{\text{(x+5)}}^{\text{4}}}\text{ }\!\!\times\!\!\text{ }\left[ \dfrac{\text{2}}{\text{x+3}}\text{+}\dfrac{\text{3}}{\text{x+4}}\text{+}\dfrac{\text{4}}{\text{x+5}} \right] $ 

$\Rightarrow \dfrac{\text{dy}}{\text{dx}}\text{=(x+3}{{\text{)}}^{\text{2}}}{{\text{(x+4)}}^{\text{3}}}{{\text{(x+5)}}^{\text{4}}}\text{ }\!\!\times\!\!\text{ }\left[ \dfrac{\text{2(x+4)(x+5)+3(x+3)(x+5)+4(x+3)(x+4)}}{\text{(x+3)(x+4)(x+5)}} \right] $ 

$\Rightarrow \dfrac{\text{dy}}{\text{dx}}\text{=(x+3}{{\text{)}}^{\text{2}}}{{\text{(x+4)}}^{\text{2}}}{{\text{(x+5)}}^{\text{2}}}\text{-}\left[ \text{2(}{{\text{x}}^{\text{2}}}\text{+9x+20)+3(}{{\text{x}}^{\text{2}}}\text{+9x+15)+4(}{{\text{x}}^{\text{2}}}\text{+7x+12)} \right] $ 

Therefore,

$\dfrac{\text{dy}}{\text{dx}}\text{=(x+3)(x+4}{{\text{)}}^{\text{2}}}{{\text{(x+5)}}^{\text{3}}}\text{(9}{{\text{x}}^{\text{2}}}\text{+70x+133)}$.

6. Find the derivative of the function $\mathbf{y=}{{\left( \mathbf{x+}\dfrac{\mathbf{1}}{\mathbf{x}} \right)}^{\mathbf{x}}}\mathbf{+}{{\mathbf{x}}^{\left( \mathbf{1+}\dfrac{\mathbf{1}}{\mathbf{x}} \right)}}$ with respect to $\mathbf{x}$.

Ans.

The given function is $\text{y=}{{\left( \text{x+}\dfrac{\text{1}}{\text{x}} \right)}^{\text{x}}}\text{+}{{\text{x}}^{\left( \text{1+}\dfrac{\text{1}}{\text{x}} \right)}}$.

First, let $\text{u=}{{\left( \text{x+}\dfrac{\text{1}}{\text{x}} \right)}^{\text{x}}}$and $\text{v=}{{\text{x}}^{\left( \text{1+}\dfrac{\text{1}}{\text{x}} \right)}}$

Therefore, $\text{y=u+v}$.                                         …… (1)

Differentiating the equation (1) both sides with respect to $\text{x}$ give

$\Rightarrow \dfrac{\text{dy}}{\text{dx}}\text{=}\dfrac{\text{du}}{\text{dx}}\text{=}\dfrac{\text{dv}}{\text{dx}}$ …... (2)

Now, $\text{u=}{{\left( \text{x+}\dfrac{\text{1}}{\text{x}} \right)}^{\text{x}}}$

$\Rightarrow \text{logu=log}{{\left( \text{x+}\dfrac{\text{1}}{\text{x}} \right)}^{\text{x}}}$

$\Rightarrow \text{logu=xlog}\left( \text{x+}\dfrac{\text{1}}{\text{x}} \right)$

Differentiating both sides of the equation with respect to $\text{x}$ gives

$\dfrac{\text{1}}{\text{u}}\dfrac{\text{du}}{\text{dx}}\text{=}\dfrac{\text{d}}{\text{dx}}\text{(x) }\!\!\times\!\!\text{ log}\left( \text{x+}\dfrac{\text{1}}{\text{x}} \right)\text{+x }\!\!\times\!\!\text{ }\dfrac{\text{d}}{\text{dx}}\left[ \text{log}\left( \text{x+}\dfrac{\text{1}}{\text{x}} \right) \right] $ 

$\Rightarrow \dfrac{\text{1}}{\text{u}}\dfrac{\text{du}}{\text{dx}}\text{=1 }\!\!\times\!\!\text{ log}\left( \text{x+}\dfrac{\text{1}}{\text{x}} \right)\text{+x }\!\!\times\!\!\text{ }\dfrac{\text{1}}{\left( \text{x+}\dfrac{\text{1}}{\text{x}} \right)}\text{ }\!\!\times\!\!\text{ }\dfrac{\text{d}}{\text{dx}}\left( \text{x+}\dfrac{\text{1}}{\text{x}} \right) $ 

$\Rightarrow \dfrac{\text{du}}{\text{dx}}\text{=u}\left[ \text{log}\left( \text{x+}\dfrac{\text{1}}{\text{x}} \right)\text{+}\dfrac{\text{x}}{\left( \text{x+}\dfrac{\text{1}}{\text{x}} \right)}\text{ }\!\!\times\!\!\text{ }\left( \text{x+}\dfrac{\text{1}}{{{\text{x}}^{\text{2}}}} \right) \right] $ 

$\Rightarrow \dfrac{\text{du}}{\text{dx}}\text{=}{{\left( \text{x+}\dfrac{\text{1}}{\text{x}} \right)}^{\text{x}}}\left[ \text{log}\left( \text{x+}\dfrac{\text{1}}{\text{x}} \right)\text{+}\dfrac{\left( \text{x-}\dfrac{\text{1}}{\text{x}} \right)}{\left( \text{x+}\dfrac{\text{1}}{\text{x}} \right)} \right] $ 

$\Rightarrow \dfrac{\text{du}}{\text{dx}}\text{=}{{\left( \text{x+}\dfrac{\text{1}}{\text{x}} \right)}^{\text{x}}}\left[ \text{log}\left( \text{x+}\dfrac{\text{1}}{\text{x}} \right)\text{+}\dfrac{{{\text{x}}^{\text{2}}}\text{+1}}{{{\text{x}}^{\text{2}}}\text{-1}} \right] $

$\Rightarrow \dfrac{\text{du}}{\text{dx}}\text{=}{{\left( \text{x+}\dfrac{\text{1}}{\text{x}} \right)}^{\text{2}}}\left[ \dfrac{{{\text{x}}^{\text{2}}}\text{+1}}{{{\text{x}}^{\text{2}}}\text{-1}}\text{+log}\left( \text{x+}\dfrac{\text{1}}{\text{x}} \right) \right]$ …… (3)

Also, $\text{v=}{{\text{x}}^{\left( \text{x+}\dfrac{\text{1}}{\text{x}} \right)}}$

 $\Rightarrow \text{logv=log}\left[ {{\text{x}}^{{{\text{x}}^{\left( \text{x+}\dfrac{\text{1}}{\text{x}} \right)}}}} \right] $ 

$\Rightarrow \text{logv=}\left( \text{x+}\dfrac{\text{1}}{\text{x}} \right)\text{logx} $ 

Differentiating both sides of the equation with respect to $\text{x}$ gives

$\dfrac{\text{1}}{\text{v}}\text{ }\!\!\times\!\!\text{ }\dfrac{\text{dv}}{\text{dx}}\text{=}\left[ \dfrac{\text{d}}{\text{dx}}\left( \text{1+}\dfrac{\text{1}}{\text{x}} \right) \right]\text{ }\!\!\times\!\!\text{ logx+}\left( \text{1+}\dfrac{\text{1}}{\text{x}} \right)\text{ }\!\!\times\!\!\text{ }\dfrac{\text{d}}{\text{dx}}\text{logx} $ 

$\Rightarrow \dfrac{\text{1}}{\text{v}}\dfrac{\text{dv}}{\text{dx}}\text{=-}\dfrac{\text{logx}}{{{\text{x}}^{\text{2}}}}\text{+}\dfrac{\text{1}}{\text{x}}\text{+}\dfrac{\text{1}}{{{\text{x}}^{\text{2}}}} $ 

$\Rightarrow \dfrac{\text{dv}}{\text{dx}}\text{=v}\left[ \dfrac{\text{-logx+x+1}}{{{\text{x}}^{\text{2}}}} \right]$           ……. (4)

Hence, from the equations (2), (3) and (4), give

$\dfrac{\text{dy}}{\text{dx}}\text{=}{{\left( \text{x+}\dfrac{\text{1}}{\text{x}} \right)}^{\text{x}}}\left[ \dfrac{{{\text{x}}^{\text{2}}}\text{-1}}{{{\text{x}}^{\text{2}}}\text{+1}}\text{+log}\left( \text{x+}\dfrac{\text{1}}{\text{x}} \right) \right]\text{+}{{\text{x}}^{\left( \text{x+}\dfrac{\text{1}}{\text{x}} \right)}}\left( \dfrac{\text{x+1-logx}}{{{\text{x}}^{\text{2}}}} \right)$.

7. Determine derivative of the function $\mathbf{y=(logx}{{\mathbf{)}}^{\mathbf{x}}}\mathbf{+}{{\mathbf{x}}^{\mathbf{logx}}}$ with respect to $\mathbf{x}$.

Ans.

The given function is $\text{y=(logx}{{\text{)}}^{\text{x}}}\text{+}{{\text{x}}^{\text{logx}}}$.

Then, let $\text{u=(logx}{{\text{)}}^{\text{x}}}$ and $\text{v=}{{\text{x}}^{\text{logx}}}$.

Therefore, $\text{y=u+v}$.

Differentiating both sides of the equation with respect to $\text{x}$ gives

$\Rightarrow \dfrac{\text{dy}}{\text{dx}}\text{=}\dfrac{\text{du}}{\text{dx}}\text{+}\dfrac{\text{dv}}{\text{dx}}$                             ……. (1)

Now, $\text{u=(logx}{{\text{)}}^{\text{x}}}$

$\Rightarrow \text{logu=log}\left[ {{\text{(logx)}}^{\text{x}}} \right] $ 

$\Rightarrow \text{logu=xlog(logx)} $ 

Differentiating both sides of the equation with respect to $\text{x}$ gives

$\dfrac{\text{1}}{\text{u}}\dfrac{\text{du}}{\text{dx}}\text{=}\dfrac{\text{d}}{\text{dx}}\text{(x) }\!\!\times\!\!\text{ log(logx)+x }\!\!\times\!\!\text{ }\dfrac{\text{d}}{\text{dx}}\left[ \text{log(logx)} \right] $ 

$\Rightarrow \dfrac{\text{du}}{\text{dx}}\text{=u}\left[ \text{1 }\!\!\times\!\!\text{ log(logx)+x }\!\!\times\!\!\text{ }\dfrac{\text{1}}{\text{logx}}\text{ }\!\!\times\!\!\text{ }\dfrac{\text{d}}{\text{dx}}\text{(logx)} \right] $ 

$\Rightarrow \dfrac{\text{du}}{\text{dx}}\text{=(logx}{{\text{)}}^{\text{x}}}\left[ \text{log(logx)+}\dfrac{\text{x}}{\text{logx}}\text{ }\!\!\times\!\!\text{ }\dfrac{\text{1}}{\text{x}} \right] $ 

$\Rightarrow \dfrac{\text{du}}{\text{dx}}\text{=(logx}{{\text{)}}^{\text{x}}}\left[ \text{log(logx)+}\dfrac{\text{1}}{\text{logx}} \right] $ 

$\Rightarrow \dfrac{\text{du}}{\text{dx}}\text{=(logx}{{\text{)}}^{\text{x}}}\text{=}\left[ \dfrac{\text{log(logx) }\!\!\times\!\!\text{ logx+1}}{\text{logx}} \right] $ 

$\dfrac{\text{du}}{\text{dx}}\text{=(logx}{{\text{)}}^{\text{x-1}}}\left[ \text{1+logx }\!\!\times\!\!\text{ log(logx)} \right]$ ……. (2)

Again, $\text{v=}{{\text{x}}^{\text{logx}}}$

$\Rightarrow \log \text{v=log}\left( {{\text{x}}^{\text{logx}}} \right) $ 

$\Rightarrow \log \text{v=logxlogx=}{{\left( \log \text{x} \right)}^{2}} $
Differentiating both sides of the equation with respect to $\text{x}$ gives

$\dfrac{\text{1}}{\text{v}}\text{ }\!\!\times\!\!\text{ }\dfrac{\text{dx}}{\text{dx}}\text{=}\dfrac{\text{d}}{\text{dx}}\left[ {{\text{(logx)}}^{\text{2}}} \right] $ 

$\Rightarrow \dfrac{\text{1}}{\text{v}}\text{ }\!\!\times\!\!\text{ }\dfrac{\text{dx}}{\text{dx}}\text{=2(logx) }\!\!\times\!\!\text{ }\dfrac{\text{d}}{\text{dx}}\text{(logx)} $ 

$\Rightarrow \dfrac{\text{dv}}{\text{dx}}\text{=2}{{\text{x}}^{\text{logx}}}\dfrac{\text{logx}}{\text{x}} $ 

$\Rightarrow \dfrac{\text{dv}}{\text{dx}}\text{=2}{{\text{x}}^{\text{logx}}}\text{ }\!\!\times\!\!\text{ logx}$ ….…. (3)

Hence, from the equations (1), (2), and (3), gives

$\dfrac{\text{dy}}{\text{dx}}\text{=(logx}{{\text{)}}^{\text{x+1}}}\left[ \text{1+logx }\!\!\times\!\!\text{ log(logx)} \right]\text{+2}{{\text{x}}^{\text{logx-1}}}\text{ }\!\!\times\!\!\text{ logx}$.

8. Find the derivative of the function  $\mathbf{y=(sinx}{{\mathbf{)}}^{\mathbf{x}}}\mathbf{+si}{{\mathbf{n}}^{\mathbf{-1}}}\sqrt{\mathbf{x}}$ with respect to $\mathbf{x}$.

Ans.

The given function is $\text{y=(sinx}{{\text{)}}^{\text{x}}}\text{+si}{{\text{n}}^{\text{-1}}}\sqrt{\text{x}}$.

Now, let $\text{u=(sinx}{{\text{)}}^{\text{x}}}$ and $\text{v=si}{{\text{n}}^{\text{-1}}}\sqrt{\text{x}}$.

Therefore, $\text{y=u+v}$.

Then, differentiating both sides of the equation with respect to $\text{x}$ gives

$\dfrac{\text{dy}}{\text{dx}}\text{=}\dfrac{\text{du}}{\text{dx}}\text{-}\dfrac{\text{dv}}{\text{dx}}$       …….. (1)

Now, $\text{u=(sinx}{{\text{)}}^{\text{x}}}$

$\Rightarrow \text{logu=xlog(sinx}{{\text{)}}^{\text{x}}} $ 

$\Rightarrow \text{logu=xlog(sinx)} $ 

Differentiating both sides of the equation with respect to $\text{x}$ gives

$\dfrac{\text{1}}{\text{u}}\dfrac{\text{du}}{\text{dx}}\text{=}\dfrac{\text{d}}{\text{dx}}\text{(x) }\!\!\times\!\!\text{ log(sinx)+x }\!\!\times\!\!\text{ }\dfrac{\text{d}}{\text{dx}}\left[ \text{log(sinx)} \right] $ 

$\Rightarrow \dfrac{\text{du}}{\text{dx}}\text{=u}\left[ \text{1 }\!\!\times\!\!\text{ log(sinx)+x }\!\!\times\!\!\text{ }\dfrac{\text{1}}{\text{sinx}}\text{ }\!\!\times\!\!\text{ }\dfrac{\text{d}}{\text{dx}}\text{(sinx)} \right] $ 

$\Rightarrow \dfrac{\text{du}}{\text{dx}}\text{=(sinx}{{\text{)}}^{\text{x}}}\left[ \text{log(sinx)+}\dfrac{\text{x}}{\text{sinx}}\text{ }\!\!\times\!\!\text{ cosx} \right] $ 

$\Rightarrow \dfrac{\text{du}}{\text{dx}}\text{=(sinx}{{\text{)}}^{\text{x}}}\text{(xcotx+logsinx)}$ ….… (2)

Again,$\text{v=si}{{\text{n}}^{\text{-1}}}\sqrt{\text{x}}$.

Differentiating both sides of the equation with respect to $\text{x}$ gives

$\dfrac{\text{dv}}{\text{dx}}\text{=}\dfrac{\text{1}}{\sqrt{\text{1-(}\sqrt{\text{x}}{{\text{)}}^{\text{2}}}}}\text{ }\!\!\times\!\!\text{ }\dfrac{\text{d}}{\text{dx}}\text{(}\sqrt{\text{x}}\text{)} $ 

$\Rightarrow \dfrac{\text{dv}}{\text{dx}}\text{=}\dfrac{\text{1}}{\sqrt{\text{1-x}}}\text{ }\!\!\times\!\!\text{ }\dfrac{\text{1}}{\text{2}\sqrt{\text{x}}} $ 

$\Rightarrow \dfrac{\text{dv}}{\text{dx}}\text{=}\dfrac{\text{1}}{\text{2}\sqrt{\text{x-}{{\text{x}}^{\text{2}}}}}$

Hence, from the equations (1), (2) and (3), gives

$\dfrac{\text{dv}}{\text{dx}}\text{=(sinx}{{\text{)}}^{\text{2}}}\text{(xcotx+logsinx)+}\dfrac{\text{1}}{\text{2}\sqrt{\text{x-}{{\text{x}}^{\text{2}}}}}$.

9. Find the derivative of the function $\mathbf{y=}{{\mathbf{x}}^{\mathbf{sinx}}}\mathbf{+(sinx}{{\mathbf{)}}^{\mathbf{cosx}}}$ with respect to $\mathbf{x}$.

Ans.

The given function is $\text{y=}{{\text{x}}^{\text{sinx}}}\text{+(sinx}{{\text{)}}^{\text{cosx}}}$.

Then, let $\text{u=}{{\text{x}}^{\text{sinx}}}$ and $\text{v=(sinx}{{\text{)}}^{\text{cosx}}}$.

Therefore, $\text{y=u+v}$.

Differentiating both sides of the equation with respect to $\text{x}$ gives

$\dfrac{\text{dy}}{\text{dx}}\text{=}\dfrac{\text{du}}{\text{dx}}\text{-}\dfrac{\text{dv}}{\text{dx}}$               …… (1)

Now, $\text{u=}{{\text{x}}^{\text{sinx}}}$

$\Rightarrow \text{logu=xlog(}{{\text{x}}^{\text{sinx}}}\text{)} $ 

$\Rightarrow \text{logu=sinxlogx} $ 

Differentiating both sides of the equation with respect to $\text{x}$ gives

$\dfrac{\text{1}}{\text{u}}\dfrac{\text{du}}{\text{dx}}\text{=}\dfrac{\text{d}}{\text{dx}}\text{(sinx) }\!\!\times\!\!\text{ logx+sinx }\!\!\times\!\!\text{ }\dfrac{\text{d}}{\text{dx}}\text{(logx)} $ 

$\Rightarrow \dfrac{\text{du}}{\text{dx}}\text{=u=}\left[ \text{cosxlogx+sinx }\!\!\times\!\!\text{ }\dfrac{\text{1}}{\text{x}} \right] $ 

$\Rightarrow \dfrac{\text{du}}{\text{dx}}\text{=}{{\text{x}}^{\text{sinx}}}\left[ \text{cosxlogx+}\dfrac{\text{sinx}}{\text{x}} \right]$                     ….... (2)

Again, $\text{v=(sinx}{{\text{)}}^{\text{cosx}}}$

$\Rightarrow \text{logv=log(sinx}{{\text{)}}^{\text{cosx}}} $ 

$\Rightarrow \text{logv=cosxlog(sinx)} $ 

Then, differentiating both sides of the equation with respect to $\text{x}$ gives

$\dfrac{\text{1}}{\text{v}}\dfrac{\text{dv}}{\text{dx}}\text{=}\dfrac{\text{d}}{\text{dx}}\text{(cosx) }\!\!\times\!\!\text{ log(sinx)+cosx }\!\!\times\!\!\text{ }\dfrac{\text{d}}{\text{dx}}\left[ \text{log(sinx)} \right] $ 

$\Rightarrow \dfrac{\text{dv}}{\text{dx}}\text{=v}\left[ \text{-sinx }\!\!\times\!\!\text{ log(sinx)+cosx }\!\!\times\!\!\text{ }\dfrac{\text{1}}{\text{sinx}}\text{ }\!\!\times\!\!\text{ }\dfrac{\text{d}}{\text{dx}}\text{(sinx)} \right] $ 

$\Rightarrow \dfrac{\text{du}}{\text{dx}}\text{=(sinx}{{\text{)}}^{\text{cosx}}}\left[ \text{-sinxlogsinx+cotxcosx} \right] $ 

$\Rightarrow \dfrac{\text{dv}}{\text{dx}}\text{=(sinx}{{\text{)}}^{\text{cosx}}}\text{ }\!\![\!\!\text{ cosxcotx+sinxlogsinx }\!\!]\!\!\text{ }$ …… (3)

Hence, from the equations (1), (2) and (3), gives

$\dfrac{\text{du}}{\text{dx}}\text{=}{{\text{x}}^{\text{sinx}}}\left( \text{cosxlogx+}\dfrac{\text{sinx}}{\text{x}} \right)\text{+(sinx}{{\text{)}}^{\text{cosx}}}\text{ }\!\![\!\!\text{ cosxcotx+sinxlogsinx }\!\!]\!\!\text{ }$.

10. Find the derivative function $\mathbf{y=}{{\mathbf{x}}^{\mathbf{xcosx}}}\mathbf{+}\dfrac{{{\mathbf{x}}^{\mathbf{2}}}\mathbf{+1}}{{{\mathbf{x}}^{\mathbf{2}}}\mathbf{-1}}$ with respect to $\mathbf{x}$.

Ans. 

The given function is $\text{y=}{{\text{x}}^{\text{xcosx}}}\text{+}\dfrac{{{\text{x}}^{\text{2}}}\text{+1}}{{{\text{x}}^{\text{2}}}\text{-1}}$.

First, let $\text{u=}{{\text{x}}^{\text{xcosx}}}$ and $\text{v=}\dfrac{{{\text{x}}^{\text{2}}}\text{+1}}{{{\text{x}}^{\text{2}}}\text{-1}}$.

Therefore, $\text{y=u+v}$.

Differentiating both sides of the equation with respect to $\text{x}$ gives

$\Rightarrow \dfrac{\text{dy}}{\text{dx}}\text{=}\dfrac{\text{du}}{\text{dx}}\text{-}\dfrac{\text{dv}}{\text{dx}}$ ……. (1)

Now, $\text{u=}{{\text{x}}^{\text{xcosx}}}$.

Then, differentiating both sides of the equation with respect to $\text{x}$ gives

$\dfrac{\text{1}}{\text{u}}\dfrac{\text{du}}{\text{dx}}\text{=}\dfrac{\text{d}}{\text{dx}}\text{(x) }\!\!\times\!\!\text{ cosxlogx+x }\!\!\times\!\!\text{ }\dfrac{\text{d}}{\text{dx}}\text{(cosx) }\!\!\times\!\!\text{ logx+xcosx }\!\!\times\!\!\text{ }\dfrac{\text{d}}{\text{dx}}\text{(logx)} $ 

$\Rightarrow \dfrac{\text{du}}{\text{dx}}\text{=u}\left[ \text{1 }\!\!\times\!\!\text{ cosx }\!\!\times\!\!\text{ logx+x }\!\!\times\!\!\text{ (-sinx)logx+xcosx }\!\!\times\!\!\text{ }\dfrac{\text{1}}{\text{x}} \right] $ 

$\Rightarrow \dfrac{\text{du}}{\text{dx}}\text{=}{{\text{x}}^{\text{xcosx}}}\text{(cosxlogx-xsinxlogx+cosx})$ …… (2)

Again, $\text{v=}\dfrac{{{\text{x}}^{\text{2}}}\text{+1}}{{{\text{x}}^{\text{2}}}\text{-1}}$

$\Rightarrow \text{logv=log(}{{\text{x}}^{\text{2}}}\text{+1)-log(}{{\text{x}}^{\text{2}}}\text{-1)}$

Differentiating both sides of the equation with respect to $\text{x}$ gives

$\dfrac{\text{1}}{\text{v}}\text{=}\dfrac{\text{dv}}{\text{dx}}\text{=}\dfrac{\text{2x}}{{{\text{x}}^{\text{2}}}\text{+1}}\text{-}\dfrac{\text{2x}}{{{\text{x}}^{\text{2}}}\text{-1}} $ 

$\Rightarrow \dfrac{\text{dv}}{\text{dx}}\text{=v}\left[ \dfrac{\text{2x(}{{\text{x}}^{\text{2}}}\text{-1)-2x(}{{\text{x}}^{\text{2}}}\text{+1)}}{\text{(}{{\text{x}}^{\text{2}}}\text{+1)(}{{\text{x}}^{\text{2}}}\text{-1)}} \right] $ 

$\Rightarrow \dfrac{\text{du}}{\text{dx}}\text{=}\dfrac{{{\text{x}}^{\text{2}}}\text{+1}}{{{\text{x}}^{\text{2}}}\text{-1}}\text{ }\!\!\times\!\!\text{ }\left[ \dfrac{\text{-4x}}{\text{(}{{\text{x}}^{\text{2}}}\text{+1)(}{{\text{x}}^{\text{2}}}\text{-1)}} \right] $ 

$\Rightarrow \dfrac{\text{dv}}{\text{dx}}\text{=}\dfrac{\text{-4x}}{{{\text{(}{{\text{x}}^{\text{2}}}\text{-1)}}^{\text{2}}}}$ …….. (3)

Hence, from the equations (1), (2) and (3), give

$\dfrac{\text{dv}}{\text{dx}}\text{=}{{\text{x}}^{\text{xcosx}}}\left[ \text{cosx(1+logx)-xsinxlogx} \right]\text{-}\dfrac{\text{4x}}{{{\text{(}{{\text{x}}^{\text{2}}}\text{-1)}}^{\text{2}}}}$.

11. Find the derivative of the function $\mathbf{y=(xcosx}{{\mathbf{)}}^{\mathbf{x}}}\mathbf{+(xsinx}{{\mathbf{)}}^{\dfrac{\mathbf{1}}{\mathbf{x}}}}$ with respect to $\mathbf{x}$.

Ans.

The given function is $\text{y=(xcosx}{{\text{)}}^{\text{x}}}\text{+(xsinx}{{\text{)}}^{\dfrac{\text{1}}{\text{x}}}}$.

Then, let $\text{u=(xcosx}{{\text{)}}^{\text{x}}}$ and $\text{v=(xsinx}{{\text{)}}^{\dfrac{\text{1}}{\text{x}}}}$.

Therefore, $\text{y=u+v}$.

$\Rightarrow \dfrac{\text{dy}}{\text{dx}}\text{=}\dfrac{\text{du}}{\text{dx}}\text{+}\dfrac{\text{dv}}{\text{dx}}$                                                         ……. (1)

Again, $\text{u=(cosx}{{\text{)}}^{\text{x}}}$

$\Rightarrow \text{logu=log(xcosx}{{\text{)}}^{\text{x}}} $ 

$\Rightarrow \text{logu=xlog(xcosx)} $ 

$\Rightarrow \text{logu=x }\!\![\!\!\text{ logx+logcosx }\!\!]\!\!\text{ } $ 

$\Rightarrow \text{logu=xlogx+xlogcosx} $ 

Differentiating both sides of the equation with respect to $\text{x}$ gives

$\dfrac{\text{1}}{\text{u}}\dfrac{\text{du}}{\text{dx}}\text{=}\dfrac{\text{d}}{\text{dx}}\text{(xlogx+xlogcosx)} $ 

$\Rightarrow \dfrac{\text{du}}{\text{dx}}\text{=u}\left[ \left\{ \text{logx }\!\!\times\!\!\text{ }\dfrac{\text{d}}{\text{dx}}\text{(x)+x }\!\!\times\!\!\text{ }\dfrac{\text{d}}{\text{dx}}\text{(logx)} \right\}\text{+}\left\{ \text{logcosx }\!\!\times\!\!\text{ }\dfrac{\text{d}}{\text{dx}}\text{(x)+x }\!\!\times\!\!\text{ }\dfrac{\text{d}}{\text{dx}}\text{(logcosx)} \right\} \right] $ 

$\Rightarrow \dfrac{\text{du}}{\text{dx}}\text{=(xcosx}{{\text{)}}^{\text{x}}}\left[ \left\{ \text{logx }\!\!\times\!\!\text{ 1+x }\!\!\times\!\!\text{ }\dfrac{\text{1}}{\text{x}} \right\}\text{+}\left\{ \text{logcosx-1+x }\!\!\times\!\!\text{ }\dfrac{\text{1}}{\text{cosx}}\text{ }\!\!\times\!\!\text{ }\dfrac{\text{d}}{\text{dx}}\text{(cosx)} \right\} \right] $ 

$\Rightarrow \dfrac{\text{du}}{\text{dx}}\text{=(xcosx}{{\text{)}}^{\text{x}}}\left[ \left\{ \text{logx+1} \right\}\text{+}\left\{ \text{logcosx-1+}\dfrac{\text{x}}{\text{cosx}}\text{ }\!\!\times\!\!\text{ (-sinx)} \right\} \right] $ 

$\Rightarrow \dfrac{\text{du}}{\text{dx}}\text{=(xcosx}{{\text{)}}^{\text{x}}}\left[ \text{(logx+1)+(logcosx-xtanx)} \right] $ 

$\Rightarrow \dfrac{\text{du}}{\text{dx}}\text{=(xcosx}{{\text{)}}^{\text{x}}}\left[ \text{1-xtanx+(logx+logcosx)} \right]$

Therefore,

$\dfrac{\text{du}}{\text{dx}}\text{=(xcosx}{{\text{)}}^{\text{x}}}\left[ \text{1-xtanx+(logx(xcosx)} \right]$   …….. (2)

Again, $\text{v=(xsinx}{{\text{)}}^{\dfrac{\text{1}}{\text{x}}}}$

$\Rightarrow \text{logv=log(xsinx}{{\text{)}}^{\dfrac{\text{1}}{\text{x}}}} $ 

$\Rightarrow \text{logv=}\dfrac{\text{1}}{\text{x}}\text{log(xsinx)} $ 

$\Rightarrow \text{logv=}\dfrac{\text{1}}{\text{x}}\text{(logx+logsinx)} $ 

$\Rightarrow \text{logv=}\dfrac{\text{1}}{\text{x}}\text{logx+}\dfrac{\text{1}}{\text{x}}\text{logsinx} $ 

Differentiating both sides of the equation with respect to $\text{x}$ gives

$\dfrac{\text{1}}{\text{v}}\dfrac{\text{dv}}{\text{dx}}\text{=}\dfrac{\text{d}}{\text{dx}}\left( \dfrac{\text{1}}{\text{x}}\text{logx} \right)\text{+}\dfrac{\text{d}}{\text{dx}}\left[ \dfrac{\text{1}}{\text{x}}\text{log(sinx)} \right] $ 

$\Rightarrow \dfrac{\text{1}}{\text{v}}\dfrac{\text{dv}}{\text{dx}}\text{=}\left[ \dfrac{\text{1}}{\text{x}}\text{logx }\!\!\times\!\!\text{ }\dfrac{\text{d}}{\text{dx}}\left( \dfrac{\text{1}}{\text{x}} \right)\text{+}\dfrac{\text{1}}{\text{x}}\text{ }\!\!\times\!\!\text{ }\dfrac{\text{d}}{\text{dx}}\text{(logx)} \right]\text{+}\left[ \text{log(sinx) }\!\!\times\!\!\text{ }\dfrac{\text{d}}{\text{dx}}\left( \dfrac{\text{1}}{\text{x}} \right)\text{+}\dfrac{\text{1}}{\text{x}}\text{ }\!\!\times\!\!\text{ }\dfrac{\text{d}}{\text{dx}}\left\{ \text{(logsinx)} \right\} \right] $ 

$\Rightarrow \dfrac{\text{1}}{\text{v}}\dfrac{\text{dv}}{\text{dx}}\text{=}\left[ \dfrac{\text{1}}{\text{x}}\text{logx }\!\!\times\!\!\text{ }\left( \text{-}\dfrac{\text{1}}{{{\text{x}}^{\text{2}}}} \right)\text{+}\dfrac{\text{1}}{\text{x}}\text{ }\!\!\times\!\!\text{ }\dfrac{\text{1}}{\text{x}} \right]\text{+}\left[ \text{log(sinx) }\!\!\times\!\!\text{ }\left( \text{-}\dfrac{\text{1}}{{{\text{x}}^{\text{2}}}} \right)\text{+}\dfrac{\text{1}}{\text{x}}\text{ }\!\!\times\!\!\text{ }\dfrac{\text{1}}{\text{sinx}}\text{ }\!\!\times\!\!\text{ }\dfrac{\text{d}}{\text{dx}}\text{(sinx)} \right] $ 

$\Rightarrow \dfrac{\text{1}}{\text{v}}\dfrac{\text{dv}}{\text{dx}}\text{=}\dfrac{\text{1}}{{{\text{x}}^{\text{2}}}}\text{(1-logx)+}\left[ \dfrac{\text{1-logx}}{{{\text{x}}^{\text{2}}}}\text{+}\dfrac{\text{1}}{\text{xsinx}}\text{ }\!\!\times\!\!\text{ cosx} \right] $ 

$\Rightarrow \dfrac{\text{1}}{\text{v}}\dfrac{\text{dv}}{\text{dx}}\text{=}\dfrac{\text{1}}{{{\text{x}}^{\text{2}}}}{{\text{(xsinx)}}^{\dfrac{\text{1}}{\text{x}}}}\text{+}\left[ \dfrac{\text{1-logx}}{{{\text{x}}^{\text{2}}}}\text{+}\dfrac{\text{-log(sinx)+xcotx}}{{{\text{x}}^{\text{2}}}} \right] $ 

$\Rightarrow \dfrac{\text{dv}}{\text{dx}}\text{=(xsinx}{{\text{)}}^{\dfrac{\text{1}}{\text{x}}}}\left[ \dfrac{1-\log x-\log (\sin x)+x\cot x}{{{\text{x}}^{\text{2}}}} \right] $ 

Therefore,

$\dfrac{\text{dv}}{\text{dx}}\text{=(xsinx}{{\text{)}}^{\dfrac{\text{1}}{\text{x}}}}\left[ \dfrac{\text{1-log(xsinx)+xcotx}}{{{\text{x}}^{\text{2}}}} \right]$ ……. (3)

Hence, from the equations (1), (2) and (3), gives

$\Rightarrow \dfrac{\text{dy}}{\text{dx}}\text{=(xcosx}{{\text{)}}^{\text{2}}}\left[ \text{1-xtanx+log(xcosx)} \right]\text{+(xsinx}{{\text{)}}^{\dfrac{\text{1}}{\text{x}}}}\left[ \dfrac{\text{1-log(xsinx)+xcotx}}{{{\text{x}}^{\text{2}}}} \right]$.

12. Determine $\dfrac{\mathbf{dy}}{\mathbf{dx}}$ from the equation ${{\mathbf{x}}^{\mathbf{y}}}\mathbf{+}{{\mathbf{y}}^{\mathbf{x}}}\mathbf{=1}$.

Ans.

The given function is ${{\text{x}}^{\text{y}}}\text{+}{{\text{y}}^{\text{x}}}\text{=1}$.

Then, let ${{\text{x}}^{\text{y}}}\text{=u}$ and ${{\text{y}}^{\text{x}}}\text{=v}$.

Therefore, $\text{u+v=1}$.

Differentiating both sides of the equation with respect to $\text{x}$ gives

$\dfrac{\text{du}}{\text{dx}}\text{+}\dfrac{\text{dv}}{\text{dy}}\text{=0}$

Now, $\text{u=}{{\text{x}}^{\text{y}}}$                             ……. (1)

$\Rightarrow \text{logu=log(}{{\text{x}}^{\text{y}}}\text{)} $ 

$\Rightarrow \text{logu=ylogx} $ 

Differentiating both sides of the equation with respect to $\text{x}$ gives

$\dfrac{\text{1}}{\text{u}}\dfrac{\text{du}}{\text{dx}}\text{=logx}\dfrac{\text{dy}}{\text{dx}}\text{+y }\!\!\times\!\!\text{ }\dfrac{\text{d}}{\text{dx}}\text{(logx)}$

$\Rightarrow \dfrac{\text{du}}{\text{dx}}\text{=u}\left[ \text{logx}\dfrac{\text{dy}}{\text{dx}}\text{+y }\!\!\times\!\!\text{ }\dfrac{\text{1}}{\text{x}} \right]$

Therefore, $\dfrac{\text{du}}{\text{dx}}\text{=}{{\text{x}}^{\text{y}}}\left[ \text{logx}\dfrac{\text{dy}}{\text{dx}}\text{+}\dfrac{\text{y}}{\text{x}} \right]$ ………… (2)

Also, $\text{v=}{{\text{y}}^{\text{x}}}$

Taking logarithm both sides of the equation give

$\Rightarrow \text{logv=log(}{{\text{y}}^{\text{3}}}\text{)} $ 

$\Rightarrow \text{logv=xlogy} $ 

Differentiating both sides of the equation with respect to $\text{x}$ gives

$\dfrac{\text{1}}{\text{v}}\text{ }\!\!\times\!\!\text{ }\dfrac{\text{dv}}{\text{dx}}\text{=logy }\!\!\times\!\!\text{ }\dfrac{\text{d}}{\text{dx}}\text{(x)+x }\!\!\times\!\!\text{ }\dfrac{\text{d}}{\text{dx}}\text{(logy)}$

$\Rightarrow \dfrac{\text{dv}}{\text{dx}}\text{=v}\left( \text{logy }\!\!\times\!\!\text{ 1+x }\!\!\times\!\!\text{ }\dfrac{\text{1}}{\text{y}}\text{ }\!\!\times\!\!\text{ }\dfrac{\text{dy}}{\text{dx}} \right)$

Therefore, $\dfrac{\text{dv}}{\text{dx}}\text{=}{{\text{y}}^{\text{x}}}\left( \text{logy+}\dfrac{\text{x}}{\text{y}}\dfrac{\text{dy}}{\text{dx}} \right)$ ……... (3)

So, from the equation (1), (2) and (3), gives

${{\text{x}}^{\text{y}}}\left( \text{logx}\dfrac{\text{dy}}{\text{dx}}\text{+}\dfrac{\text{y}}{\text{x}} \right)\text{+}{{\text{y}}^{\text{x}}}\left( \text{logy+}\dfrac{\text{x}}{\text{y}}\dfrac{\text{dy}}{\text{dx}} \right)\text{=0} $ 

$\Rightarrow \left( {{\text{x}}^{\text{2}}}\text{+logx+x}{{\text{y}}^{\text{y-1}}} \right)\dfrac{\text{dy}}{\text{dx}}\text{=-}\left( \text{y}{{\text{x}}^{\text{y-1}}}\text{+}{{\text{y}}^{\text{x}}}\text{logy} \right) $ 

Hence, $\dfrac{\text{dy}}{\text{dx}}\text{=}\dfrac{\text{y}{{\text{x}}^{\text{y-1}}}\text{+}{{\text{y}}^{\text{x}}}\text{logy}}{{{\text{x}}^{\text{y}}}\text{logx+x}{{\text{y}}^{\text{x-1}}}}$.

13. Determine $\dfrac{\mathbf{dy}}{\mathbf{dx}}$ from the equation ${{\text{y}}^{\text{x}}}\text{=}{{\text{x}}^{\text{y}}}$.

Ans.

The given equation is ${{\text{y}}^{\text{x}}}\text{=}{{\text{x}}^{\text{y}}}$.

Then, taking logarithm both sides of the equation give

$\text{xlogy=ylogx}$.

Differentiating both sides of the equation with respect to $\text{x}$ gives

$\text{logy }\!\!\times\!\!\text{ }\dfrac{\text{d}}{\text{dx}}\text{(x)+x }\!\!\times\!\!\text{ }\dfrac{\text{d}}{\text{dx}}\text{(logy)=logx }\!\!\times\!\!\text{ }\dfrac{\text{d}}{\text{dx}}\text{(y)+y }\!\!\times\!\!\text{ }\dfrac{\text{d}}{\text{dx}}\text{(logx)} $ 

$\Rightarrow \text{logy }\!\!\times\!\!\text{ 1+x }\!\!\times\!\!\text{ }\dfrac{\text{1}}{\text{y}}\text{ }\!\!\times\!\!\text{ }\dfrac{\text{dy}}{\text{dx}}\text{=logx }\!\!\times\!\!\text{ }\dfrac{\text{dy}}{\text{dx}}\text{+y }\!\!\times\!\!\text{ }\dfrac{\text{1}}{\text{x}} $ 

$\Rightarrow \text{logy+}\dfrac{\text{x}}{\text{y}}\dfrac{\text{dy}}{\text{dx}}\text{=logx}\dfrac{\text{dy}}{\text{dx}}\text{+}\dfrac{\text{y}}{\text{x}} $ 

$\Rightarrow \left( \dfrac{\text{x}}{\text{y}}\text{-logx} \right)\dfrac{\text{dy}}{\text{dx}}\text{=}\dfrac{\text{y}}{\text{x}}\text{-logy} $ 

$\Rightarrow \left( \dfrac{\text{x-ylogx}}{\text{y}} \right)\dfrac{\text{dy}}{\text{dx}}\text{=}\dfrac{\text{y-xlogy}}{\text{x}} $ 

$\Rightarrow \left( \dfrac{\text{x-ylogx}}{\text{y}} \right)\dfrac{\text{dy}}{\text{dx}}\text{=}\dfrac{\text{y-xlogy}}{\text{x}} $ 

Therefore, $\dfrac{\text{dy}}{\text{dx}}\text{=}\dfrac{\text{y}}{\text{x}}\left( \dfrac{\text{y-xlogy}}{\text{x-ylogx}} \right)$.

14. Determine $\dfrac{\mathbf{dy}}{\mathbf{dx}}$ from the equation ${{\text{(cosx)}}^{\text{y}}}\text{=(cosy}{{\text{)}}^{\text{x}}}$.

Ans.

The given equation is ${{\text{(cosx)}}^{\text{y}}}\text{=(cosy}{{\text{)}}^{\text{x}}}$.

Then, taking logarithm both sides of the equation give

$\text{ylogcosx=xlogcosy}$.

Now, differentiating both sides of the equation with respect to $\text{x}$ gives

$\text{logcosx }\!\!\times\!\!\text{ }\dfrac{\text{dy}}{\text{dx}}\text{+y }\!\!\times\!\!\text{ }\dfrac{\text{d}}{\text{dx}}\text{(logcosx)=logcosy }\!\!\times\!\!\text{ }\dfrac{\text{d}}{\text{dx}}\text{(x)+x }\!\!\times\!\!\text{ }\dfrac{\text{d}}{\text{dx}}\text{(logcosy}) $ 

$\Rightarrow \text{logcosx}\dfrac{\text{dy}}{\text{dx}}\text{+}\dfrac{\text{y}}{\text{cosx}}\text{ }\!\!\times\!\!\text{ (-sinx)=logcosy+}\dfrac{\text{x}}{\text{cosy}}\text{(-siny) }\!\!\times\!\!\text{ }\dfrac{\text{dy}}{\text{dx}} $ 

$\Rightarrow \text{logcosx}\dfrac{\text{dy}}{\text{dx}}\text{-ytanx=logcosy-xtany}\dfrac{\text{dy}}{\text{dx}} $ 

$\Rightarrow \text{(logcosx+xtany)}\dfrac{\text{dy}}{\text{dx}}\text{=ytanx+logcosy} $ 

Therefore, $\dfrac{\text{dy}}{\text{dx}}\text{=}\dfrac{\text{ytanx+logcosy}}{\text{xtany+logcosx}}$.

15. Determine $\dfrac{\mathbf{dy}}{\mathbf{dx}}$ from the equation $\text{xy=}{{\text{e}}^{\text{(x-y)}}}$.

Ans. 

The given equation is $\text{xy=}{{\text{e}}^{\text{(x-y)}}}$.

Then, taking logarithm both sides of the equation give

$\text{log(xy)=log(}{{\text{e}}^{\text{x-y}}}\text{)} $ 

$\Rightarrow \text{logx+logy=(x-y)loge} $ 

$\Rightarrow \text{logx+logy=(x-y) }\!\!\times\!\!\text{ 1} $ 

$\Rightarrow \text{logx+logy=x-y} $ 

Now, differentiating both sides of the equation with respect to $\text{x}$ gives 

$\dfrac{\text{d}}{\text{dx}}\text{(logx)+}\dfrac{\text{d}}{\text{dx}}\text{(logy)=}\dfrac{\text{d}}{\text{dx}}\text{(x)-}\dfrac{\text{dy}}{\text{dx}} $ 

$\Rightarrow \dfrac{\text{1}}{\text{x}}\text{+}\dfrac{\text{1}}{\text{y}}\dfrac{\text{dy}}{\text{dx}}\text{=1-}\dfrac{\text{1}}{\text{x}} $ 

$\Rightarrow \left( \text{1+}\dfrac{\text{1}}{\text{y}} \right)\dfrac{\text{dy}}{\text{dx}}\text{=}\dfrac{\text{x-1}}{\text{x}} $ 

Therefore, $\dfrac{\text{dy}}{\text{dx}}\text{=}\dfrac{\text{y(x-1)}}{\text{x(x+1)}}$.

16. Determine the derivative of the following function $\mathbf{f}$ and hence evaluate $\mathbf{f'(1)}$. 

$\text{f(x)=(1+x)(1+}{{\text{x}}^{\text{2}}}\text{)(1+}{{\text{x}}^{\text{4}}}\text{)(1+}{{\text{x}}^{\text{8}}}\text{)}$.

Ans.

The given function is $\text{f(x)=(1+x)(1+}{{\text{x}}^{\text{2}}}\text{)(1+}{{\text{x}}^{\text{4}}}\text{)(1+}{{\text{x}}^{\text{8}}}\text{)}$.

By taking logarithm both sides of the equation give

$\text{logf(x)=log(1+x)+log(1+}{{\text{x}}^{\text{2}}}\text{)+log(1+}{{\text{x}}^{\text{4}}}\text{)+log(1+}{{\text{x}}^{\text{8}}}\text{)}$

Now, differentiating both sides of the equation with respect to $\text{x}$ gives $\dfrac{\text{1}}{\text{f(x)}}\text{ }\!\!\times\!\!\text{ }\dfrac{\text{d}}{\text{dx}}\text{ }\!\![\!\!\text{ f(x) }\!\!]\!\!\text{ =}\dfrac{\text{d}}{\text{dx}}\text{log(1+x)+}\dfrac{\text{d}}{\text{dx}}\text{log(1+}{{\text{x}}^{\text{2}}}\text{)+}\dfrac{\text{d}}{\text{dx}}\text{log(1+}{{\text{x}}^{\text{4}}}\text{)+}\dfrac{\text{d}}{\text{dx}}\text{log(1+}{{\text{x}}^{\text{8}}}\text{)} $ 

$\Rightarrow \dfrac{\text{1}}{\text{f(x)}}\text{ }\!\!\times\!\!\text{ f }\!\!'\!\!\text{ (x)=}\dfrac{\text{1}}{\text{1+x}}\text{ }\!\!\times\!\!\text{ }\dfrac{\text{1}}{\text{dx}}\text{(1+x)+}\dfrac{\text{1}}{\text{1+}{{\text{x}}^{\text{2}}}}\text{ }\!\!\times\!\!\text{ }\dfrac{\text{d}}{\text{dx}}\text{log(1+}{{\text{x}}^{\text{2}}}\text{)+}\dfrac{\text{1}}{\text{1+}{{\text{x}}^{\text{4}}}}\text{ }\!\!\times\!\!\text{ }\dfrac{\text{d}}{\text{dx}}\text{log(1+}{{\text{x}}^{\text{4}}}\text{)} $ 

$\text{+}\dfrac{\text{1}}{\text{1+}{{\text{x}}^{\text{8}}}}\text{ }\!\!\times\!\!\text{ }\dfrac{\text{d}}{\text{dx}}\text{log(1+}{{\text{x}}^{\text{8}}}\text{)} $ 

$\Rightarrow \text{f }\!\!'\!\!\text{ (x)=f(x)}\left[ \dfrac{\text{1}}{\text{1+x}}\text{+}\dfrac{\text{1}}{\text{1+}{{\text{x}}^{\text{2}}}}\text{ }\!\!\times\!\!\text{ 2x+}\dfrac{\text{1}}{\text{1+}{{\text{x}}^{\text{4}}}}\text{ }\!\!\times\!\!\text{ 4}{{\text{x}}^{\text{3}}}\text{+}\dfrac{\text{1}}{\text{1+}{{\text{x}}^{\text{8}}}}\text{ }\!\!\times\!\!\text{ 8}{{\text{x}}^{\text{7}}} \right] $ 

Therefore,

$\text{f }\!\!'\!\!\text{ (x)=(1+x)(1+}{{\text{x}}^{\text{2}}}\text{)(1+}{{\text{x}}^{\text{4}}}\text{)(1+}{{\text{x}}^{\text{8}}}\text{)}\left[ \dfrac{\text{1}}{\text{1+x}}\text{+}\dfrac{\text{2x}}{\text{1+}{{\text{x}}^{\text{2}}}}\text{+}\dfrac{\text{4}{{\text{x}}^{\text{3}}}}{\text{1+}{{\text{x}}^{\text{4}}}}\text{+}\dfrac{\text{8}{{\text{x}}^{\text{7}}}}{\text{1+}{{\text{x}}^{\text{8}}}} \right]$

So, 

$\text{f }\!\!'\!\!\text{ (1)=(1+1)(1+}{{\text{1}}^{\text{2}}}\text{)(1+}{{\text{1}}^{\text{4}}}\text{)(1+}{{\text{1}}^{\text{8}}}\text{)}\left[ \dfrac{\text{1}}{\text{1+1}}\text{+}\dfrac{\text{2 }\!\!\times\!\!\text{ 1}}{\text{1+}{{\text{1}}^{\text{2}}}}\text{+}\dfrac{\text{4 }\!\!\times\!\!\text{ }{{\text{1}}^{\text{3}}}}{\text{1+}{{\text{1}}^{\text{4}}}}\text{+}\dfrac{\text{8 }\!\!\times\!\!\text{ }{{\text{1}}^{\text{7}}}}{\text{1+}{{\text{1}}^{\text{8}}}} \right] $ 

$\text{=2 }\!\!\times\!\!\text{ 2 }\!\!\times\!\!\text{ 2 }\!\!\times\!\!\text{ 2}\left[ \dfrac{\text{1}}{\text{2}}\text{+}\dfrac{\text{2}}{\text{2}}\text{+}\dfrac{\text{4}}{\text{2}}\text{+}\dfrac{\text{8}}{\text{2}} \right] $ 

$\text{=16 }\!\!\times\!\!\text{ }\left( \dfrac{\text{1+2+4+8}}{\text{2}} \right) $ 

$\text{=16 }\!\!\times\!\!\text{ }\dfrac{\text{15}}{\text{2}}\text{=120} $ 

Hence, $\text{{f}'}\left( \text{1} \right)\text{=120}$.

17. Differentiate the function $\mathbf{y=(}{{\mathbf{x}}^{\mathbf{2}}}\mathbf{-5x+8)(}{{\mathbf{x}}^{\mathbf{3}}}\mathbf{+7x+9)}$ in three ways as described below. Also, verify whether all the answers are the same. 

(a) By using product rules. 

Ans.

The given function is $\text{y=}\left( {{\text{x}}^{\text{2}}}\text{-5x+8} \right)\left( {{\text{x}}^{\text{3}}}\text{+7x+9} \right)$.

Now, let consider $\text{u=(}{{\text{x}}^{\text{2}}}\text{-5x+8)}$ and $\text{v=(}{{\text{x}}^{\text{3}}}\text{+7x+9)}$

Therefore, $\text{y=uv}$.

$\Rightarrow \dfrac{\text{dy}}{\text{dx}}\text{=}\dfrac{\text{du}}{\text{dv}}\text{.v+u}\text{.}\dfrac{\text{du}}{\text{dx}} $ 

$\Rightarrow \dfrac{\text{dy}}{\text{dx}}\text{=}\dfrac{\text{d}}{\text{dx}}\text{(}{{\text{x}}^{\text{2}}}\text{-5x+8)}\text{.(}{{\text{x}}^{\text{3}}}\text{+7x+9)+(}{{\text{x}}^{\text{2}}}\text{-5x+8)}\text{.}\dfrac{\text{d}}{\text{dx}}\text{(}{{\text{x}}^{\text{3}}}\text{+7x+9)} $ 

$\Rightarrow \dfrac{\text{dy}}{\text{dx}}\text{=(2x-5)(}{{\text{x}}^{\text{3}}}\text{+7x+9)}\text{.(}{{\text{x}}^{\text{2}}}\text{-5x+8)(3}{{\text{x}}^{\text{2}}}\text{+7)} $ 

$\Rightarrow \dfrac{\text{dy}}{\text{dx}}\text{=2x(}{{\text{x}}^{\text{3}}}\text{+7x+9)-5(}{{\text{x}}^{\text{2}}}\text{-5x+8)+}{{\text{x}}^{\text{2}}}\text{(3}{{\text{x}}^{\text{2}}}\text{+7)-5x(3}{{\text{x}}^{\text{2}}}\text{+7)-8(3}{{\text{x}}^{\text{2}}}\text{+7)} $ 

$\Rightarrow \dfrac{\text{dy}}{\text{dx}}\text{=(2}{{\text{x}}^{\text{4}}}\text{+14}{{\text{x}}^{\text{2}}}\text{+18x)-5}{{\text{x}}^{\text{3}}}\text{-35x-45+(3}{{\text{x}}^{\text{4}}}\text{+7}{{\text{x}}^{\text{2}}}\text{)-15}{{\text{x}}^{\text{3}}}\text{-35x+24}{{\text{x}}^{\text{2}}}\text{+56} $ 

Hence, $\dfrac{\text{dy}}{\text{dx}}\text{=5}{{\text{x}}^{\text{4}}}\text{-20}{{\text{x}}^{\text{3}}}\text{+45}{{\text{x}}^{\text{2}}}\text{+52x+11}$.

(b) By expanding the factors as a polynomial.

Ans.

The given function is

$\text{y=(}{{\text{x}}^{\text{2}}}\text{-5x+8)(}{{\text{x}}^{\text{3}}}\text{+7x+9)}$.

Then, calculating the product, gives

$\text{y=}{{\text{x}}^{\text{2}}}\text{(}{{\text{x}}^{\text{3}}}\text{+7x+9)-5}{{\text{x}}^{\text{4}}}\text{(}{{\text{x}}^{\text{3}}}\text{+7x+9)+8(}{{\text{x}}^{\text{3}}}\text{+7x+9)} $ 

$\Rightarrow \text{y=}{{\text{x}}^{\text{5}}}\text{+7}{{\text{x}}^{\text{3}}}\text{+9}{{\text{x}}^{\text{2}}}\text{-5}{{\text{x}}^{\text{3}}}\text{-26}{{\text{x}}^{\text{2}}}\text{+11x+72} $ 

Now, differentiating both sides of the equation with respect to $\text{x}$ gives $\dfrac{\text{dy}}{\text{dx}}\text{=}\dfrac{\text{d}}{\text{dx}}\text{(}{{\text{x}}^{\text{5}}}\text{+7}{{\text{x}}^{\text{3}}}\text{+9}{{\text{x}}^{\text{2}}}\text{-5}{{\text{x}}^{\text{3}}}\text{-26}{{\text{x}}^{\text{2}}}\text{+11x+72)} $ 

$=\dfrac{\text{d}}{\text{dx}}\text{(}{{\text{x}}^{\text{5}}}\text{)-5}\dfrac{\text{d}}{\text{dx}}\text{(}{{\text{x}}^{\text{4}}}\text{)+15}\dfrac{\text{d}}{\text{dx}}\text{(}{{\text{x}}^{\text{3}}}\text{)-26}\dfrac{\text{d}}{\text{dx}}\text{(}{{\text{x}}^{\text{3}}}\text{)+11}\dfrac{\text{d}}{\text{dx}}\text{(x)+}\dfrac{\text{d}}{\text{dx}}\text{(72)} $ 

$\text{=5}{{\text{x}}^{\text{4}}}\text{-5 }\!\!\times\!\!\text{ 4}{{\text{x}}^{\text{3}}}\text{+15 }\!\!\times\!\!\text{ 3}{{\text{x}}^{\text{2}}}\text{-26 }\!\!\times\!\!\text{ 2x+11 }\!\!\times\!\!\text{ 1+0} $ 

Hence, $\dfrac{\text{dy}}{\text{dx}}\text{=5}{{\text{x}}^{\text{4}}}\text{-20}{{\text{x}}^{\text{3}}}\text{+45}{{\text{x}}^{\text{2}}}\text{-52x+11}$.

(c) By using a logarithmic function.

Ans.    

The given function is

$\text{y=(}{{\text{x}}^{\text{2}}}\text{-5x+8)(}{{\text{x}}^{\text{3}}}\text{+7x+9)}$.

Now, taking logarithm both sides of the function give

$\text{logy=log(}{{\text{x}}^{\text{2}}}\text{-5x+8)+log(}{{\text{x}}^{\text{3}}}\text{+7x+9)}$

Differentiating both sides of the equation with respect to $\text{x}$ gives

$\dfrac{\text{1}}{\text{y}}\dfrac{\text{dy}}{\text{dx}}\text{=}\dfrac{\text{d}}{\text{dx}}\text{log(}{{\text{x}}^{\text{2}}}\text{-5x+8)+}\dfrac{\text{d}}{\text{dx}}\text{log(}{{\text{x}}^{\text{3}}}\text{+7x+9)} $ 

$\Rightarrow \dfrac{\text{1}}{\text{y}}\dfrac{\text{dy}}{\text{dx}}\text{=}\dfrac{\text{1}}{{{\text{x}}^{\text{2}}}\text{-5x+8}}\text{.}\dfrac{\text{d}}{\text{dx}}\text{(}{{\text{x}}^{\text{2}}}\text{-5x+8)+}\dfrac{\text{1}}{{{\text{x}}^{\text{3}}}\text{+7x+9}}\text{.}\dfrac{\text{d}}{\text{dx}}\text{(}{{\text{x}}^{\text{3}}}\text{+7x+9)} $ 

$\Rightarrow \dfrac{\text{dy}}{\text{dx}}\text{=y}\left[ \dfrac{\text{1}}{{{\text{x}}^{\text{2}}}\text{-5x+8}}\text{ }\!\!\times\!\!\text{ (2x-5)+}\dfrac{\text{1}}{{{\text{x}}^{\text{3}}}\text{+7x+9}}\text{ }\!\!\times\!\!\text{ (3}{{\text{x}}^{\text{2}}}\text{+7)} \right] $ 

$\Rightarrow \dfrac{\text{dy}}{\text{dx}}\text{=(}{{\text{x}}^{\text{2}}}\text{-5x+8)(}{{\text{x}}^{\text{3}}}\text{+7x+9)}\left[ \dfrac{\text{2x-5}}{{{\text{x}}^{\text{3}}}\text{-5x+8}}\text{+}\dfrac{\text{3}{{\text{x}}^{\text{2}}}\text{+7}}{{{\text{x}}^{\text{3}}}\text{+7x+9}} \right] $ 

$\Rightarrow \dfrac{\text{dy}}{\text{dx}}\text{=(}{{\text{x}}^{\text{2}}}\text{-5x+8)(}{{\text{x}}^{\text{3}}}\text{+7x+9)}\left[ \dfrac{\text{(2x-5)(}{{\text{x}}^{\text{3}}}\text{+7x+9)+(3}{{\text{x}}^{\text{2}}}\text{+7)(}{{\text{x}}^{\text{2}}}\text{-5x+8)}}{\text{(}{{\text{x}}^{\text{3}}}\text{-5x+8)+(}{{\text{x}}^{\text{3}}}\text{+7x+9)}} \right] $ 

$\Rightarrow \dfrac{\text{dy}}{\text{dx}}\text{=2x(}{{\text{x}}^{\text{3}}}\text{+7x+9}{{\text{x}}^{\text{2}}}\text{)-5(}{{\text{x}}^{\text{3}}}\text{+7x+9)+3}{{\text{x}}^{\text{2}}}\text{(}{{\text{x}}^{\text{2}}}\text{-5x+8)+7(}{{\text{x}}^{\text{3}}}\text{+7x+9)} $ 

$\Rightarrow \dfrac{\text{dy}}{\text{dx}}\text{=(2}{{\text{x}}^{\text{4}}}\text{+14}{{\text{x}}^{\text{2}}}\text{+18x)+(5}{{\text{x}}^{\text{3}}}\text{-35x+45)+(3}{{\text{x}}^{\text{4}}}\text{-15}{{\text{x}}^{\text{3}}}\text{+24}{{\text{x}}^{\text{2}}}\text{)+(7}{{\text{x}}^{\text{2}}}\text{+35x+56)} $ 

Therefore, $\dfrac{\text{dy}}{\text{dx}}\text{=5}{{\text{x}}^{\text{2}}}\text{-20}{{\text{x}}^{\text{3}}}\text{+45}{{\text{x}}^{\text{2}}}\text{-52x+11}$.

Hence, comparing the above three results, it is concluded that the derivative $\dfrac{\text{dy}}{\text{dx}}$ are the same for all methods.

18. Let $\mathbf{u}$, $\mathbf{v}$, and $\mathbf{w}$ are functions of $\mathbf{x}$ , then prove that $\dfrac{\text{d}}{\text{dx}}\text{(u}\text{.v}\text{.w)=}\dfrac{\text{du}}{\text{dx}}\text{v}\text{.w+u}\dfrac{\text{du}}{\text{dx}}\text{.w+u}\text{.v}\dfrac{\text{dw}}{\text{d}\mathbf{x}}$ in two ways. First by using repeated application of product rule and second by applying logarithmic differentiation. 

Ans.

Let the function $\text{y=u}\text{.v}\text{.w=u}\text{.(v}\text{.w)}$.

Then applying the product rule of derivatives, give

$\dfrac{\text{dy}}{\text{dx}}\text{=}\dfrac{\text{du}}{\text{dx}}\text{.(v}\text{.w)+u}\text{.}\dfrac{\text{d}}{\text{dx}}\text{(v}\text{.w)}$          

$\Rightarrow \dfrac{\text{dy}}{\text{dx}}\text{=}\dfrac{\text{du}}{\text{dx}}\text{v}\text{.w+u}\left[ \dfrac{\text{dv}}{\text{dx}}\text{.w+v}\text{.}\dfrac{\text{dv}}{\text{dx}} \right]$        (Using the product rule again)

Thus,

$\dfrac{\text{dy}}{\text{dx}}\text{=}\dfrac{\text{du}}{\text{dx}}\text{v}\text{.w+u}\text{.}\dfrac{\text{dv}}{\text{dx}}\text{.w+u}\text{.v}\dfrac{\text{dw}}{\text{dx}}$.

Now, take the logarithm of both sides of the function $\text{y=u}\text{.v}\text{.w}$.

Then, we have $\text{logy=logu+logv+logw}$.

Differentiating both sides of the equation with respect to $\text{x}$ gives $\dfrac{\text{1}}{\text{y}}\text{.}\dfrac{\text{dy}}{\text{dx}}\text{=}\dfrac{\text{d}}{\text{dx}}\text{(logu)+}\dfrac{\text{d}}{\text{dx}}\text{(logv)+}\dfrac{\text{d}}{\text{dx}}\text{(logw)} $ 

$\Rightarrow \dfrac{\text{1}}{\text{y}}\text{.}\dfrac{\text{dy}}{\text{dx}}\text{=}\dfrac{\text{1}}{\text{u}}\dfrac{\text{du}}{\text{dx}}\text{+}\dfrac{\text{1}}{\text{v}}\dfrac{\text{dv}}{\text{dx}}\text{+}\dfrac{\text{1}}{\text{w}}\dfrac{\text{dw}}{\text{dx}} $ 

$\Rightarrow \dfrac{\text{dy}}{\text{dx}}\text{=y}\left( \dfrac{\text{1}}{\text{u}}\dfrac{\text{du}}{\text{dx}}\text{+}\dfrac{\text{1}}{\text{v}}\dfrac{\text{dv}}{\text{dx}}\text{+}\dfrac{\text{1}}{\text{w}}\dfrac{\text{dw}}{\text{dx}} \right) $ 

$\Rightarrow \dfrac{\text{dy}}{\text{dx}}\text{=u}\text{.v}\text{.w}\left( \dfrac{\text{1}}{\text{u}}\dfrac{\text{du}}{\text{dx}}\text{+}\dfrac{\text{1}}{\text{v}}\dfrac{\text{dv}}{\text{dx}}\text{+}\dfrac{\text{1}}{\text{w}}\dfrac{\text{dw}}{\text{dx}} \right) $ 

Hence, $\dfrac{\text{dy}}{\text{dx}}\text{=}\dfrac{\text{du}}{\text{dx}}\text{v}\text{.w+u}\dfrac{\text{du}}{\text{dx}}\text{.w+u}\text{.v}\dfrac{\text{dw}}{\text{dx}}$.


Conclusion

Class 12 Maths Chapter 5 Exercise 5.5 - Continuity and Differentiability, is crucial for a solid foundation in math. Understanding the concepts of differentiability and continuity of functions. Referring to these NCERT Solutions by Vedantu can significantly enhance your understanding of continuity and differentiability. Regular practice with Class 12 Exercise 5.5 NCERT solutions provided by platforms like Vedantu can enhance comprehension and problem-solving skills. Pay attention to the step-by-step solutions provided, grasp the underlying principles, and ensure clarity on the concepts before moving forward.


Class 12 Maths Chapter 5: Exercises Breakdown

S.No.

Chapter 5 - Continuity and Differentiability Exercises in PDF Format

1

Class 12 Maths Chapter 5 Exercise 5.1 - 34 Questions & Solutions (10 Short Answers, 24 Long Answers)

2

Class 12 Maths Chapter 5 Exercise 5.2 - 10 Questions & Solutions (2 Short Answers, 8 Long Answers)

3

Class 12 Maths Chapter 5 Exercise 5.3 - 15 Questions & Solutions (9 Short Answers, 6 Long Answers)

4

Class 12 Maths Chapter 5 Exercise 5.4 - 10 Questions & Solutions (5 Short Answers, 5 Long Answers)

5

Class 12 Maths Chapter 5 Exercise 5.6 - 11 Questions & Solutions (7 Short Answers, 4 Long Answers)

6

Class 12 Maths Chapter 5 Exercise 5.7 - 17 Questions & Solutions (10 Short Answers, 7 Long Answers)

7

Class 12 Maths Chapter 5 Miscellaneous Exercise - 22 Questions & Solutions



CBSE Class 12 Maths Chapter 5 Other Study Materials



NCERT Solutions for Class 12 Maths | Chapter-wise List

Given below are the chapter-wise NCERT 12 Maths solutions PDF. Using these chapter-wise class 12th maths ncert solutions, you can get clear understanding of the concepts from all chapters.




Related Links for NCERT Class 12 Maths in Hindi

Explore these essential links for NCERT Class 12 Maths in Hindi, providing detailed solutions, explanations, and study resources to help students excel in their mathematics exams.




Important Related Links for NCERT Class 12 Maths

FAQs on NCERT Solutions For Class 12 Maths Chapter 5 Exercise 5.5 - Continuity and Differentiability

1. Why should you use NCERT Solutions for Class 12 Maths Chapter 5 Exercise 5.5?

Class 12 Maths Chapter 5 Exercise 5.5 is a crucial part of the syllabus. You will learn how to use the concepts of continuity and differentiability in other subjects after practising using the solution.

2. Why prefer Vedantu to learn Continuity and Differentiability Exercise 5.5?

Vedantu provides the best Exercise 5.5 Class 12 Maths NCERT Solutions prepared by experienced teachers. They are aware of the common doubts that students face while learning the new concepts of continuity and differentiability. Find the exact answers to your doubts explained in a simpler way to complete Exercise 5.5 Class 12 Maths.

3. What are the benefits you will get if you refer to Class 12 Maths NCERT Solutions Chapter 5 Exercise 5.5?

The benefits are abundant when you refer to Class 12 Maths NCERT Solutions Chapter 5 Exercise 5.5 from Vedantu’s website . Firstly, the curriculum is based entirely on the guidelines set by CBSE (NCERT) books. The study material is properly presented and engages the students to study more. Scandal. These solutions can be downloaded free of cost to study offline as well. If you have any queries, you can reach the mentors and you can get the solutions of  Exercise 5.5 in a well-explained manner.

4. How is the study material of Class 12 Maths Chapter 5 prepared on ‘Vedantu’?

The study material of Class 12 Maths is prepared in a chapter-wise format on Vedantu. You won’t be getting any complaints regarding the content matter as the mentors here are the best who have a good experience profile in the specific subject field and are available to even clear your doubts. The solutions of Class 12 Chapter 5 are available free of cost on Vedantu website and the vedantu app.

5. Is Class 12 Chapter 5 Maths easy?

Maths can’t be easy until and unless you are thorough with the concept. However, Class 12 Maths Chapter 5 is not easy nor difficult. It is at a moderate level between easy and difficult. Apart from Chapter 5, some chapters are easy while the others need a little more hard work than the others. Mostly, students get good marks in Class 12 only with the help of solid preparation. If you don't prepare well it will be tougher.

6. How can I make a study plan for the Class 12 Maths Chapter 5?

For making the study plan for Class 12 Maths Chapter 5, divide everything into equal portions. Don’t try to swallow it on the go. Cut down the syllabus of Maths Class 12 Chapter 5 into proportions. Start from the easiest topic and then gradually jump to the toughest one as this will help to boost your confidence. Don’t skip a single day, maintain your speed and try to complete one exercise each day.

7. What is the importance of Class 12 Maths Chapter 5 Exercise 5.5?

Class 12 Maths Chapter 5 Exercise 5.5 is “Continuity and Differentiability”. This is a crucial year of the student's career. These topics help them perfect preparation for the board as well as the competitive exams. This particular chapter improves the students to think logically and also makes them capable of solving the problem. This chapter particularly helps the students who have just learnt the topic and will make them more comfortable with the practice of this exercise as there are a variety of numerical problems connected with the topic.

8. What topics are covered in Class 12 Ex 5.5 Maths Chapter 5?

In Class 12 Ex 5.5 Maths Chapter 5 covers the application of differentiation, particularly focusing on higher-order derivatives. This exercise involves finding the second derivative and higher-order derivatives of given functions.

9. What are some common mistakes to avoid while solving Ex 5.5 Class 12 Maths NCERT Solutions?

Common mistakes include in Ex 5.5 Class 12 Maths NCERT Solutions :

  • Incorrectly applying the rules of differentiation.

  • Failing to simplify the first derivative correctly before finding the second derivative.

  • Misinterpreting the notation for higher-order derivatives.

10. How does practicing Ex 5.5 Class 12 Maths NCERT Solutions  in exams?

Practicing Exercise 5.5 helps students:

  • Master the techniques of finding higher-order derivatives.

  • Improve problem-solving skills in calculus.

  • Build confidence in handling complex differentiation problems.

  • Prepare effectively for board exams and competitive exams like JEE.