NCERT Solutions for Class 12 Maths Exercise 5.6 Continuity and Differentiability - FREE PDF Download
The NCERT Solutions for Class 12 Maths Chapter 5 Exercise 5.6 cover essential concepts of continuity and differentiability. These solutions help you understand how to determine the continuity of functions and differentiate various functions, which are crucial for calculus. These NCERT solutions Ex 5.6 Class 12 are based on the latest CBSE syllabus and are helpful for quick revisions. Download the NCERT Solutions for Class 12 Maths and practice to score well. Focus on understanding the fundamental principles and solving a variety of problems to strengthen your grasp of the topic in Class 12 Ex 5.6.
- 4.1Exercise 5.6
Glance on NCERT Solutions Maths Chapter 5 Exercise 5.6 Class 12 | Vedantu
This exercise explains the Derivatives of Functions in Parametric Forms.
The chain rule connects the derivatives of parametric equations concerning the parameter.
This technique applies to differentiating trigonometric, exponential, and logarithmic parametric functions.
Converting parametric equations to their standard forms helps in finding derivatives.
Understanding parametric derivatives is vital for analysing motion along a path and curve properties.
There are eleven questions in Maths Ex 5.6 Class 12 which are fully solved by experts at Vedantu.
Formulas Used in Class 12 Chapter 5 Exercise 5.6
Derivative of Parametric Functions:
$\frac{dy}{dx}=\frac{\frac{dy}{dt}}{\frac{dx}{dt}}$
Second Derivative in Parametric Form:
$\frac{d^{2}y}{dx^{2}}=\frac{d}{dt}\left ( \frac{dy}{dx} \right )\cdot \frac{1}{\frac{dx}{dt}}$
Access NCERT Solutions for Maths Class 12 Chapter 5 - Continuity and Differentiability
Exercise 5.6
If x and y are connected parametrically by the equations given in Exercises 1 to 10, without eliminating the parameter, Find $\mathbf{\frac{dy}{dx}}$.
1. x=2at2 , y=at4
Ans: The given equations are
x=2at2 …… (1)
and y=at4 …… (2)
Then, differentiating both sides of the equation (1) with respect to t gives
$\frac{dx}{dy} = \frac{d}{dt}(2at^{2})= 2a \times \frac{d}{dt}(t^2)= 2a \times 2t = 4at$.......(3)
Also, differentiating both sides of the equation (2) with respect to t gives
$\frac{dy}{dt} = \frac{d}{dt}(2at^{4})= a \times 4 \times \frac{d}{dt}(t^4)= a \times 4 \times t^3 = 4at^3$.........(4)
Now, dividing the equations (4) by (3) gives
$\frac{dy}{dx}= \frac{(\frac{dy}{dt})}{(\frac{dx}{dt})}= \frac{4at^3}{4at} = t^2$
Hence $\frac{dy}{dx}=t^2$.
2. x=acosθ, y=bcosθ
Ans: The given equations are
x=acosθ …… (1)
and y=bcosθ …… (2)
Then, differentiating both sides of the equation (1) with respect to θ gives
$\frac{dx}{d\theta }= \frac{d}{d\theta }= (a\cos \theta ) =a(-\sin \theta ) = -a\sin \theta$.....(3)
Also, differentiating both sides of the equation (1) with respect to θgives
$\frac{dy}{d\theta }= \frac{d}{d\theta }= (b\cos \theta ) =b(-\sin \theta ) = -b\sin \theta$......(4)
Therefore, dividing the equation (4) by (3) gives
$\frac{dy}{dx} = \frac{(\frac{dy}{d\theta })}{(\frac{dx}{d\theta })}= \frac{-b \sin\theta }{-a\sin\theta }= \frac{b}{a}$
Hence, $\frac{dy}{dx} = \frac{b}{a}$
3. x=sint, y=cos2t
Ans: The given equations are
x=sint …… (1)
and y=cos2t …… (2)
Then, differentiating both sides of the equation (1) with respect to t gives
$\frac{dx}{dt} = \frac{d}{dt}(\sin\theta ) = \cos\theta ......(3)$
Also, differentiating both sides of the equation (2) with respect to t gives
$\frac{dy}{dt} = \frac{d}{dt}(\cos2\theta ) = \sin 2\theta \times \frac{d}{dt}(2t)= -2\sin2t......(4)$
Therefore, by dividing the equation (4) by (3) gives
$\frac{dy}{dx} = \frac{(\frac{dy}{dt})}{(\frac{dx}{dt})} = \frac{-2 \sin 2t}{cos t} = \frac{-2 \times 2 \sin t \cos t}{\cos t} = -4 \sin t$
Hence, $\frac{dy}{dx} = -4 \sin t$
4. x=4t, y = $\mathbf{\frac{4}{t}}$
Ans: The given equations are
x=4t …… (1)
y = $\frac{4}{t}$ ……(2)
Now, differentiating both sides of the equation (1) with respect to t gives
$\frac{dy}{dx} =\frac{d}{dt}(4t)=4......(3)$
Also, differentiating both sides of the equation (2) with respect to t gives
$\frac{dy}{dt}= \frac{d}{dt}(\frac{4}{t}) = 4 \times \frac{d}{dt}\frac{1}{t}= 4 \times \frac{-1}{t^2}= \frac{-4}{t^2}.......(4)$
Therefore, dividing the equation (4) by (3) gives
$\frac{dy}{dx} = \frac{(\frac{dy}{dt})}{(\frac{dx}{dt})} = \frac{(\frac{-4}{t^2})}{4} = \frac{-1}{t^2} $
Hence, $\frac{dy}{dx} = \frac{-1}{t^2} $
5. x=cosθ-cos2θ, y=sinθ-sin2θ
Ans: The given equations are
x=cosθ-cos2θ …… (1)
and y=sinθ-sin2θ …… (2)
Then, differentiating both sides of the equation (1) with respect to θ gives
$\frac{dx}{d\theta } = \frac{d}{d\theta }(\cos \theta - \cos 2\theta ) = \frac{d}{dt}(\cos \theta )- \frac{d}{d\theta }(cos 2\theta )= -\sin \theta (-2 \sin 2\theta ) = 2 \sin 2\theta - \sin\theta ………..(3)$
Also, differentiating both sides of the equation (2) with respect to θ gives
$\frac{dy}{d\theta } = \frac{d}{d\theta }(\sin \theta - \sin 2\theta ) = \frac{d}{d\theta }(\sin \theta )- \frac{d}{d\theta }(sin 2\theta )= \cos \theta - 2 \cos\theta .......(4)$
Therefore, dividing the equation (4) by (3) gives
$\frac{dy}{dx} = \frac{(\frac{dy}{d\theta })}{(\frac{dx}{d\theta })}= \frac{\cos\theta - 2 \cos\theta }{2 \sin 2\theta - \sin\theta }$
Hence, $\frac{dy}{dx} = \frac{\cos\theta - 2 \cos\theta }{2 \sin 2\theta - \sin\theta }$
6. x=a(θ-sinθ), y=a(1+cosθ)
Ans: The given equations are
x=a(θ-sinθ) …… (1)
and y=a(1+cosθ) …… (2)
Then, differentiating both sides of the equation (1) with respect to θ gives
$\frac{dx}{d\theta }= a[\frac{d}{d\theta }(\theta ) - \frac{d}{d\theta }(\sin \theta )] = a(1 - \cos \theta )$
Also, differentiating both sides of the equation (2) with respect to θ gives
$\frac{dy}{d\theta }= a[\frac{d}{d\theta }(1) - \frac{d}{d\theta }(\cos \theta )] = a[0 + (- \sin \theta )] = -a \sin \theta ........(4)$
Therefore, by dividing the equation (4) by (3) gives
$\frac{dy}{dx} = \frac{(\frac{dy}{d\theta })}{(\frac{dx}{d\theta })}= \frac{-a \sin \theta }{a(1- \cos\theta )}=\frac{-2 \sin\frac{\theta }{2} \cos \frac{\theta }{2}}{2 \sin ^2\frac{\theta }{2}}= \frac{-\cos\frac{\theta }{2}}{\sin \frac{\theta }{2}}= -\cos\frac{\theta }{2}$
Hence, $\frac{dy}{dx} = -\cos\frac{\theta }{2}$
7. $-\frac{sin^3 t}{\sqrt{cos 2t}} , y = \frac{cos^3 t}{\sqrt{cos 2t}}$
Ans: The given equations are,
$x = - \frac{\sin^3 t}{\sqrt{\cos 2t}} ......... (1)$
$y = - \frac{\cos^3 t}{\sqrt{\cos 2t}} ......... (2)$
Then, differentiating both sides of the equation (1) with respect to t gives
$\begin{aligned}&\frac{\mathrm{dx}}{\mathrm{dt}}=\frac{\mathrm{d}}{\mathrm{dt}}\left[\frac{\sin ^{3} \mathrm{t}}{\sqrt{\cos 2 \mathrm{t}}}\right] \\ \\&=\frac{\sqrt{\cos 2 \mathrm{t}}-\frac{\mathrm{d}}{\mathrm{dt}}\left(\sin ^{3} \mathrm{t}\right)-\sin ^{3} \mathrm{t} \times \frac{\mathrm{d}}{\mathrm{dt}} \sqrt{\cos 2 \mathrm{t}}}{\cos 2 \mathrm{t}} \\ \\&=\frac{\sqrt{\cos 2 \mathrm{t}} \times 3 \sin ^{2} \mathrm{t} \times \frac{\mathrm{d}}{\mathrm{dt}}(\sin \mathrm{t})-\sin ^{3} \mathrm{t} \times \frac{1}{2 \sqrt{\cos 2 \mathrm{t}}} \times \frac{\mathrm{d}}{\mathrm{dt}}(\cos 2 \mathrm{t})}{\cos 2 \mathrm{t}} \\ \\&=\frac{3 \sqrt{\cos 2 \mathrm{t}} \times \sin ^{2} \mathrm{t} \cos \mathrm{t}-\frac{\sin ^{3} \mathrm{t}}{2 \sqrt{\cos 2 \mathrm{t}}} \times(-2 \sin 2 \mathrm{t})}{\cos 2 \mathrm{t} \sqrt{\cos 2 \mathrm{t}}}\end{aligned}$
Also, differentiating both sides of the equation (2) with respect to $t$ gives
$\frac{\mathrm{dx}}{\mathrm{dt}}=\frac{3 \cos 2 \mathrm{t} \sin ^{2} t \cos t+\sin ^{2} t \sin 2 \mathrm{t}}{\cos 2 \mathrm{t} \sqrt{\cos 2 \mathrm{t}}} . \ldots \ldots$ (3)$
$\frac{\mathrm{dy}}{\mathrm{dt}}=\frac{\mathrm{d}}{\mathrm{dt}}\left[\frac{\cos ^{3} \mathrm{t}}{\sqrt{\cos 2 \mathrm{t}}}\right]$
$\begin{aligned}&=\frac{\sqrt{\cos 2 \mathrm{t}} \times \frac{\mathrm{d}}{\mathrm{dt}}\left(\cos ^{3} \mathrm{t}\right)-\cos ^{3} \mathrm{t} \times \frac{\mathrm{d}}{\mathrm{dt}}(\sqrt{\cos 2 \mathrm{t}})}{\cos 2 \mathrm{t}} \\ \\&=\frac{3 \sqrt{\cos 2 \mathrm{t} \cos ^{2} \mathrm{t}(-\sin t)-\cos ^{3} t \times \frac{1}{2(\sqrt{\cos 2 t})}} \times \frac{\mathrm{d}}{\mathrm{dt}}(\cos 2 \mathrm{t})}{\cos 2 \mathrm{t}} \\&\frac{\mathrm{dy}}{\mathrm{dt}}=\frac{-3 \cos 2 \mathrm{t} \times \cos ^{2} \mathrm{t} \times \sin t+\cos ^{3} \mathrm{t} \sin 2 \mathrm{t}}{\cos 2 \mathrm{t} \times \sqrt{\cos 2 \mathrm{t}}} \ldots \ldots \text { (4) }\end{aligned}$
Thus, dividing the equation (4) by the equation (3) gives
$\frac{d y}{d x}=\frac{\left(\frac{d x}{d t}\right)}{\left(\frac{d x}{d t}\right)}=\frac{-3 \cos 2 t \times \cos ^{2} t \times \sin t+\cos ^{3} t \sin 2 t}{3 \cos 2 t \cos t \sin ^{2} t+\sin ^{3} t \sin 2 t}$
$\begin{aligned}&=\frac{\sin t \cos t\left[-3 \cos 2 t \times \cos t+2 \cos ^{3} t\right]}{\sin t \cos t\left[3 \cos 2 t \sin t+2 \sin ^{3} t\right]} \\ \\&=\frac{\left[-3\left(2 \cos ^{2} t-1\right) \cos t+2 \cos ^{3} t\right]}{\left[3\left(1-2 \sin ^{3} t\right) \sin t+2 \sin ^{3} t\right]} \quad\left[\begin{array}{l}\cos 2 t=\left(2 \cos ^{2} t-1\right) \\\cos 2 t=\left(1-2 \sin ^{2} t\right)\end{array}\right] \\ \\&=\frac{-4 \cos ^{3} t+3 \cos t}{3 \sin t-4 \sin ^{3} t} \\ \\&=\frac{-\cos 3 t}{\sin 3 t} \\ \\&\text { Hence, } \frac{d y}{d x}=-\cot 3 t .\end{aligned}$
8. $\mathbf{x=a\left(\operatorname{cost}+\log \tan \frac{t}{2}\right), y=a \sin t}$
Ans: The given equations are
$x=a\left(\cos t+\log \tan \frac{t}{2}\right) \ldots \ldots$ (1)
and $y=a \sin t \quad \ldots \ldots(2)$
Then, differentiating both sides of the equation (1) with respect to $t$ gives $\frac{d x}{d t}=a \times\left[\frac{d}{d \theta}(\operatorname{cost})+\frac{d}{d \theta}\left(\log \tan \frac{t}{2}\right)\right]$
$\begin{aligned}&=\mathrm{a}\left[-\operatorname{sint}+\frac{1}{\tan\frac{\mathrm{t}}{2}} \times \frac{\mathrm{d}}{\mathrm{dt}}\left(\tan \frac{\mathrm{t}}{2}\right)\right] \\&=\mathrm{a}\left[-\sin \mathrm{t}+\cot \frac{\mathrm{t}}{2} \times \sec ^{2} \frac{\mathrm{t}}{2}\times\frac{\mathrm{d}}{\mathrm{dt}}\left(\frac{\mathrm{t}}{2}\right)\right]\\&=\mathrm{a}\left[-\operatorname{sint}+\frac{\cos \frac{\mathrm{t}}{2}}{\sin \frac{\mathrm{t}}{2}} \times \frac{1}{\cos ^{2} \frac{\mathrm{t}}{2}} \times \frac{1}{2}\right)\end{aligned}$
$\begin{aligned}&=a\left(-\sin t+\frac{1}{2 \sin \frac{t}{2} \cos \frac{t}{2}}\right) \\&=a\left(-\sin t+\frac{1}{\sin t}\right) \\&=a\left(\frac{-\sin ^{2} t+1}{\sin t}\right) \\&\text { Therefore, } \frac{d x}{d t}=a \frac{\cos ^{2} t}{\sin t}\end{aligned}$
Also, differentiating both sides of the equation (2) with respect to $t$ gives $\frac{\mathrm{dy}}{\mathrm{dt}}=\mathrm{a} \frac{\mathrm{d}}{\mathrm{dt}}(\sin t)=\mathrm{acost} \ldots \ldots(4)$
Thus, dividing the equation (4) by the equation (3) gives
$\frac{d y}{d x}=\frac{\left(\frac{d y}{d t}\right)}{\left(\frac{d x}{d t}\right)}=\frac{a \cos t}{\left(a \frac{\cos ^{2} t}{\sin t}\right)}=\frac{\sin t}{\cos t}=\operatorname{tant}$
Hence, $\frac{d y}{d x}=\tan t$.
9. $\mathbf{x=a s e c \theta, y=b \tan \theta}$
Ans: The given equations are
$\mathrm{x}=\operatorname{asec} \quad \ldots \ldots$ (1)
and $y=\tan \theta \quad \ldots \ldots$ (2)
Then, differentiating both sides of the equation (1) with respect to $\theta$ gives $\frac{\mathrm{dx}}{\mathrm{d} \theta}=\mathrm{a} \times \frac{\mathrm{d}}{\mathrm{d} \theta}(\sec \theta)=\operatorname{asec} \theta \tan \theta \ldots \ldots$ (3)
Also, differentiating both sides of the equation (2) with respect to $\theta$ gives $\frac{\mathrm{dy}}{\mathrm{d} \theta}=\mathrm{b} \times \frac{\mathrm{d}}{\mathrm{d} \theta}(\tan \theta)=\mathrm{b} \sec ^{2} \theta \ldots \ldots$ (4)
Thus, dividing the equation (4) by the equation (3) gives
$\frac{d y}{d x}=\frac{\left(\frac{d y}{d \theta}\right)}{\left(\frac{d x}{d \theta}\right)}=\frac{b \sec ^{2} \theta}{a \sec \theta \tan \theta}=\frac{b}{a} \sec \theta \tan \theta=-\frac{b \cos \theta}{a \cos \theta \sin \theta}=\frac{b}{a} \times \frac{1}{\sin \theta}=\frac{b}{a} \cos$
Hence, $\frac{d y}{d x}=\frac{b}{a} \operatorname{cosec} \theta$.
10. $\mathbf{x=a(\cos \theta+\theta \sin \theta), y=a(\sin \theta-\theta \cos \theta)}$
Ans: The given equations are
$\mathrm{x}=\mathrm{a}(\cos \theta+\theta \sin \theta) \quad \ldots \ldots$ (1)
and $\mathrm{y}=\mathrm{a}(\sin \theta-\theta \cos \theta) \ldots \ldots$ (2)
Then, differentiating both sides of the equation (1) with respect to $\theta$ gives $\frac{\mathrm{dx}}{\mathrm{d} \theta}=\mathrm{a}\left[\frac{\mathrm{d}}{\mathrm{d} \theta} \cos \theta+\frac{\mathrm{d}}{\mathrm{d} \theta}(\theta \sin \theta)\right]=\mathrm{a}\left[-\sin \theta+\theta \frac{\mathrm{d}}{\mathrm{d} \theta}(\sin \theta)+\sin \theta \frac{\mathrm{d}}{\mathrm{d} \theta}(\theta)\right]$ $=\mathrm{a}[-\sin \theta+\theta \cos \theta+\sin \theta]$.
Therefore, $\frac{\mathrm{d} \mathrm{x}}{\mathrm{d} \theta}=\mathrm{a} \theta \cos \theta$(3)
Also, differentiating both sides of the equation (2) with respect to $\theta$ gives $\frac{\mathrm{dy}}{\mathrm{d} \theta}=\mathrm{a}\left[\frac{\mathrm{d}}{\mathrm{d} \theta}(\sin \theta)-\frac{\mathrm{d}}{\mathrm{d} \theta}(\theta \cos \theta)\right]=\mathrm{a}\left[\cos \theta-\left\{\theta \frac{\mathrm{d}}{\mathrm{d} \theta}(\cos \theta)+\cos \theta \times \frac{\mathrm{d}}{\mathrm{d} \theta}(\theta)\right\}\right]$
$\Rightarrow \frac{\mathrm{dy}}{\mathrm{d} \theta}=\mathrm{a}[\cos \theta+\theta \sin \theta-\cos \theta]$
Therefore, $\frac{\mathrm{dy}}{\mathrm{d} \theta}=\mathrm{a} \theta \sin \theta \quad \ldots \ldots$ (4)
Thus, dividing the equation (4) by the equation (3) gives
$\frac{d y}{d x}=\frac{\left(\frac{d y}{d \theta}\right)}{\left(\frac{d x}{d \theta}\right)}=\frac{a \theta \sin \theta}{a \theta \sin \theta}=\tan \theta \text {. }$
Hence, $\frac{d y}{d x}=\tan \theta$.
11. If $\mathbf{x=\sqrt{a^{\sin ^{-1} t}}, y=\sqrt{a^{\cos ^{-1} t}}}$.Show that $\mathbf{\frac{d y}{d x}=-\frac{y}{x}}$
Ans: The given parametric equations are $x=\sqrt{a^{\sin ^{-1} t}}$ and $y=\sqrt{a^{\cos ^{-1} t}}$.
Now, $x=\sqrt{a^{\sin ^{-1} t}}$ and $y=\sqrt{a^{\cos ^{-1} t}}$
$\Rightarrow \mathrm{x}=\left(\mathrm{a}^{\sin ^{-1} \mathrm{t}}\right)$ and $\mathrm{y}=\left(\mathrm{a}^{\cos ^{-1} \mathrm{t}}\right)^{\frac{1}{2}}$
$\Rightarrow \mathrm{x}=\mathrm{a}^{\frac{1}{2} \sin ^{-1 \mathrm{t}}}$ and $\mathrm{y}=\mathrm{a}^{\frac{1}{2} \cos ^{-1} \mathrm{t}}$
Therefore, first consider $x=a^{\frac{1}{2} \sin ^{-1} t}$.
Take logarithms on both sides of the equation.
Then, we have
$\log x=\frac{1}{2} \sin ^{-1}$ tloga .
Then, differentiating both sides of the equation with respect to $t$ gives
$\begin{aligned}&\frac{1}{x} \times \frac{d x}{d t}=\frac{1}{2} \log a \times \frac{d}{d t}\left(\sin ^{-1} t\right) \\&\Rightarrow \frac{d x}{d t}=\frac{x}{2} \log a \times \frac{1}{\sqrt{1-t^{2}}} \\&\text { Therefore, } \frac{d x}{d t}=\frac{x \log a}{2 \sqrt{1-t^{2}}} . \ldots \ldots \text { (1) }\end{aligned}$
Again, consider the equation $y=a^{\frac{1}{2} \cos ^{-1} t}$.
Take logarithm both sides of the equation.
Then, we have
$\log y=\frac{1}{2} \cos ^{-1} \text { tloga }$
Differentiating both sides of the equation with respect to $\mathrm{t}$ gives $\frac{1}{y} \times \frac{d x}{d t}=\frac{1}{2} \log a \times \frac{d}{d t}\left(\cos ^{-1} t\right)$
$\begin{aligned}&\frac{1}{y} \times \frac{d x}{d t}=\frac{1}{2} \log a \times \frac{d}{d t}\left(\cos ^{-1} t\right) \\&\Rightarrow \frac{d x}{d t}=\frac{y \log a}{2} \times\left(\frac{1}{\sqrt{1-t^{2}}}\right)\end{aligned}$
Therefore, $\frac{\mathrm{dx}}{\mathrm{dt}}=\frac{-\mathrm{yloga}}{2 \sqrt{1-\mathrm{t}^{2}}}$.
$\frac{dy}{dx} = \frac{(\frac{dy}{dt})}{(\frac{dx}{dt})} = \frac{(\frac{-y \log a}{2\sqrt{1- t^2}})}{(\frac{x \log }{2 \sqrt{1 - t^2}})} = \frac{y}{x}$
Hence, $\frac{dy}{dx} = \frac{y}{x}$
Conclusion
In conclusion, Ex 5.6 Class 12 Maths Chapter 5 is essential for mastering the derivatives of functions expressed in parametric forms. This exercise builds a strong foundation in applying the chain rule to relate the derivatives of parametric equations. It's important to focus on understanding how to convert parametric equations into standard forms to effectively find their derivatives. By practising these solutions, you will enhance your problem-solving skills and be well-prepared for CBSE board exams. Download the NCERT Solutions for Class 12 Ex 5.6 Maths and practice regularly to score well in your exams.
Class 12 Maths Chapter 5: Exercises Breakdown
S.No. | Chapter 5 - Continuity and Differentiability Exercises in PDF Format | |
1 | Class 12 Maths Chapter 5 Exercise 5.1 - 34 Questions & Solutions (10 Short Answers, 24 Long Answers) | |
2 | Class 12 Maths Chapter 5 Exercise 5.2 - 10 Questions & Solutions (2 Short Answers, 8 Long Answers) | |
3 | Class 12 Maths Chapter 5 Exercise 5.3 - 15 Questions & Solutions (9 Short Answers, 6 Long Answers) | |
4 | Class 12 Maths Chapter 5 Exercise 5.4 - 10 Questions & Solutions (5 Short Answers, 5 Long Answers) | |
5 | Class 12 Maths Chapter 5 Exercise 5.5 - 18 Questions & Solutions (4 Short Answers, 14 Long Answers) | |
6 | Class 12 Maths Chapter 5 Exercise 5.7 - 17 Questions & Solutions (10 Short Answers, 7 Long Answers) | |
7 | Class 12 Maths Chapter 5 Miscellaneous Exercise - 22 Questions & Solutions |
CBSE Class 12 Maths Chapter 5 Other Study Materials
S.No. | Important Links for Chapter 5 Continuity and Differentiability |
1 | Class 12 Continuity and Differentiability Important Questions |
2 | |
3 | |
4 | Class 12 Continuity and Differentiability NCERT Exemplar Solutions |
5 | Class 12 Continuity and Differentiability RS Aggarwal Solutions |
NCERT Solutions for Class 12 Maths | Chapter-wise List
Given below are the chapter-wise NCERT 12 Maths solutions PDF. Using these chapter-wise class 12th maths ncert solutions, you can get clear understanding of the concepts from all chapters.
S.No. | NCERT Solutions Class 12 Maths Chapter-wise List |
1 | |
2 | |
3 | |
4 | |
5 | |
6 | |
7 | |
8 | |
9 | |
10 | |
11 | |
12 | |
13 |
Related Links for NCERT Class 12 Maths in Hindi
Explore these essential links for NCERT Class 12 Maths in Hindi, providing detailed solutions, explanations, and study resources to help students excel in their mathematics exams.
S.No. | Related NCERT Solutions for Class 12 Maths |
1 | |
2 |
Important Related Links for NCERT Class 12 Maths
S.No | Important Resources Links for Class 12 Maths |
1 | |
2 | |
3 | |
4 | |
5 | |
6 | |
7 | |
8 | |
9 | |
10 |
FAQs on NCERT Solutions for Class 12 Maths Chapter 5 - Continuity and Differentiability Exercise 5.6
1. What are parametric equations in class 12 ex 5.6?
Parametric equations express a set of related quantities as functions of an independent parameter, usually denoted by 't'. This form helps in describing curves in the coordinate system more flexibly.
2. Why choose Vedantu for Ex 5.6 Class 12 Maths NCERT Solutions?
Vedantu is a popular online portal for the students of Class 12 for all subjects. Students download Ex 5.6 Class 12 Maths NCERT Solutions for quality presentation and accurate answers.
3. How do you find the derivative of parametric equations in exercise 5.6 class 12 maths?
In exercise 5.6 class 12 maths to find the derivative $\frac{dy}{dx}$ for parametric equations, use $\frac{\frac{dy}{dt}}{\frac{dx}{dt}}$. This involves differentiating each variable with respect to the parameter 't'.
4. What types of functions are commonly expressed in parametric form in class 12 maths ex 5.6?
In class 12 maths ex 5.6 trigonometric, exponential, and logarithmic functions are often expressed in parametric form. This method is useful for describing various curves and motion paths.
5. Why is it important to practice parametric differentiation in class 12 maths 5.6?
Practicing parametric differentiation improves understanding of motion along paths and curve properties. It prepares students for tackling complex calculus problems in exams and practical applications.
6. What is the importance of Exercise 5.6 in the syllabus?
In class 12 maths 5.6 is essential for learning how to differentiate functions given in parametric forms. It is vital for solving advanced calculus problems and understanding more complex concepts in the syllabus.