Courses
Courses for Kids
Free study material
Offline Centres
More
Store Icon
Store

NCERT Solutions for Class 12 Maths Chapter 7 Integrals

ffImage
banner

Class 12 Maths Chapter 7 Integrals NCERT Solutions - Free PDF Download

NCERT Solutions for Class 12 Mathematics, Chapter 7 Integrals were created by subject matter experts at Vedantu to assist students with their board exam preparation. Chapter 7 of the NCERT Maths Book for Class 12 covers the idea of integrals. This chapter of the NCERT Solutions for Class 12 Maths teaches students about integral calculus (definite and indefinite), its properties, and much more. The topic is crucial for both the CBSE board test and competitive exams. These NCERT Solutions for Class 12 Maths integrals are quite easy and can help students quickly grasp the problem-solving process. Students may access these NCERT Solutions for Class 12 Maths Chapter 7 and download them for free to practise offline as well. Access the latest Class 12 Maths Syllabus here.

toc-symbolTable of Content
toggle-arrow


Glance on Integration for Class 12 Chapter 7 Maths

  • Integration helps you find the exact area under that curve.

  • This chapter covers various formulas and techniques to solve area problems.

  • You can find questions based on the general area (indefinite integrals) and the exact area (definite integrals). 

  • Special methods are used to solve tricky integral problems like substitution or trigonometric identities.

  • This article contains chapter notes and important questions for Chapter 7 Integration.

  • There are exercise links provided. It has solutions for each question, from Integration as an Inverse Process of Differentiation, Methods of Integration, Integrals of Some Particular Functions, Definite Integrals, Application of Integrals, and Integration using Trigonometric Identities.

  • There are ten exercises and miscellaneous exercise (240 fully solved questions) in class 12 maths Ch 7 Integrals.


Access Exercise wise NCERT Solutions for Chapter 7 Maths Class 12

Popular Vedantu Learning Centres Near You
centre-image
Sharjah, Sharjah
location-imgKing Abdul Aziz St - Al Mahatta - Al Qasimia - Sharjah - United Arab Emirates
Visit Centre
centre-image
Abu Dhabi, Abu-Dhabi
location-imgMohammed Al Otaiba Tower - 1401, 14th Floor - opposite to Nissan Showroom West Zone building - Al Danah - Zone 1 - Abu Dhabi - United Arab Emirates
Visit Centre
centre-image
22 No Phatak, Patiala
location-img#2, Guhman Road, Near Punjabi Bagh, 22 No Phatak-Patiala
Visit Centre
centre-image
Chhoti Baradari, Patiala
location-imgVedantu Learning Centre, SCO-144 -145, 1st & 2nd Floor, Chotti Baradari Scheme Improvement Trust, Patiala-147001
Visit Centre
centre-image
Janakpuri, Delhi
location-imgVedantu Learning Centre, A-1/173A, Najafgarh Road, Opposite Metro Pillar 613, Block A1, Janakpuri, New Delhi 110058
Visit Centre
centre-image
Tagore School, Gudha-Gorji
location-imgTagore Public School Todi, Gudha Gorji, Jhunjhunu, Rajasthan 333022
Visit Centre
View More
Courses
Competitive Exams after 12th Science
More Free Study Material for Integrals
icons
Revision notes
850.5k views 12k downloads
icons
Important questions
776.4k views 10k downloads
icons
Ncert books
787.8k views 12k downloads

Exercises Under NCERT Class 12 Maths Chapter 7 – Integrals

  • Exercise 7.1: This exercise introduces the concept of indefinite integrals and teaches students how to find them.

  • Exercise 7.2: This exercise deals with the properties of indefinite integrals and helps students understand how to use these properties to solve problems.

  • Exercise 7.3: This exercise covers the concept of definite integrals and teaches students how to evaluate them using different methods such as the limit definition of definite integrals and the properties of definite integrals.

  • Exercise 7.4: This exercise teaches students how to evaluate definite integrals using substitution.

  • Exercise 7.5: This exercise deals with integration by parts and teaches students how to solve problems using this method.

  • Exercise 7.6: This exercise covers the concept of partial fractions and helps students understand how to use them to evaluate integrals.

  • Exercise 7.7: This exercise teaches students how to evaluate integrals using trigonometric identities.

  • Exercise 7.8: This exercise covers the concept of integration using trigonometric substitutions and helps students understand how to use this method to solve problems.

  • Exercise 7.9: This exercise teaches students how to evaluate integrals using the method of differentiation under the integral sign.

  • Exercise 7.10: This exercise deals with the concept of improper integrals and teaches students how to evaluate them.

  • Miscellaneous Exercise: This exercise covers various miscellaneous integrals and teaches students how to solve problems using different methods. This exercise contains a collection of problems that require students to apply the concepts they have learned in the previous exercises.


Access NCERT Solutions for Class 12 Mathematics  Chapter 7- Integrals

Exercise 7.1

1. Find an antiderivative (or integral) of the following functions by the method of inspection. sin 2x

Ans:  We use the method of inspection as follows:

ddx(cos2x)=2sin2x12ddx(cos2x)

sin2x=ddx(12cos2x)

Thus, the anti-derivative of sin 2xis 12cos2x.


2. Find an antiderivative (or integral) of the following functions by the method of inspection. cos 3x

Ans: We use the method of inspection as follows:

ddx(sin3x)=3cos3x13ddx(sin3x)

 cos3x=ddx(13sin3x)

        Thus, the anti - derivative of cos 3xis 13sin3x.


3. Find an antiderivative (or integral) of the following functions by the method of inspection. e2x

Ans: We use the method of inspection as follows:

ddx(e2x)2e2x=12ddx(e2x)

e2x=ddx(12e2x)

Thus, the anti-derivative of e2xis 12e2x.


4. Find an antiderivative (or integral) of the following functions by the method of inspection.(ax+b)2

Ans: We use the method of inspection as follows:

  ddx(ax+b)3=3a(ax+b)2 

(ax+b)2=13addx(ax+b)3 

 (ax+b)2=ddx(13a(ax+b)3)

Thus, the anti-derivative of (ax+b)2 is 13a(ax+b)3.


5. Find an antiderivative (or integral) of the following functions by the method of inspection. sin 2x4e3x

Ans: We use the method of inspection as follows:

ddx(12cos2x43e3x)=(sin2x4e3x)

Thus, the anti-derivative of (sin2x4e3x) is (12cos2x43e3x).


6. (4e3x+1)dx

Ans: 

(4e3x+1)dx

=4e3xdx+1dx

=4(e3x3)+x+C 

=43e3x+x+C 


7. x2(11x2)dx

Ans: x2(11x2)dx

=(x21)dx

=x33x+C


8. (ax2+bx+c)dx

Ans:(ax2+bx+c)dx 

=ax2dx+bxdx+c1.dx 

=a(x33)+b(x22)+cx+C 


9. (2x2+ex)dx

Ans:  (2x2+ex)dx

=2x2dx+exdx

=2(x33)+ex+C

=23x3+ex+C


10. (x1x)2dx

Ans:(x1x)2dx

=(x+1x2)dx

=xdx+1xdx21.dx

=x22+log|x|2x+C


11. x3+5x24x2dx

Ans: x3+5x24x2dx

(x+54x2)dx

=xdx+51.dx4x2dx 

=x22+5x+4x+C


12. x3+3x+4xdx

Ans:x3+3x+4xdx

=(x52+3x12+4x12)dx

=x7272+3(x32)32+4(x12)12+C

=27x72+2x32+8x+C


13. x3x2+x1x1dx

Ans: x3x2+x1x1dx

We obtain, on dividing:

=(x2+1)dx

=x2dx+1.dx

=x33+x+C


14. (1x)xdx

Ans: (1x)xdx

 =(xx32)dx

=x12dxx32dx 

=23x3225x52+C


15. x(3x2+2x+3)dx

Ans: x(3x2+2x+3)dx

=3(2x52+2x32+3x12)

=3x52dx+2x32dx+3x12dx

=67x72+45x52+2x32+C


16. (2x3cosx+ex)dx

Ans: (2x3cosx+ex)dx

=2xdx3cosxdx+exdx

=2x223(sinx)+ex+C

=x23sinx+ex+C


17. (2x23sinx+5x)dx

Ans: (2x23sinx+5x)dx

=2x2dx3sinxdx+5x12dx

= 2x333(cosx)+5(x3232)+C 

=23x3+3cosx+103x32+C


18. secx(secx+tanx)dx

Ans: secx(secx+tanx)dx

 =(sec2x+secxtanx)dx

=sec2xdx+secxtanxdx

=tanx+secx+C


19. sec2xcosec2xdx

Ans: sec2xcosec2xdx

=1cos2x1sin2xdx

=sin2xcos2xdx

=tan2xdx

=sec2xdx1dx

=tanxx+C


20. 23sinxcos2xdx

Ans: 23sinxcos2xdx

=(2cos2x3sinxcos2x)dx

=2sec2xdx3tanxsecxdx

=2tanx3secx+C


21. The anti – derivative of (x+1x) equals

  1. 13x13+2x12+C
  2. 23x23+12x2+C
  3. 23x32+2x12+C
  4. 32x32+12x12+C

Ans: 

 (x+1x)

=x12dx+x12dx=x3232+x1212+C 

=23x32+2x12+C 

 Thus, the correct answer is C.


22. If ddxf(x)=4x33x4 such that f(2)=0 then f(x) is

  1. x4+1x31298

  2. x3+1x4+1298

  3. x4+1x3+1298

  4. x3+1x41298

Ans: Given, ddxf(x)=4x33x4 

Anti-derivative of 4x33x4=f(x)

f(x)=4x33x4=f(x)

f(x)=4x3dx3(x4)dx

f(x)=4(x44)3(x33)+C

f(x)=x4+1x3+C

Also, 

f(2)=0

f(2)=(2)4+1(2)3+C=0 

16+18+C=0 

C=1298

f(x)=x4+1x31298

 Thus, the correct answer is A.


Exercise 7.2

1. 2x1+x2

Ans: Substitute 1+x2=t

2xdx=dt

2x1+x2dx=1tdt

=log|t|+C

=log|1+x2|+C

=log(1+x2)+C


2. (logx)2x

Ans: Substitute log|x|=t

1xdx=dt

(log|x|)2xdx=t2dt

=t33+C

=(log|x|)33+C


3. 1x+xlogx

Ans: 1x+xlogx=1x(1+logx)

Substitute 1+logx=t

1xdx=dt

1x(1+logx)dx=1tdt

=log|t|+C

=log|1+logx|+C          


4. Sinx.sin(cosx)

Ans: Sinx.sin(cosx)

 Put,cosx=t 

 sinxdx=dt 

 sinx.sin(cosx)dx=sintdt

 =[cost]+C 

 =cost+C 

 =cos(cosx)+C


5. sin(ax+b)cos(ax+b)

Ans: sin(ax+b)cos(ax+b)=2sin(ax+b)cos(ax+b)2=sin2(ax+b)2 

Substitute 2(ax+b)=t

2adx=dt

sin2(ax+b)2dx=12sint2adt

=14a[cost]+C

=14acos2(ax+b)+C


6. ax+b

Ans: Substitute ax+b=t

adx=dt

dx=1adt

 (ax+b)12dx=1at12dt 

 =1a(t1232)+C=23a(ax+b)32+C


7. xx+2

Ans: Substitute x+2=t

dx=dt

xx+2=(t2)tdt

=(t322t12)dt

=t32dt2t12dt

=25t5243t32+C


8. x1+2x2

Ans: Substitute 1+2x2=t

4xdx=dt

x1+2x2dx=tdt4

=14t12dt

=14(t3232)+C

=16(1+2x2)32+C


9. (4x+2)x2+x+1

Ans: Substitute x2+x+1=t

(2x+1)dx=dt

(4x+2)x2+x+1dx

=2tdt

=2tdt

=2(t3232)+C=43(x2+x+1)32+C


10. 1xx

Ans: 1xx=1x(x1)

Substitute (x1)=t

1x(x1)dx=2tdt 

=2log|t|+C 

=2log|x1|+C


11. xx+4,x>0

Ans: Substitute x+4=t

dx=dt

xx+4dx=(t4)tdt=(t4t)dt

 =t32324(t1212)+C=23(t)328(t)12+C

=23t.t128t12+C

 =23t12(t12)+C

=23x+4(x8)+C


12. (x31)13x5

Ans: Substitute x31=t

3x2dx=dt

(x31)13x5dx=(x31)13x3.x2dx

=t13(t+1)dt3=13(t43+t13)dt

=13[37t73+34t43]+C

=17(x31)73+14(x31)43+C


13. x2(2+3x3)3

Ans: Substitute 2+3x3=t

9x2dx=dt

x2(2+3x3)3dx=19dt(t)3

=19[t22]+C

=118(2+3x3)2+C 


14. 1x(logx)m,x>0

Ans: Substitute logx=t

1xdx=dt

1x(logx)mdx=dt(t)m=(tm11m)+C

=(logx)1m(1m)+C


15. x94x2

Ans: Substitute 94x2=t

8xdx=dt

x94x2dx=181tdt

=18log|t|+C

=18log|94x2|+C


16. e2x+3

Ans: Substitute 2x+3=t

2dx=dt

e2x+3dx=12etdt

=12(et)+C

=12e(2x+3)+C


17. xex2

Ans: Substitute x2=t

2xdx=dt

xex2dx=121etdt

=12etdt

=12(et1)+C 

=12ex2+C

=12ex2+C


18. etan1x1+x2

Ans: Substitute tan1x=t

11+x2dx=dt 

etan1x1+x2dx=dt 

 =et+C 

=etan1x+C 


19. Integrate e2x1e2x+1

Ans:

Dividing the given function’s numerator and denominator by  ex , we obtain,

(e2x1)ex(e2x+1)ex=exexex+ex

Let ex+ex=t

(exex)dx=dt

e2x1e2x+1dx=exexex+exdx

=dtt

=log|t|+C

=log|exex|+C

where C is an arbitrary constant.


20. Solve the following: e2xe2xe2x+e2x.

Ans: Given expression e2xe2xe2x+e2x.

Let us substitute e2x+e2x=t, we get

(2e2x+2e2x)dx=dt

2(e2xe2x)dx=dt

Integration of given expression is

e2xe2xe2x+e2x=dt2t

e2xe2xe2x+e2x=121tdt

e2xe2xe2x+e2x=12log|t|+C

Again substitute t=e2x+e2x, we get

e2xe2xe2x+e2x=12log|e2x+e2x|+C


21.  Solve the following: tan2(2x3).

Ans: Given expression tan2(2x3).

We can apply the identity tan2x=sec2x1, we get

tan2(2x3)=sec2(2x3)1

Substitute 2x3=t, we get

2dx=dt 

Integration of given expression is 

tan2(2x3)dx=sec2(2x3)1dx

tan2(2x3)dx=12sec2tdt1dx

tan2(2x3)dx=12tantx+C

Substitute 2x3=t

tan2(2x3)dx=12tan(2x3)x+C


22.  Solve the following: sec2(74x).

Ans: Given expression sec2(74x).

Put 74x=t, we get

4dx=dt 

Integration of given expression is

 sec2(74x)dx=14sec2tdt 

sec2(74x)dx=14tant+C

Substitute 74x=t, we get

sec2(74x)dx=14tan(74x)+C


23.  Solve the following: sin1x1x2.

Ans: Given expression sin1x1x2.

Put sin1x=t, we get

11x2dx=dt 

Integration of given expression is

sin1x1x2dx=tdt

sin1x1x2dx=t22+C 

Substitute sin1x=t, we get

sin1x1x2dx=(sin1x)22+C


24.  Solve the following: 2cosx3sinx6cosx+4sinx.

Ans: Given expression is 2cosx3sinx6cosx+4sinx.

Given expression can be written as

 2cosx3sinx6cosx+4sinx=2cosx3sinx2(3cosx+2sinx)

Let 3cosx+2sinx=t, we get

(3sinx+2cosx)dx=dt 

Integration of given expression is

2cosx3sinx6cosx+4sinxdx=2cosx3sinx2(3cosx+2sinx)dx

2cosx3sinx6cosx+4sinxdx=dt2t

2cosx3sinx6cosx+4sinxdx=121tdt

2cosx3sinx6cosx+4sinxdx=12log|t|+C

Substitute 3cosx+2sinx=t

2cosx3sinx6cosx+4sinxdx=12log|2sinx+3cosx|+C


25. Solve the following: 1cos2x(1tanx)2.

Ans: Given expression 1cos2x(1tanx)2.

Given expression can be written as 

1cos2x(1tanx)2=sec2x(1tanx)2

Let (1tanx)=t, we get

sec2xdx=dt 

Integration of given expression is

1cos2x(1tanx)2dx=sec2x(1tanx)2dx

1cos2x(1tanx)2dx=dtt2

1cos2x(1tanx)2dx=t2dt

1cos2x(1tanx)2dx=1t+C

Substitute (1tanx)=t

1cos2x(1tanx)2dx=1(1tanx)+C


26. Solve the following: cosxx.

Ans: Given expression is cosxx.

Let x=t, we get

12xdx=dt 

Integration of given expression is

cosxxdx=2costdt

cosxxdx=2sint+C

Substitute x=t

cosxxdx=2sinx+C


27. Solve the following: sin2xcos2x.

Ans: Given expression is sin2xcos2x.

Let sin2x=t, we get

2cos2xdx=dt 

Integration of given expression is

sin2xcos2xdx=12tdt 

sin2xcos2xdx=12(t3232)+C

sin2xcos2xdx=13t32+C

Substitute sin2x=t

sin2xcos2xdx=13(sin2x)32+C


28. Solve the following: cosx1+sinx.

Ans: Given expression cosx1+sinx.

Let 1+sinx=t 

cosxdx=dt 

Integration of given expression is  

cosx1+sinxdx=dtt 

cosx1+sinxdx=t1212+C

cosx1+sinxdx=2t+C

Substitute 1+sinx=t,

cosx1+sinxdx=21+sinx+C


29.  Solve the following: cotxlogsinx.

Ans: Given expression cotxlogsinx.

Let logsinx=t, we get

1sinxcosxdx=dt 

cotxdx=dt 

Integration of given expression is

cotxlogsinxdx=tdt 

cotxlogsinxdx=t22+C

Substitute logsinx=t,

cotxlogsinxdx=12(logsinx)2+C


30.  Solve the following: sinx1+cosx.

Ans: Given expression sinx1+cosx.

Let 1+cosx=t 

sinxdx=dt 

Integration of given expression is

sinx1+cosxdx=dtt 

sinx1+cosxdx=log|t|+C

Substitute 1+cosx=t,

sinx1+cosxdx=log|1+cosx|+C


31.  Solve the following: sinx(1+cosx)2.

Ans: Given expression sinx(1+cosx)2.

Let 1+cosx=t 

sinxdx=dt 

Integration of given expression is

sinx(1+cosx)2dx=dtt2 

sinx(1+cosx)2dx=t2dt

sinx(1+cosx)2dx=1t+C

Substitute 1+cosx=t,

sinx(1+cosx)2dx=11+cosx+C

.

32.Solve the following: 11+cotx.

Ans: Given expression 11+cotx.

Let  I=11+cotxdx

Integration of given expression is

I=11+cotxdx

I=11+cosxsinxdx

I=sinxsinx+cosxdx

I=122sinxsinx+cosxdx

I=12(sinx+cosx)+(sinxcosx)sinx+cosxdx

I=12(sinx+cosx)sinx+cosx+(sinxcosx)sinx+cosxdx

I=121dx+12(sinxcosx)sinx+cosxdx

Let sinx+cosx=t 

(cosxsinx)dx=dt 

Substitute in above obtained equation, we get

I=12x+12dtt

I=x212log|t|+C

Substitute sinx+cosx=t,

I=x212log|sinx+cosx|+C


33.  Solve the following: 11tanx.

Ans: Given expression 11tanx.

Let  I=11tanxdx

Integration of given expression is

I=11tanxdx

I=11sinxcosxdx

I=cosxcosxsinxdx

I=122cosxcosxsinxdx

I=12(cosxsinx)+(cosx+sinx)cosxsinxdx

I=12(cosxsinx)cosxsinx+(cosx+sinx)cosxsinxdx

I=121dx+12(cosx+sinx)cosxsinxdx

Let cosxsinx=t 

(sinxcosx)dx=dt 

Substitute in above obtained equation, we get

I=12x+12dtt

I=x212log|t|+C

Substitute cosxsinx=t,

I=x212log|cosxsinx|+C


34. Solve the following: tanxsinxcosx.

Ans: Given expression tanxsinxcosx.

Let I=tanxsinxcosxdx 

Multiply and divide by cosx, we get

I=tanx×cosxsinxcosx×cosxdx

I=tanx×cosxtanx×cos2xdx

I=sec2xtanxdx

Let tanx=t 

sec2xdx=dt 

Substitute in above obtained equation, we get

I=dttdx

I=2t+C

Substitute tanx=t,

I=2tanx+C


35.  Solve the following: (1+logx)2x.

Ans: Given expression (1+logx)2x.

Let 1+logx=t 

1xdx=dt 

Integration of given expression is

(1+logx)2xdx=t2dt 

(1+logx)2xdx=t33+C

Substitute 1+logx=t

(1+logx)2xdx=(1+logx)33+C


36. Solve the following: (x+1)(x+logx)2x.

Ans: Given expression (x+1)(x+logx)2x.

Given expression can be written as

(x+1)(x+logx)2x=(x+1x)(x+logx)2

(x+1)(x+logx)2x=(1+1x)(x+logx)2

Let x+logx=t 

(1+1x)dx=dt 

Integration of given expression is

(x+1)(x+logx)2xdx=t2dt 

(x+1)(x+logx)2xdx=t33+C

Substitute x+logx=t

(x+1)(x+logx)2xdx=13(x+logx)3+C


37. Solve the following: x3sin(tan1x4)1+x8

Ans: Given expression x3sin(tan1x4)1+x8.

Let x4=t,

4x3dx=dt 

Integration of given expression is

 x3sin(tan1x4)1+x8dx=14sin(tan1t)1+t2dt ………(1)

Let tan1t=u 

11+t2dt=du 

Substitute in eq. (1), we get

x3sin(tan1x4)1+x8dx=14sinudu

x3sin(tan1x4)1+x8dx=14(cosu)+C

Substitute tan1t=u,

x3sin(tan1x4)1+x8dx=14cos(tan1t)+C

Substitute x4=t,

x3sin(tan1x4)1+x8dx=14cos(tan1x4)+C


38. Choose the correct answer in Question 38 and 39.

38. 10x9+10xloge10x10+10xdx equals 

  1. 10xx10+C 

  2. 10x+x10+C

  3. (10xx10)1+C

  4. log(10x+x10)+C

Ans: Given expression 10x9+10xloge10x10+10xdx.

Let x10+10x=t,

(10x9+10xloge10)dx=dt  

Integration of given expression is

10x9+10xloge10x10+10xdx=dtt 

10x9+10xloge10x10+10xdx=logt+C

Substitute x10+10x=t,

10x9+10xloge10x10+10xdx=log(10x+x10)+C

Therefore, option D is the correct answer.


39. dxsin2cos2x equals

  1. tanx+cotx+C 

  2. tanxcotx+C

  3. tanxcotx+C

  4. tanxcot2x+C

Ans: Given expression dxsin2xcos2x.

Let  I=dxsin2xcos2x 

I=1sin2xcos2xdx

We know that sin2x+cos2x=1, we get

I=sin2x+cos2xsin2xcos2xdx

I=sin2xsin2xcos2xdx+cos2xsin2xcos2xdx

I=1cos2xdx+1sin2xdx

I=sec2xdx+cosec2xdx

I=tanxcotx+C

Therefore, option B is the correct answer.


Exercise 7.3

1.  Solve the following: sin2(2x+5).

Ans: Given expression sin2(2x+5).

Given expression can be written as  

sin2(2x+5)=1cos2(2x+5)2

sin2(2x+5)=1cos(4x+10)2 

Integration of given expression is

sin2(2x+5)dx=1cos(4x+10)2dx

sin2(2x+5)dx=121dx12cos(4x+10)dx

sin2(2x+5)dx=12x12(sin(4x+10)4)+C

sin2(2x+5)dx=12x18sin(4x+10)+C


2. Solve the following: sin3xcos4x.

Ans: Given expression sin3xcos4x.

Using the identity sinAcosB=12{sin(A+B)+sin(AB)} given expression can be written as

sin3xcos4x=12{sin(3x+4x)+sin(3x4x)}

Integration of above expression is

sin3xcos4xdx=12{sin7x+sin(x)}dx

sin3xcos4xdx=12{sin7x+sinx}dx

sin3xcos4xdx=12sin7xdx+12sinxdx

sin3xcos4xdx=12(cos7x7)12(cosx)+C

sin3xcos4xdx=cos7x14+cosx2+C


3.  Solve the following: cos2xcos4xcos6x.

Ans: Given expression cos2xcos4xcos6x.

Using the identity cosAcosB=12{cos(A+B)+cos(AB)} given expression can be written as

cos2x(cos4xcos6x)=cos2x12{cos(4x+6x)+cos(4x6x)}

Integration of the above expression is

cos2x(cos4xcos6x)=cos2x[12{cos10x+cos(2x)}]dx

cos2x(cos4xcos6x)=[12{cos2xcos10x+cos2xcos(2x)}]dx

cos2x(cos4xcos6x)=12[{cos2xcos10x+cos22x}]dx

Again applying the identity cosAcosB=12{cos(A+B)+cos(AB)}, we get

cos2x(cos4xcos6x)=12[{12cos(2x+10x)+cos(2x10x)+(1+cos4x2)}]dxcos2x(cos4xcos6x)=14[cos12x+cos8x+cos4x]dx

cos2xcos4xcos6x=14[sin12x12+sin8x8+sin4x4]+C


4. Solve the following: sin3(2x+1).

Ans: Given expression sin3(2x+1)

Let I=sin3(2x+1)dx

I=sin2(2x+1)sin(2x+1)dx 

I=(1cos2(2x+1))sin(2x+1)dx

Let cos(2x+1)=t 

2sin(2x+1)dx=dt 

Integration becomes

I=12(1t2)dt

I=12(tt33)+C

Substitute cos(2x+1)=t,

I=12(cos(2x+1)cos3(2x+1)3)+C

sin3(2x+1)dx=cos(2x+1)2+cos3(2x+1)3+C


5. Solve the following: sin3xcos3x.

Ans: Given expression sin3xcos3x.

Let I=sin3xcos3xdx 

I=sin2xsinxcos3xdx

I=cos3x(1cos2x)sinxdx

Let cosx=t 

sindx=dt 

Integration becomes

I=t3(1t2)dt

I=(t3t5)dt

I=[t44t66]+C

Substitute cosx=t,

I=[cos4x4cos6x6]+C

sin3xcos3xdx=cos6x6cos4x4+C


6. Solve the following: sinxsin2xsin3x.  

Ans: Given expression sinxsin2xsin3x.

Using the identity sinAsinB=12cos(AB)cos(A+B), given expression can be written as

sinxsin2xsin3x=sinx.12cos(2x3x)cos(2x+3x)

Integration of given expression is

sinxsin2xsin3xdx=12(sinxcos(x)sinxcos(5x))dx

sinxsin2xsin3xdx=12(sinxcosxsinxcos5x)dx

sinxsin2xsin3xdx=12sin2x2dx12(sinxcos5x)dx

sinxsin2xsin3xdx=14(cos2x2)12{12(sin(x+5x)+sin(x5x))}dx

sinxsin2xsin3xdx=cos2x814{(sin6x+sin(4x))}dx

sinxsin2xsin3xdx=cos2x814{(sin6x+sin4x)}dx

sinxsin2xsin3xdx=cos2x818[cos6x3+cos4x4]+C

sinxsin2xsin3xdx=18[cos6x3cos4x4cos2x]+C


7.  Solve the following: sin4xsin8x

Ans: Given expression sin4xsin8x.

Using the identity sinAsinB=12cos(AB)cos(A+B), given expression can be written as

sin4xsin8x=12cos(4x8x)cos(4x+8x)

Integration of given expression is

sin4xsin8xdx=12(cos(4x)cos(12x))dx

sin4xsin8xdx=12(cos4xcos12x)dx

sin4xsin8xdx=12[sin4x4sin12x12]+C


8.  Solve the following: 1cosx1+cosx

Ans: Given expression 1cosx1+cosx.

Using the identities 2sin2x2=1cosx and cosx=2cos2x21 given expression can be written as 

1cosx1+cosx=2sin2x22cos2x2

1cosx1+cosx=tan2x2

Integration of given expression is 

1cosx1+cosxdx=[tan2x2]dx

1cosx1+cosxdx=[sec2x21]dx

1cosx1+cosxdx=[tanx212x]+C

1cosx1+cosxdx=2tanx2x+C


9.  Solve the following: cosx1+cosx

Ans: Given expression cosx1+cosx.

Using the identity cosx=cos2x2sin2x2 and cosx=2cos2x21 given expression can be written as 

cosx1+cosx=cos2x2sin2x22cos2x2

cosx1+cosx=12[1sin2x2cos2x2]

cosx1+cosx=12[1tan2x2]

Integration of given expression is 

cosx1+cosxdx=12[1tan2x2]dx

cosx1+cosxdx=12[1sec2x2+1]dx

cosx1+cosxdx=12[2sec2x2]dx

cosx1+cosxdx=12[2xtanx212]+C

cosx1+cosxdx=xtanx2+C


10.  Solve the following: sin4x

Ans: Given expression sin4x.

Given expression can be written as sin4x=sin2xsin2x

sin4x=(1cos2x2)(1cos2x2)

sin4x=14(1cos2x)2

sin4x=14(1+cos22x2cos2x)

sin4x=14(1+1+cos4x22cos2x)

sin4x=14(1+12+cos4x22cos2x)

sin4x=14(32+12cos4x2cos2x)

Integration of given expression is

sin4xdx=14(32+12cos4x2cos2x)dx

sin4xdx=14[32x+sin4x8sin2x]+C

sin4xdx=3x8+sin4x3214sin2x+C

 

11.  Solve the following: cos42x.

Ans: Given expression cos42x.

Given expression can be written as  

cos42x=(cos22x)2

cos42x=(1+cos4x2)2

cos42x=14(1+cos24x+2cos4x)

cos42x=14(1+1+cos8x2+2cos4x)

cos42x=14(1+12+cos8x2+2cos4x)

cos42x=14(32+cos8x2+2cos4x)

Integration of given expression is 

cos42xdx=(38+cos8x8+cos4x2)dx

cos42xdx=38x+sin8x64+sin4x8+C


12. Solve the following: sin2x1+cosx.

Ans: Given expression sin2x1+cosx.

By applying the identity sinx=2sinx2cosx2 and cosx=2cos2x21, given expression can be written as 

  sin2x1+cosx=(2sinx2cosx2)22cos2x2

sin2x1+cosx=4sin2x2cos2x22cos2x2

sin2x1+cosx=2sin2x2

sin2x1+cosx=1cosx

Integration of given expression is

sin2x1+cosxdx=1dxcosxdx

sin2x1+cosxdx=xsinx+C


13.  Solve the following: cos2xcos2αcosxcosα

Ans: Given expression cos2xcos2αcosxcosα.

We can apply the identity cosCcosD=2sinC+D2sinCD2 , we get

 cos2xcos2αcosxcosα=2sin2x+2α2sin2x2α22sinx+α2sinxα2

cos2xcos2αcosxcosα=sin2(x+α)2sin2(xα)2sinx+α2sinxα2

cos2xcos2αcosxcosα=sin(x+α)sin(xα)sinx+α2sinxα2

We can apply the identity sin2x=2sinxcosx, we get

cos2xcos2αcosxcosα=[2sinx+α2cosx+α2][2sinxα2cosxα2]sinx+α2sinxα2

cos2xcos2αcosxcosα=4cosx+α2cosxα2

cos2xcos2αcosxcosα=2[cosx+α2+xα2+cosx+α2xα2]

cos2xcos2αcosxcosα=2[cosx+cosα]

Integration of given expression is

cos2xcos2αcosxcosαdx=2[cosx+cosα]dx

cos2xcos2αcosxcosαdx=2[sinx+xcosα]+C


14. Solve the following: cosxsinx1+sin2x

Ans: Given expression cosxsinx1+sin2x.

We know that sin2x+cos2x=1.

Given expression can be written as  

cosxsinx1+sin2x=cosxsinxsin2x+cos2x+sin2x .

We can apply the identity sin2x=2sinxcosx, we get

 cosxsinx1+sin2x=cosxsinxsin2x+cos2x+2sinxcosx

cosxsinx1+sin2x=cosxsinx(sinx+cosx)2

Let sinx+cosx=t 

(cosxsinx)dx=dt 

Integration of given expression is

cosxsinx1+sin2xdx=cosxsinx(sinx+cosx)2dx 

cosxsinx1+sin2xdx=dtt2

cosxsinx1+sin2xdx=t2dt

cosxsinx1+sin2xdx=t1+C

cosxsinx1+sin2xdx=1t+C

Substitute sinx+cosx=t,

cosxsinx1+sin2xdx=1sinx+cosx+C


15.  Solve the following: tan32xsec2x.

Ans: Given expression tan32xsec2x.

Given expression can be written as

tan32xsec2x=tan22xtan2xsec2x

tan32xsec2x=(sec22x1)tan2xsec2x

tan32xsec2x=sec22xtan2xsec2xtan2xsec2x

Integration of given expression is

tan32xsec2xdx=sec22xtan2xsec2xdxtan2xsec2xdx

tan32xsec2xdx=sec22xtan2xsec2xdxsec2x2+C

Let sec2x=t 

2sec2xtan2xdx=dt 

Above integral becomes

tan32xsec2xdx=12t2dtsec2x2+C

tan32xsec2xdx=t36sec2x2+C

Substitute sec2x=t,

tan32xsec2xdx=(sec2x)36sec2x2+C


16.  Solve the following: tan4x

Ans: Given expression tan4x.

Given expression can be written as 

tan4x=tan2xtan2x

tan4x=(sec2x1)tan2x

tan4x=sec2xtan2xtan2x

tan4x=sec2xtan2x(sec2x1)

tan4x=sec2xtan2xsec2x+1

Integration of given expression is

tan4xdx=(sec2xtan2xsec2x+1)dx

tan4xdx=(sec2xtan2x)dxsec2xdx+1dx

tan4xdx=sec2xtan2xdxtanx+x+C

Let tanx=t 

sec2xdx=dt 

tan4xdx=t2dttanx+x+C

tan4xdx=t33tanx+x+C

Substitute tanx=t,

tan4xdx=13tan3xtanx+x+C


17. Solve the following: sin3x+cos3xsin2xcos2x.

Ans: Given expression sin3x+cos3xsin2xcos2x.

Given expression can be written as 

sin3x+cos3xsin2xcos2x=sin3xsin2xcos2x+cos3xsin2xcos2x

sin3x+cos3xsin2xcos2x=sinxcos2x+cosxsin2x

sin3x+cos3xsin2xcos2x=tanxsecx+cotxcosecx

Integration of given expression is 

sin3x+cos3xsin2xcos2xdx=tanxsecxdx+cotxcosecxdx

sin3x+cos3xsin2xcos2xdx=secxcosecx+C


18.  Solve the following: cos2x+2sin2xcos2x.

Ans: Given expression cos2x+2sin2xcos2x.

By applying the identity cos2x=12sin2x, we get

 cos2x+2sin2xcos2x=cos2x+1cos2xcos2x

cos2x+2sin2xcos2x=1cos2x

cos2x+2sin2xcos2x=sec2x

Integration of given expression is 

cos2x+2sin2xcos2xdx=sec2xdx

cos2x+2sin2xcos2xdx=tanx+C


19.  Solve the following: 1sinxcos3x.

Ans: Given expression 1sinxcos3x.

We can apply the identity sin2x+cos2x=1, we get

1sinxcos3x=sin2x+cos2xsinxcos3x

1sinxcos3x=sin2xsinxcos3x+cos2xsinxcos3x

1sinxcos3x=sinxcos3x+1sinxcosx

1sinxcos3x=tanxsec2x+cos2xsinxcosxcos2x

1sinxcos3x=tanxsec2x+sec2xtanx

Integration of given expression is

1sinxcos3xdx=tanxsec2xdx+sec2xtanxdx

Let tanx=t 

sec2xdx=dt 

1sinxcos3xdx=tdt+1tdt

1sinxcos3xdx=t22+log|t|+C

Substitute tanx=t,

1sinxcos3xdx=12tan2x+log|tanx|+C


20. Solve the following: cos2x(cosx+sinx)2

Ans: Given expression cos2x(cosx+sinx)2.

Given expression can be written as 

cos2x(cosx+sinx)2=cos2xcos2x+sin2x+2sinxcosx

We know that sin2x+cos2x=1 and 2sinxcosx=sin2x, we get

 cos2x(cosx+sinx)2=cos2x1+sin2x

Integration of given expression is

cos2x(cosx+sinx)2dx=cos2x1+sin2xdx

Let 1+sin2x=t 

2cos2xdx=dt 

Integration becomes

cos2x(cosx+sinx)2dx=121tdt

cos2x(cosx+sinx)2dx=12log|t|+C

Substitute 1+sin2x=t

cos2x(cosx+sinx)2dx=12log|1+sin2x|+C

cos2x(cosx+sinx)2dx=12log|(cosx+sinx)2|+C

cos2x(cosx+sinx)2dx=log|(cosx+sinx)|+C


21.  Solve the following: sin1(cosx)

Ans: Given expression sin1(cosx).

Let cosx=t 

sinx=1t2 

sinxdx=dt

dx=dtsinx

dx=dt1t2

Integration of given expression is

sin1(cosx)dx=sin1t(dt1t2)

sin1(cosx)dx=(sin1t1t2)dt

Let sin1t=u 

11t2dt=du 

Integration becomes

sin1(cosx)dx=4du

sin1(cosx)dx=u22+C

Substitute sin1t=u

sin1(cosx)dx=(sin1t)22+C

Substitute cosx=t

sin1(cosx)dx=[sin1(cosx)]22+C ……..(1)

We know that sin1x+cos1x=π2 

sin1(cosx)=π2cos1(cosx)=(π2x) 

Substitute in eq. (1), we get

sin1(cosx)dx=(π2x)22+C

sin1(cosx)dx=12(π22+x2πx)+C

sin1(cosx)dx=π24x22+12πx+C

sin1(cosx)dx=πx2x22+(Cπ24)

sin1(cosx)dx=πx2x22+C1


22. Solve the following: 1cos(xa)cos(xb)

Ans: Given expression 1cos(xa)cos(xb).

Given expression can be written as

1cos(xa)cos(xb)=1sin(ab)[sin(ab)cos(xa)cos(xb)]

1cos(xa)cos(xb)=1sin(ab)[sin[(xb)(xa)]cos(xa)cos(xb)]

1cos(xa)cos(xb)=1sin(ab)[sin(xb)cos(xa)cos(xb)sin(xa)cos(xa)cos(xb)]

1cos(xa)cos(xb)=1sin(ab)[tan(xb)tan(xb)]

Integration of given expression is

1cos(xa)cos(xb)dx=1sin(ab)[tan(xb)tan(xb)]dx

1cos(xa)cos(xb)dx=1sin(ab)[log|cos(xb)|+logcos(xa)]

1cos(xa)cos(xb)dx=1sin(ab)[log|cos(xa)cos(xb)|]+C


23. Solve the following: sin2xcos2xsin2xcos2xdx is equal to

  1. tanx+cotx+C 

  2. tanx+cosecx+C 

  3. tanx+cotx+C 

  4. tanx+secx+C 

Ans: Given expression sin2xcos2xsin2xcos2xdx.

Given expression can be written as

sin2xcos2xsin2xcos2xdx=sin2xsin2xcos2xdxcos2xsin2xcos2xdx

sin2xcos2xsin2xcos2xdx=sec2xdxcosec2xdx

sin2xcos2xsin2xcos2xdx=tanx+cotx+C

Therefore, option A is the correct answer.


24. Solve the following: ex(1+x)cos2(exx)dx equals

  1. cot(exx)+C 

  2. tan(xex)+C 

  3. tan(ex)+C

  4. cot(ex)+C

Ans: Given expression ex(1+x)cos2(exx)dx.

Let exx=t 

(ex.x+ex.1)dx=dt 

ex(x+1)dx=dt

Integration of given expression is

ex(1+x)cos2(exx)dx=dtcos2t

ex(1+x)cos2(exx)dx=sec2tdt

ex(1+x)cos2(exx)dx=tant+C

Substitute exx=t,

ex(1+x)cos2(exx)dx=tan(exx)+C

Therefore, option B is the correct answer.


Exercise 7.4

1. Solve the following: 3x2x6+1.

Ans: Given expression 3x2x6+1.

Let x3=t 

3x2dx=dt 

Integration of given expression is

3x2x6+1dx=dtt2+1 

We know that 11+x2=tan1x 

3x2x6+1dx=tan1t+C

Substitute x3=t,

3x2x6+1dx=tan1(x3)+C


2. Solve the following: 11+4x2.

Ans: Given expression 11+4x2.

Let 2x=t 

2dx=dt 

Integration of given expression is

11+4x2dx=12dt1+t2

We know that 1x2+a2dt=log|x+x2+a2| 

11+4x2dx=12log|t+t2+1|+C

Substitute 2x=t,

11+4x2dx=12log|2x+4x2+1|+C


3. Solve the following: 1(2x)2+1.

Ans: Given expression 1(2x)2+1.

Let 2x=t 

dx=dt 

Integration of given expression is

1(2x)2+1dx=1t2+1dt 

We know that 1x2+a2dt=log|x+x2+a2| 

1(2x)2+1dx=log|t+t2+1|+C

Substitute 2x=t,

1(2x)2+1dx=log|(2x)+(2x)2+1|+C

1(2x)2+1dx=log|1(2x)+x24x+5|+C


4. Solve the following: 1925x2.

Ans: Given expression 1925x2.

Let 5x=t 

5dx=dt 

Integration of given expression is

1925x2dx=1519t2dt 

1925x2dx=15132t2dt

1925x2dx=15sin1(t3)+C

Substitute 5x=t,

1925x2dx=15sin1(5x3)+C


5.  Solve the following: 3x1+2x4.

Ans: Given expression 3x1+2x4.

Let 2x2=t 

22dx=dt 

Integration of given expression is

3x1+2x4dx=322dt1+t2 

3x1+2x4dx=322tan1t+C

Substitute 2x2=t,

3x1+2x4dx=322tan1(2x2)+C


6.  Solve the following: x21x6.

Ans: Given expression x21x6.

Let x3=t 

3x2dx=dt 

Integration of given expression is

x21x6dx=13dt1t2  

x21x6dx=13[12log|1+t1t|]+C

Substitute x3=t,

x21x6dx=13[12log|1+x31x3|]+C


7.  Solve the following: x1x21.

Ans: Given expression x1x21.

Given expression can be written as

x1x21=xx211x21

Integration of given expression is

x1x21dx=xx21dx1x21dx

x1x21dx=xx21dxlog|x+x21|+C

Let x21=t 

2xdx=dt 

Integration becomes

x1x21dx=12dttlog|x+x21|+C

x1x21dx=12t12dtlog|x+x21|+C

x1x21dx=12(2t12)log|x+x21|+C

x1x21dx=tlog|x+x21|+C

Substitute x21=t

x1x21dx=x21log|x+x21|+C


8.  Solve the following: x2x6+a6.

Ans: Given expression x2x6+a6.

Let x3=t 

3x2dx=dt 

Integration of given expression is

x2x6+a6dx=13dtt2+(a3)2 

x2x6+a6dx=13log|t+t2+a6|+C

Substitute x3=t,

x2x6+a6dx=13log|x3+x6+a6|+C


9. Solve the following: sec2xtan2x+4.

Ans: Given expression sec2xtan2x+4.

Let tanx=t 

sec2xdx=dt 

Integration of given expression is

sec2xtan2x+4dx=dtt2+22 

sec2xtan2x+4dx=log|t+t2+4|+C

Substitute tanx=t,

sec2xtan2x+4dx=log|tanx+tan2x+4|+C


10.  Solve the following: 1x2+2x+2.

Ans: Given expression 1x2+2x+2.

Given expression can be written as 

1x2+2x+2=1(x+1)2+(1)2

Let x+1=t 

dx=dt 

Integration of given expression is

1x2+2x+2dx=1t2+1dt

1x2+2x+2dx=log|t+t2+1|+C

Substitute x+1=t,

1x2+2x+2dx=log|(x+1)+(x+1)2+1|+C

1x2+2x+2dx=log|(x+1)+x2+2x+2|+C


11.  Solve the following: 19x2+6x+5.

Ans: Given expression 19x2+6x+5.

Given expression can be written as 

19x2+6x+5=1(3x+1)2+(2)2

Let 3x+1=t 

3dx=dt 

Integration of given expression is

19x2+6x+5dx=131t2+22dt 

19x2+6x+5dx=13[12tan1(t2)]+C

Substitute 3x+1=t,

19x2+6x+5dx=13[12tan1(3x+12)]+C


12.  Solve the following: 176xx2.

Ans: Given expression 176xx2.

Given expression can be written as

176xx2=17(x2+6x+99)

176xx2=116(x2+6x+9)

176xx2=116(x+3)2

176xx2=142(x+3)2

Let x+3=t 

dx=dt 

Integration of given expression is

176xx2dx=142(t)2dt

176xx2dx=sin1(t4)+C

Substitute x+3=t,

176xx2dx=sin1(x+34)+C


13.  Solve the following: 1(x1)(x2).

Ans: Given expression 1(x1)(x2).

Given expression can be written as 

1(x1)(x2)=1x23x+2

1(x1)(x2)=1x23x+9494+2

1(x1)(x2)=1(x32)2(12)2

Let x32=t 

dx=dt 

1(x1)(x2)dx=1t2(12)2dx

1(x1)(x2)dx=log|t+t2(12)2|+C

Substitute x32=t,

1(x1)(x2)dx=log|(x32)+x23x+2|+C


14.  Solve the following: 18+3xx2.

Ans: Given expression 18+3xx2.

Given expression can be written as

18+3xx2=18(x23x+9494) 

18+3xx2=18(x23x+9494)

18+3xx2=1414(x32)2

Let x32=t 

dx=dt 

18+3xx2dx=1(412)2(t)2dt

18+3xx2dx=sin1(t412)+C

Substitute x32=t

18+3xx2dx=sin1(x32412)+C

18+3xx2dx=sin1(2x341)+C


15.  Solve the following: 1(xa)(xb).

Ans: Given expression 1(xa)(xb).

Given expression can be written as

1(xa)(xb)=1x2(a+b)x+ab

1(xa)(xb)=1x2(a+b)x+(a+b)24(a+b)24+ab

1(xa)(xb)=1[x(a+b)4]2(a+b)24

1(xa)(xb)=1[x(a+b)4]2(a+b2)2

Integration of given expression is

1(xa)(xb)dx=1[x(a+b)4]2(a+b2)2dx

Let x(a+b2)=t 

dx=dt 

1(xa)(xb)dx=1t2(a+b2)2dx

1(xa)(xb)dx=log|t+t2(a+b2)2|+C

Substitute x(a+b2)=t,

1(xa)(xb)dx=log|x(a+b2)+(xa)(xb)|+C


16. 4x+12x2+x3

Ans:Consider 4x+1=Addx(2x2+x3)+B

Simplifying, 

4x+1=A(4x+1)+B

4x+1=4Ax+A+B

We obtain the below values by equating the coefficients of x and the constant term on both sides. 

4 A=4A=1

A+B=1B=0

Consider 2x2+x3=t

(4x+1)dx=dt

4x+12x2+x3dx=1tdt

Using the power rule of integration,

=2t+C

Substitute the value of t,

=22x2+x3+C


17. x+2x21

 Ans:Consider  x+2=Addx(x21)+B

x+2=A(2x)+B......(1)

We obtain the below values by equating the coefficients of x  and    the constant term on both sides. 

2A=1A=12

B=2

From (1), we get

(x+2)=12(2x)+2

x+2x21dx=12(2x)+2x21dx

=122xx21dx+2x21dx

In 122xx21dx let x21=t2xdx=dt

122xx21dx=12dtt 

Integrating using the power rule

=12[2t]

                   Simplifying,

=t 

Substitute the value of t,

=x21

Then, 2x21dx=21x21dx=2log|x+x21|

From equation (2), we get

x+2x21dx=x21+2log|x+x21|+C


18. 5x21+2x+3x2

Ans: Let 5x2=Addx(1+2x+3x2)+B 

 5 x2=A(2+6 x)+B......(1)

We obtain the below values by equating the coefficients of x  and            

the constant term on both sides. 

5=6AA=56

2A+B=2B=113

Substitute the above values in (1)

5x2=56(2+6x)+(113)

5x21+2x+3x2dx=56(2+6x)1131+2x+3x2dx

=562+6x1+2x+3x2dx11311+2x+3x2dx

Consider I1=2+6x1+2x+3x2dx and I2=11+2x+3x2dx

5x21+2x+3x2dx=56I1113I2...(1)

I1=2+6x1+2x+3x2dx

Put 1+2x+3x2=t

(2+6x)dx=dt

I1=dtt

Using the logarithm formula of integration,

I1=log|t| 

Substitute the value of t,

I1=log|1+2x+3x2|...(2)

Then, 

I2=11+2x+3x2dx

1+2x+3x2 can be rewritten as 1+3(x2+23x)

Thus,

1+3(x2+23x)

By completing square method, 

=1+3(x2+23x+1919)

=1+3(x+13)213

Simplifying,

=23+3(x+13)2

=3[(x+13)2+29]

=3[(x+13)2+(23)2]

Therefore I2can be rewritten as , 

I2=131[x+13)2+(23)2]dx

=13[32tan1(3x+12)]

Simplifying,

=12tan1(3x+12)...(3)

We obtain the below values by substituting equations (2) and (3) in equation (1)

5x21+2x+3x2dx=56[log|1+2x+3x2|]113[12tan1(3x+12)]+C

Simplifying,

=56log|1+2x+3x2|1132tan1(3x+12)+C


19. 6x+7(x5)(x4)

 Ans: Consider 6x+7=Addx(x29x+20)+B

Differentiating, 

6 x+7=A(2 x9)+B

We obtain the below values by equating the coefficients of x  and the constant term on both sides. 

2 A=6A=3

9 A+B=7B=34

6x+7=3(2x9)+34

6x+7x29x+20=3(2x9)+34x29x+20dx

=32x9x29x+20dx+341x29x+20dx

Consider  I1=2x9x29x+20dxandI2=1x29x+20dx

6x+7x29x+20=3I1+34I2....(1)

I1=2x9x29x+20dx

Put  x29x+20=t

(2x9)dx=dt

I1=dtt

Integrating using the power rule

I1=2t

Substitute the value of t,

I1=2x29x+20.....(2)

I2=1x29x+20dx

Consider 

x29x+20

By completing square methods, 

=x29x+20+814814

=(x92)214

=(x92)2(12)2

I2=1(x92)2(12)2dx

I2=log|(x92)+x29x+20|.....(3)

We obtain the below values by substituting equations (2) and (3) in (1), 6x+7x29x+20dx=3[2x29x+20]+34log[(x92)+x29x+20]+C

Simplifying,

=6x29x+20+34log[(x92)+x29x+20]+C


20. x+24xx2

Ans:Consider, x+2=Addx(4xx2)+B

x+2=A(42x)+B

 We obtain the below values by equating the coefficients of x  and the  

constant term on both sides.

2A=1A=12

 4A+B=2B=4

(x+2)=12(42x)+4

x+24xx2dx=12(42x)+44xx2dx    =1242x4xx2dx+414xx2dx

Let I1=42x4xx2dx and I214xx2dx

x+24xx2dx=12I1 and +4I2....(1)

Then, I1=42x4xx2dx

 Let 4xx2=t

(42x)dx=dt

I1=dtt=2t=24xx2...(2)

(Using the logarithm formula of integration,)

I2=14xx2dx

Integrating using the power rule, 

4xx2=(4x+x2)

By completing square methods, 

=(4x+x2+44)

=4(x2)2

=(2)2(x2)2

I2=1(2)2(x2)2dx=sin1(x22)...(3)

   Using equations (2) and (3) in (1), to obtain 

x+24xx2dx=12(24xx2)+4sin1(x22)+C

=4xx2+4sin1(x22)+C


21.x+2x2+2x+3

Ans:x+2x2+2x+3dx=122(x+2)x2+2x+3dx

Simplifying,

=122x+4x2+2x+3dx

=122x+2x2+2x+3dx+122x2+2x+3dx

=122x+2x2+2x+3dx+1x2+2x+3dx

Let I1=2x+2x2+2x+3dxandI2=1x2+2x+3dx

x+2x2+2x+3dx=12I1+I2....(1)

Then, I1=2x+2x2+2x+3dx

Put, x2+2x+3=t

Integrating using the power rule, 

(2x+2)dx=dt

I1=dtt=2t=2x2+2x+3..(2)

I2=1x2+2x+3dx.

By completing square methods,

x2+2x+3=x2+2x+1+2=(x+1)2+(2)2

I2=1(x+1)2+(2)2dx=log|(x+1)+x2+2x+3|...(3)

Using equations (2) and (3) in (1), to obtain                             

x+2x2+2x+3dx=x2+2x+3+log|(x+1)+x2+2x+3|+C


22. x+3x22x5

Ans:  Consider (x+3)=Addx(x22x5)+B

=x22(logx)2xlogxdx

We obtain the below values by equating the coefficients of x  and the constant term on both sides.

2A=1A=12

2A+B=3B=4

(x+3)=12(2x2)+4

x+3x22x5dx=12(2x2)+4x22x5dx

=122x2x22x5dx+41x22x5 dx

ConsiderI1=2x2x22x5dx and I2=1x22x5dx

x+3x22x5dx=12I1+4I2...(1)

Then, I1=2x2x22x5dx

Put x22x5=t

(2x2)dx=dt

Using the logarithm formula of integration,

I1=dtt=log|t|=log|x22x5|....(2)

I2=1x22x5dx

=1(x22x+1)6dx

=1(x1)2+(6)2dx

=126log(x16x1+6)....(3)

We obtain the below values by substituting (2) and (3) in (1), 

x+3x22x5dx=12log|x22x5|+426log|x16x1+6|+C

=12log|x22x5|+26log|x16x1+6|+C


23. 5x+3x2+4x+10

Ans:  5x+3=Aadx(x2+4x+10)+B

5x+3=A(2x+4)+B

Equating the coefficients of xand constant term, we get

2A=5A=52

4A+B=3B=7

5x+3=52(2x+4)7

5x+3x2+4x+10dx=52(2x+4)7x2+4x+10dx

=522x+4x2+4x+10dx71x2+4x+10dx

Let I1=2x+4x2+4x+10dx and I2=1x2+4x+10dx

5x+3x2+4x+10dx=52I17I2....(1)

Then, I1=2x+4x2+4x+10dx

Consider x2+4x+10=t(2x+4)dx=dt

I1=dtt=2t=2x2+4x+10......(2)

I2=1x2+4x+10dx

=1(x2+4x+4)+6dx=1(x+2)2+(6)2dx

=log|(x+2)x2+4x+10|...(3)

We obtain the below values by using equations (2) and (3) in (1). 5x+3x2+4x+10dx=52[2x2+4x+10]7log|(x+2)x2+4x+10|+C=5x2+4x+107log|(x+2)x2+4x+10|+C


24. dxx2+2x+2equals 

  1. xtan1(x+1)+C

  2. tan1(x+1)+C

  3. (x+1)tan1x+C

  4. tan1x+C

Ans: dxx2+2x+2=dx(x2+2x+1)+1

=1(x+1)2+(1)2dx

=[tan1(x+1)]+C

Hence, the right response is is B.


25. dx9x4x2 equals 

  1. 19sin1(9x88)+C

  2. 12sin1(8x99)+C

  3. 13sin1(9x88)+C

  4. 12sin1(9x89)+C

Ans:

             dx9x4x2

         =14(x294x)dx

    By completing square methods,

     =14(x294x+81648164)dx

=14[(x98)2(98)2]dx

=121(98)2(x98)2dx

=12[sin1(x9898)]+C(dya2y2=sin1ya+C)

   Simplifying,

 =12sin1(8x99)+C

Hence, the right response is B.


Exercise 7.5

1. x(x+1)(x+2)

Ans:   Let x(x+1)(x+2)=A(x+1)+B(x+2)

x=A(x+2)+B(x+1)

We obtain the below values by equating the coefficients of x  and the constant term on both sides. 

A+B=1

2 A+B=0

On solving, we get

A=1 and B=2

x(x+1)(x+2)=1(x+1)+2(x+2)

x(x+1)(x+2)dx=1(x+1)+2(x+2)dx

Using the logarithm formula of integration,

=log|x+1|+2log|x+2|+C

=log(x+2)2log|x+1|+C

Simplifying,

=log(x+2)2(x+1)+C


2. 1x29

Ans:  Let 1(x+3)(x3)=A(x+3)+B(x3)

1=A(x3)+B(x+3)

Equating the coefficients of xand constant term, we get

A+B=0 

1=3A+3B

A=16 and B=16

1(x+3)(x3)=16(x+3)+16(x3)

1(x29)dx=(16(x+3)+16(x3))dx

Using the logarithm formula of integration,

=16log|x+3|+16log|x3|+C=16log|(x3)||(x+3)|+C


3. 3x1(x1)(x2)(x3)

Ans: Let 3x1(x1)(x2)(x3)=A(x1)+B(x2)+C(x3)

3x1=A(x2)(x3)+B(x1)(x3)+C(x1)(x2)(1)

We obtain the below values by equating the coefficients of x , x2 and the constant term on both sides.

A+B+C=0

5 A4 B3C=3

6 A+3 B+2C=1

Solving these equations, to obtain 

A=1, B=5, and C=4

3x1(x1)(x2)(x3)=1(x1)5(x2)+4(x3)

3x1(x1)(x2)(x3)dx={1(x1)5(x2)+4(x3)}dx

Using the logarithm formula of integration,

=log|x1|5log|x2|+4log|x3|+C


4. x(x1)(x2)(x3)

Ans:Let x(x1)(x2)(x3)=A(x1)+B(x2)+C(x3)

x=A(x2)(x3)+B(x1)(x3)+C(x1)(x2)

We obtain the below values by equating the coefficients of x , x2 and the constant term on both sides.

A+B+C=0 

5 A4 B3 C=1

6 A+4 B+2 C=0

Solving these equations, to obtain 

A=12,B=2 and C=32

x(x1)(x2)(x3)=12(x1)2(x2)+32(x3)

x(x1)(x2)(x3)dx={12(x1)2(x2)+32(x3)}dx

Using the logarithm formula of integration,

=12log|x1|2log|x2|+32log|x3|+C


5. 2xx2+3x+2

 Ans:2xx2+3x+2=A(x+1)+B(x+2)

2 x=A(x+2)+B(x+1)

We obtain the below values by equating the coefficients of x , x2 and the constant term on both sides.

A+B=2

2 A+B=0

Solving these equations, we get

A=2 and B=4

2x(x+1)(x+2)=2(x+1)+4(x+2)

2x(x+1)(x+2)dx={4(x+2)2(x+1)}dx

Using the logarithm formula of integration,

=4log|x+2|2log|x+1|+C


6. 1x2x(12x)

Ans:  It can be seen that the given integrand is not a proper fraction.

Therefore, on dividing (1x2) by x(12x) to obtain, 1x2x(1+2x)=12+12(2xx(12x))

Let 2xx(12x)=Ax+B(12x)...(1)

(2x)=A(12x)+Bx

We obtain the below values by equating the coefficients of x , x2 and the constant term on both sides.

 2 A+B=1 and, A=2

Solving these equations, to obtain A=2 and B=3

2xx(12x)=2x+312x

Substituting in equation (1), we get

1x2x(1+2)=12+12{2x+3(12x)}

1x2x(1+2)dx=12+12(2x+3(12x))dx

Using the power rule and logarithm formula of integration,

=x2+log|x|+32(2)log|12x|+C=x2+log|x|34log|12x|+C


7. x(x2+1)(x1)

Ans: Let x(x2+1)(x1)=Ax+B(x2+1)+C(x1)...(1)

x=(Ax+B)(x1)+C(x2+1)

x=Ax2Ax+BxB+Cx2+C

We obtain the below values by equating the coefficients of x , x2 and the constant term on both sides.

A+C=0 

A+B=1

B+C=0

On solving these equations, to obtain  A=12,B=12,andC=12

From equation (1), to obtain  

x(x2+1)(x1)=(12x+12)x2+1+12(x1)

x(x2+1)(x1)=12xx2+1dx+121x2+1dx+121x1dx

=142xx2+1dx+12tan1x+12log|x1|+C

Consider 2xx2+1dx,lel(x2+1)=t2xdx=dt

2xx2+1dx=dtt=log|t|=log|x2+1|

x(x2+1)(x1)=14log|x2+1|+12tan1x+12log|x1|+C


=12log|x1|14log|x2+1|+12tan1x+C


8. .x(x1)2(x+2)

Ans: x(x1)2(x+2)

 Let x(x1)2(x+2)=A(x1)+B(x1)2+C(x+2)

x=A(x1)(x+2)+B(x+2)+C(x1)2

We obtain the below values by equating the coefficients of x , x2 and the constant term on both sides.

A+C=0

A+B2 C=1

On solving, to obtain

A=29 and C=29

B=13

x(x1)2(x+2)=29(x1)+13(x1)229(x2)

x(x1)2(x+2)dx=291(x1)dx+131(x1)2dx291(x2)dx

Using the power rule and logarithm formula of integration,

=29log|x1|+13(1x1)29log|x+2|+C

Simplifying,

=29log|x1x+2|13(x1)+C


9. 3x+5x3x2x+1

Ans:   3x+5x3x2x+1=3x+5(x1)2(x+1)

let  3x+5(x1)2(x+1)=A(x+1)+B(x1)2+C(x+1)

3x+5=A(x1)(x+1)+B(x+1)+(x1)2

3x+5=A(x1)2+B(x+1)+C(x2+12x)(1)

We obtain the below values by equating the coefficients of x , x2 and  

the constant term on both sides.

A+C=0 

B2 C=3 

A+B+C=5

On solving, to obtain   B=4A=12andC=12

3x+5(x1)2(x+1)=12(x1)+4(x1)2+12(x+1)

3x+5(x1)2(x+1)dx=121x1dx+41(x1)2dx+121(x+1)dx

Using the power rule and logarithm formula of integration,

=12log|x1|+4(1x1)+12log|x+1|+C

=12log|x+1x1|4(x1)+C


10. 2x3(x21)(2x+3)

Ans: 2x3(x21)(2x+3)=2x3(x+1)(x1)(2x+3)

Let 2x3(x+1)(x1)(2x+3)=A(x+1)+B(x1)+C(2x+3)

(2x3)=A(x1)(2x+3)+B(x+1)(2x+3)+C(x+1)(x1)

(2x3)A(2x2+x3)+B(2x2+5x3)+C(x21)

(2x3)=(2A+2B+C)x2+(A+5B)x+(3A+3BC)

We obtain the below values by equating the coefficients of x , x2 and the constant term on both sides.

2 A+2 B+C=0

A+5 B=2

3 A+3 BC=3

On solving, to obtain B=110,A=52, and C=245

2x3(x+1)(x1)(2x+3)=52(x+1)110(x1)245(2x+3)

2x3(x21)(2x+3)dx=521(x+1)dx1101x1dx2451(2x+3)dx

Using the logarithm formula of integration,

=52log|x+1|110log|x1|245×2log|2x+3|

Simplifying,

=52log|x+1|110log|x1|125log|2x+3|+C


11. 5x(x+1)(x24)

Ans: 5x(x+1)(x24)=5x(x+1)(x+2)(x2)

let 5x(x+1)(x+2)(x2)=A(x+1)+B(x+2)+C(x2)

5 x=A(x+2)(x2)+B(x+1)(x2)+C(x+1)(x+2)

We obtain the below values by equating the coefficients of x , x2 and the constant term on both sides.

A+B+C=0

B+3C=5 and, 4A2B+2C=0

On solving, to obtain

A=53,B=52, and C=56

5x(x+1)(x+2)(x2)=53(x+1)+52(x+2)+56(x2)

5x(x+1)(x24)dx=531(x+1)dx521(x+2)dx+561(x2)dx

Using the logarithm formula of integration,

=53log|x+1|52log|x+2|+56log|x2|+C


12. x2+x+1x21

 Ans:  On dividing (x3+x+1)byx21,we get

x3+x+1x21=x+2x+1x21

 Let 2x+1x21=A(x+1)+B(x1)

2 x+1=A(x1)+B(x+1)

We obtain the below values by equating the coefficients of x  and the constant term on both sides. 

A+B=2

A+B=1

On solving, to obtain  

A=12 and B=32 

x3+x+1x21=x+12(x+1)+32(x1) 

x3+x+1x2+1dx=xdx+121(x+1)dx+321(x1)dx

=x22+log|x+1|+32log|x1|+C


13. 2(1x)(1+x2)

Ans: Let 2(1x)(1+x2)=A(1x)+Bx+C(1+x2)

2=A(1+x2)+(Bx+C)(1x)

2=A+Ax2+BxBx2+CCx

We obtain the below values by equating the coefficients of x x2 and the constant term on both sides. 

AB=0

BC=0

A+C=2

On solving these equations, to obtain

A=1,B=1, and C=1

2(1x)(1+x2)=11x+x+11+x2

2(1x)(1+x2)dx=11xdx+x1+x2dx+11+x2dx

=11xdx+122x1+x2dx+11+x2dx

=log|x1|+12log|1+x2|+tan1x+C


14. 3x1(x+2)2

Ans:   Let 3x1(x+2)2=A(x+2)+B(x+2)2

3x1=A(x+2)+B

We obtain the below values by equating the coefficients of x  and the constant term on both sides. 

A=3

2A+B=1B=7

3x1(x+2)2=3(x+2)7(x+2)2

3x1(x+2)2dx=31(x+2)dx7x(x+2)2dx

Using the power rule and logarithm formula of integration

=3log|x+2|7(1(x+2))+C

=3log|x+2|+7(x+2)+C


15. 1x41

Ans:  1(x41)=1(x21)(x2+1)=1(x+1)(x1)(1+x2)

Let 1(x+1)(x1)(1+x2)=A(x+1)+B(x1)+Cx+D(x2+1) 

1=A(x1)(1+x2)+B(x+1)(1+x2)+(Cx+D)(x21)

1=A(x3+xx21)+B(x3+x+x2+1)+Cx3+Dx2CxD

1=(A+B+C)x3+(A+B+D)x2+(A+BC)x+(A+BD)

We obtain the below values by equating the coefficients ofx3,x2,x,and constant term, we get

A+B+C=0 

A+B+D=0

A+BC=0 

A+BD=1

A=14,B=14,C=0, and D=12

1(x41)=14(x+1)+14(x1)+12(x2+1)

1x41dx=14log|x1|+14log|x1|12tan1x+C

Simplifying,

=14log|x1x+1|12tan1x+C


16. 1x(xn+1)  [ Hint: Multiply numerator and denominator by xn1 and put xn=t ]

Ans: 1x(xn+1)

Numerator and denominator are multiplied by xn1, to obtain 

1x(xn+1)=xn1xn1x(xn+1)=xn1xn(xn+1)

Consider  xn=txn1dx=dt

1x(xn+1)dx=xn1xn(xn+1)dx=1n1t(t+1)dt

 Let 1t(t+1)=At+B(t+1)

1=A(1+t)+B t

We obtain the below values by equating the coefficients of tand constant, 

A=1 and B=1

1t(t+1)=1t1(1+t)

1x(xn+1)dx=1n{1t1(1+t)}dx

=1n[log|t|log|t+1|]+C

Substitute the value of t,

=1n[log|xn|log|xn+1|]+C

Simplifying,

=1nlog|xux+1|+C


17. cosx(1sinx)(2sinx) [ hint: Put sinx=t ]

Ans:  cosx(1sinx)(2sinx)Put,sinx=tcosxdx=dt

cosx(1sinx)(2sinx)dx=dt(1t)(2t)

let 1(1t)(2t)=A(1t)+B(2t) 

1=A(2t)+B(1t)

We obtain the below values by equating the coefficients of t and constant, 

2 AB=0,and2 A+B=1

A=1 and B=1

1(1t)(2t)=1(1t)1(2t)

cosx(1sinx)(2sinx)dx={11t1(2t)}dt=log|1t|+log|2t|+C Simplifying,

=log|2t1t|+C

Substitute the value of t,

=log|2sinx1sinx|+C


18. (x2+1)(x2+2)(x2+3)(x2+4)

Ans:  (x2+1)(x2+2)(x2+3)(x2+4)=(4x2+10)(x2+3)(x2+4)

Let (4x2+10)(x2+3)(x2+4)=Ax+B(x2+3)+Cx+D(x2+4)

4x2+10=(Ax+B)(x2+4)+(Cx+D)(x2+3)

4x2+10=Ax2+4Ax+Bx2+4B+Cx3+3Cx+Dx2+3D

4x2+10=(A+C)x3+(B+D)x2+(4A+3C)x+(4B+3D)

We obtain the below values by equating the coefficients of x3,x2,xand constant term, 

A+C=0

B+D=4

4 A+3 C=0

4 B+3 D=10

On solving these equations, to obtain A=0.B=2.C=0,andD=6

(4x2+10)(x2+3)(x2+4)=2(x2+3)+6(x2+4)

(x2+1)(x2+2)(x2+3)(x2+4)=(2(x2+3)+6(x2+4))

(x2+1)(x2+2)(x2+3)(x2+4)dx={1+2(x2+3)6(x2+4)}dx

={1+2x2+(3)26x2+22}

=x+2(13tan1x3)6(12tan1x2)+C

Simplifying,

=x+23tan1x33tan1x2+C


19. 2x(x2+1)(x2+3)

Ans:  2x(x2+1)(x2+3)

Put x2t2xdxdt

2x(x2+1)(x2+3)dx=dt(t+1)(t+3)

 Let 1(t+1)(t+3)=A(t+1)+B(t+3)

I=A(t+3)+B(t+1)

We obtain the below values by equating the coefficients of tand  

 constant, 

                                 1+B=0and 3A+B=1

On solving, we get

A=12 and B=12

1(t+1)(t+3)=12(t+1)+12(t+3)

2x(x2+1)(x2+3)dx={12(t+1)12(t+3)}dt

=12log|(t+1)|12log|t+3|+C

Simplifying,

=12log|t+1t+3|+C=12log|x2+1x2+3|+C


20. 1x(x41)

 Ans:  1x(x41)

Numerator and denominator are multiplied by by x3,we get

1x(x41)=x3x4(x41)

1x(x41)dx=x3x4(x41)dx

Consider x4=t4x3dx=dt

1x(x41)dx=14dtt(t1)

 Let 1t(t1)=At+B(t1)

1=A(t1)+Bt(1)

We obtain the below values by equating the coefficients of tand constant, 

A=1 and B=1

1t(t1)=1t+1t1

1x(x41)dx=14{1t+1t1}dt

Using the logarithm formula of integration,

=14[log|t|+log|t1|]+C

Simplifying,

=14log|t1t|+C=14log|x41x4|+C


21. 1ex1 [ hint: Put ex=t ]

Ans:  1(ex1)

Put ex=exdx=dt

1(ex1)dx=1t1×dtt=1t(t1)dt

 Let 1t(t1)=At+Bt1

1=A(t1)+B t

We obtain the below values by equating the coefficients of t and constant, A=1 and B=1

1t(t1)=1t+1t1

1t(t1)dt=log|t1t|+C

Substitute the value of t,

=log|ex1ex|+C


22. xdx(x1)(x2) equals

  1. log|(x1)2x2|+C

  2. log|(x2)2x1|+C

  3. log|(x1x2)2|+C

  4. log|(x1)(x2)|+C

 Ans:  Let x(x1)(x2)=A(x1)+B(x2)

x=A(x2)+B(x1)

We obtain the below values by equating the coefficients of xand constant,  A=1andB=2

x(x1)(x2)=1(x1)+2(x2)

x(x1)(x2)dx={1(x1)+2(x2)}dx

Using the logarithm formula of integration,

=log|x1|+2log|x2|+C

Simplifying,

=log|(x2)2x1|+C

Thus, the right response is B.


23. dxx(x2+1) equals 

  1. log|x|12log(x2+1)+C

  2. log|x|+12log(x2+1)+C

  3. log|x|+12log(x2+1)+C

  4. 12log|x|+log(x2+1)+C

Ans: Let 1x(x2+1)Ax,Bx+Cx2+1

1=A(x2+1)+(Bx+C)x

We obtain the below values by equating the coefficients of x2,x,     and constant term, 

A+B=0, C=0A=1

On solving these equations, to obtain

A=1,B=1, and C=0

1x(x2,1)=1x+xx2+1

1x(x2+1)dx={1xxx2+1}dx

=log|x|12log|x2+1|+C

Thus, the right response is A.


Exercise 7.6

1. xsinx

 Ans:  Let I=xsinxdx

Consider u=x and v=sinxand integrating by parts, to obtain  

I=xsinxdx{(ddxx)sinxdx}dx

=x(cosx)1.(cosx)dx

=xcosx+sinx+C


2. xsin3x

Ans: Let I=xsin3xdx

Consider u=x and v=sin3x and integrating by parts, to obtain  

I=xsin3xdx{(ddxx)sin3xdx}

=x(cos3x3)1(cos3x3)dx

=xcos3x3+13cos3xdx=xcos3x3+19sin3x+C


3. x2ex

Ans:  Let I=x2exdx

Consider  u=x2andv=ex

I=x2exdx{(ddxx2)exdx}dx

=x2ex2xexdx

=x2ex2xexdx

Again using integration by parts, to obtain

=x2ex2[xexdx{(ddxx2)exdx}dx]

=x2ex2[xexexdx]

Simplifying,

=x2ex2[xexex]

=x2ex2xex+2ex+C

=ex(x22x+2)+C


4. xlogx

Ans:  Let I=xlogxdx

Consider u=logxandv=x and integrating by parts, to obtain

I=logxxdx{(ddxlogx)xdx}dx

=logxx221xx22dx

=x2logx2x2dx=x2logx2x24+C


5. xlog2x

 Ans:  Let I=xlog2xdx

Consider u=log2x and v=xand integrating by parts, to obtain

I=log2xxdx{(ddx2logx)xdx}dx

=log2xx2222xx22dx

=x2log2x2x2dx

Integrating using the power rule

=x2log2x2x24+C


6. x2logx

 Ans: Let I=x2logxdx

Consider u=logxand v=x2 and integrating by parts, to obtain

I=logxx2dx{(ddxlogx)x2dx}dx

=logx(x33)1xx33dx

Integrating using the power rule

=x3logx3x23dx=x3logx3x39+C


7. xsin1x

 Ans: Let I=xsin1xdx

Consider u=sin1xandv=x and integrating by parts, to obtain

I=sin1xxdx{(ddxsin1x)xdx}dx

=sin1x(x22)11x2x22dx

=x2sin1x2+12x21x2dx

Adding and subtracting by 1

=x2sin1x2+12{1x21x211x2}dx

Simplifying,

=x2sin1x2+12{1x211x2}dx

=x2sin1x2+12{1x2dx11x2dx}

=x2sin1x2+12{x21x2+12sin1xsin1x}+C

Simplifying,      =x2sin1x2+x41x2+14sin1x12sin1x+C=14(2x21)in1x+x41x2+C


8. xtan1x

Ans: Let I=xtan1xdx

Consider u=tan1x and v=xand integrating by parts, to obtain

I=tan1xxdx{(ddxtan1x)xdx}dx

=tan1x(x22)11+x2x22dx=x2tan1x212x21+x2dx

Adding and subtracting by -1

=x2tan1x212(x2+11+x211+x2)dx=x2tan1x212(111+x2)dx

Simplifying,

=x2lan1x212(xtan1x)+C=x22tan1xx2+12tan1x+C


9. xcos1x

 Ans:Let I=xcos1xdx

 Taking u=cos1x and v=xand integrating by parts, to obtain

I=cos1xxdx{(ddxcos1x)xdx}dx

=cos1xx2211x2x22dx

Adding and subtracting by -1

=x2cos1x2121x211x2dx

Simplifying,

=x2cos1x212{1x2+(11x2)}dx

=x2cos1x2121x2dx12(11x2)dx

=x2cos1x212I112cos1x....(1)

Where I1=1x2dx

I1=x1x2ddx1x2xdxI1=x1x2x21x2dx

I1=x1x21x211x2dxI1=x1x2{1x2dx+dx1x2}

I1=x1x2{I1+cos1x}2I1=x1x2cos1x

I1=x21x212cos1x

Substituting in (1), we get

I=xcos1x212(x21x212cos1x)12cos1x

Simplifying,

=(2x21)4cos1xx41x2+C


10. (sin1x)2

Ans: Let I=(sin1x)21dx

Consider u=(sin1x)2 and v=1and integrating by parts, to obtain

I=(sin1x)1dx{ddx(sin1x)21.dx}dx

=(sin1x)2x2sin1x1x2xdx

=x(sin1x)2+sin1x(2x1x2)dx

=x(sin1x)2+[sin1x2x1x2dx{(ddxsin1x)2x1x2dx}dx]

=x(sin1x)2+[sin1x21x211x221x2dx]

=x(sin1x)2+21x2sin1x2dx

=x(sin1x)2+21x2sin1x2x+C


11. xcos1x1x2

Ans:  Let I=xcos1x1x2dx

Multiplying and dividing by 2

I=122x1x2cos1xdx

Consider  u=cos1x and v=(2x1x2)and integrating by parts, to obtain

I=12[cos1x2x1x2dx{(ddxcos1x)2x1x2dx}dx]

=12[cos1x21x211x221x2dx]=12[21x2cos1x+2dx]

Simplifying,

=12[21x2cos1x+2x]+C

=[1x2cos1x+x]+C


12. xsec2x

 Ans:Let I=xsec2xdx

Consideru=x and v=sec2x and integrating by parts, to obtain

I=xsec2xdx{{ddxx}sec2xdx}dx

=xtanx1tanxdx

=xtanx+log|cosx|+C


13. tan1x

Ans: Let I=1tan1xdx

Consider u=tan1x and v=1 and integrating by parts, to obtain

I=tan1x1dx{(ddxtan1x)1.dx}dx=tan1xx11+x2xd

=xtan1x122x1+x2dx

=xtan1x12log|1+x2|+C 

=xtan1x12log(1+x2)+C


14. x(logx)2dx

Ans:  I=x(logx)2dx

Consideru=(logx)2 and v=1 and integrating by parts, to obtain

I=(log)2xdx[{(ddxlogx)2}xdx]dx

=x22(logx)2[2logx1xx22dx]

=x22(logx)2xlogxdx

Again using integration by parts, to obtain

I=x22(logx)2[logxxdx{(ddxlogx)xdx}dx]

=x22(logx)2[x22logx1xx22dx]

=x22(logx)2x22logx+12xdx=x22(logx)2x22logx+x24+C


15. (x2+1)logx

 Ans: Let I=(x2+1)logxdx=x2logxdx+logxdx

Let I=I1+I2(1)

Where,I1=x2logxdxandI2=logxdx

I1=x2logxdx 

Consideru=logx and v=x2 and integrating by parts, to obtain

I1=logxx2dx{(ddxlogx)x2dx}dx

=logxx331xx33dx=x33logx13x2dx

=x33logxx39+C1(2)

I2=logxdx

Consider u=logx and v=1and integrating by parts, to obtain

I2=logx1.dx{(ddxlogx)1.dx}

=logxx1xxdx

=xlogxx..(3)

Using equations (2) and (3) in (1), we get

I=x33logxx39+C1+xlogxx+C2

=x33logxx39+xlogxx+(C1+C2)

=(x33+x)logxx39x+C


16. ex(sinx+cosx)

Ans: ConsiderI=ex(sinx+cosx)dx

Considerf(x)=sinx

f(x)=cosx

I=ex{f(x)+f(x)}dx

Since, ex{f(x)+f(x)}dx=exf(x)+C

I=exsinx+C


17. xex(1+x)2

Ans:  Consider I=xex(1+x)2dx=ex{x(1+x)2}dx

=ex{1+x1(1+x)2}dx=ex{11+x1(1+x)2}dx

Here, f(x)=11+xf(x)=1(1+x)2

xex(1+x)2dx=ex{f(x)+f(x)}dx

Since, ex{f(x)+f(x)}dx=exf(x)+C

xex(1+x)2dx=ex1+x+C


18. Integrate the function - ex(1+sinx1+cosx)

Ans: First simplify –ex(1+sinx1+cosx)

It is known that – 

1+sinx=sin2x2+cos2x2+2sinx2cosx2

1+cosx=2cos2x2

ex(1+sinx1+cosx)=ex(sin2x2+cos2x2+2sinx2cosx22cos2x2)

=ex((sinx2+cosx2)22cos2x2)

=12ex((sinx2+cosx2)2cos2x2)

=12ex(sinx2+cosx2cosx2)2

=12ex(sinx2cosx2+cosx2cosx2)2

=12ex(tanx2+1)2

=12ex(tan2x2+1+2tanx2)

But, 1+tan2x2=sec2x2

=12ex(sec2x2+2tanx2)

=ex(12sec2x2+tanx2)

ex(1+sinx1+cosx)=ex(12sec2x2+tanx2)

It is known that, ex{f(x)+f(x)}dx=exf(x)+C

If we say, f(x)=tanx2f(x)=12sec2x2

Thus, we get – ex(1+sinx1+cosx)dx=extanx2+C


19. Integrate the function - ex(1x1x2)

Ans: Say, I=ex(1x1x2)dx

Suppose, f(x)=1xf(x)=1x2

It is known that, ex{f(x)+f(x)}dx=exf(x)+C

Thus, we get – I=ex(1x1x2)dx=exx+C


20. Integrate the function - (x3)ex(x1)3

Ans: ex(x3)(x1)3dx=ex[(x12)(x1)3]dx

=ex[(x1)(x1)32(x1)3]dx

=ex[1(x1)22(x1)3]dx

Suppose, f(x)=1(x1)2f(x)=2(x1)3

It is known that, ex{f(x)+f(x)}dx=exf(x)+C

Thus, ex(x3)(x1)3dx=ex(x1)2+C


21. Integrate the function - e2xsinx

Ans: Say,  I=e2xsinxdx

Perform Integration by parts – uvdx=uvdx(uvdx)dx

With –u=sinx v=e2x

I=e2xsinxdx=sinxe2xdx[(ddxsinx)e2xdx]dx

=sinxe2x2[(cosx)e2x2]dx

=sinxe2x212(e2xcosx)dx

Perform Integration by parts for – (e2xcosx)dx

=sinxe2x212{cosxe2xdx[(ddxcosx)e2xdx]dx}

=sinxe2x212{cosxe2x2[(sinx)e2x2]dx}

=sinxe2x212{cosxe2x2+12(sinx)e2xdx}

=sinxe2x2e2xcosx414{(sinx)e2xdx}

But, I=e2xsinxdx

I=sinxe2x2e2xcosx414I

I+14I=sinxe2x2e2xcosx4

54I=e2xsinx2e2xcosx4

54I=2e2xsinx4e2xcosx4

5I=e2x(2sinxcosx)

Thus, we get – I=e2x5(2sinxcosx)+C.


22. Integrate the function - sin1(2x1+x3)

Ans: Say, x=tanθ dx=sec2θdθ

sin1(2x1+x3)=sin1(2tanθ1+tan3θ)

But, sin2θ=2tanθ1+tan3θ

sin1(2x1+x3)=sin1(2tanθ1+tan3θ)=∴sin1(2x1+x3)=sin1(sin2θ)=2θ

Therefore, sin1(2x1+x3)dx=2θsec2θdθ

=2θsec2θdθ

Perform Integration by parts – uvdx=uvdx(uvdx)dx

With –u=θ v=sec2θ

2θsec2θdθ=2{θsec2θdθ[(ddθθ)sec2θdθ]dθ}

=2{θtanθ[tanθ]dθ}

=2{θtanθ(log|cosθ|)}+C

=2{θtanθ+log|cosθ|}+C

Replace θ=tan1x

=2{tan1xtan(tan1x)+log|cos(tan1x)|}+C

It is known that – tan1x=cos111+x2

=2{tan1x(x)+log|cos(cos111+x2)|}+C

=2{xtan1x+log|11+x2|}+C

=2{xtan1x+log(1+x2)12}+C

Here, logmn=nlogm

=2{xtan1x12log(1+x2)}+C

=2xtan1xlog(1+x2)+C

Thus, sin1(2x1+x3)dx=2xtan1xlog(1+x2)+C


23. Choose the correct answer: x2ex3dx equals

  1. 13ex3+C

  2. 13ex2+C

  3. 12ex3+C

  4. 12ex2+C

Ans: Say, I=x2ex3dx

Suppose, t=x3dt=3x2dx

Rewriting the equation – I=x2ex3dx=13etdt

I=13etdt=13et+C

Replacing t=x3

I=13ex3+C

The correct option is A.


24. Choose the correct answer: exsecx(1+tanx)dx

  1. excosx+C

  2. exsecx+C

  3. exsinx+C

  4. extanx+C

Ans: Say, I=exsecx(1+tanx)dx

I=ex(secx+secxtanx)dx

Suppose, f(x)=secxf(x)=secxtanx

It is known that, ex{f(x)+f(x)}dx=exf(x)+C

I=ex(secx+secxtanx)dx=exsecx+C

Thus, I=exsecx+C

The correct option is B.


Exercise 7.7

1. Integrate the function - 4x2

Ans: Say, I=4x2dx=22x2dx

It is known that – a2x2dx=x2a2x2+a22sin1xa+C

I=22x2dx=x222x2+222sin1x2+C

I=x24x2+2sin1x2+C

Thus, 4x2dx=x24x2+2sin1x2+C


2. Integrate the function - 14x2

Ans: Say, I=14x2dx=12(2x)2dx

Let, 2x=t2dx=dt

x=t2dx=dt2

So, we get – I=12[2(t2)]2dt2=1212[t]2dt

I=1212[t]2dt

It is known that – a2x2dx=x2a2x2+a22sin1xa+C

I=12[t21t2+12sin1t]+C

I=[t41t2+14sin1t]+C

Replace – t=2x

I=[2x41(2x)2+14sin12x]+C

I=[x214x2+14sin12x]+C

Thus,14x2dx=x214x2+14sin12x+C


3. Integrate the function - x2+4x+6

Ans: First simplify –x2+4x+6

x2+4x+6=x2+4x+4+2

=(x2+4x+4)+2=(x+2)2+(2)2

x2+4x+6=(x+2)2+(2)2

x2+4x+6dx=(x+2)2+(2)2dx

It is known that – x2+a2dx=x2x2+a2+a22log|x+x2+a2|+C

(x+2)2+(2)2dx=x+22(x+2)2+(2)2+(2)22log|(x+2)+(x+2)2+(2)2|+C=x+22x2+4x+6+22log|(x+2)+x2+4x+6|+C

Thus, x2+4x+6dx=x+22x2+4x+6+log|(x+2)+x2+4x+6|+C


4. Integrate the function - x2+4x+1

Ans: First simplify –x2+4x+1

x2+4x+1=x2+4x+43

=(x2+4x+4)3=(x+2)2(3)2

x2+4x+1=(x+2)2(3)2

x2+4x+1dx=(x+2)2(3)2dx

It is known that – x2a2dx=x2x2a2a22log|x+x2a2|+C

(x+2)2(3)2dx=x+22(x+2)2(3)2(3)22log|(x+2)+(x+2)2(3)2|+C=x+22x2+4x+132log|(x+2)+x2+4x+1|+C

Thus, x2+4x+1dx=x+22x2+4x+132log|(x+2)+x2+4x+1|+C


5. Integrate the function - 14xx2

Ans: First simplify –14xx2

14xx2=14xx24+4=1+4(x2+4x+4)

=5(x2+4x+4)=(5)2(x+2)2

14xx2=(5)2(x+2)2

14xx2dx=(5)2(x+2)2dx

It is known that – a2x2dx=x2a2x2+a22sin1xa+C

(5)2(x+2)2dx=x+22(5)2(x+2)2+(5)22sin1x+25+C=x+2214xx2+52sin1x+25+C

Thus, 14xx2dx=x+2214xx2+52sin1x+25+C


6. Integrate the function - x2+4x+5

Ans: First simplify –x2+4x5

x2+4x5=x2+4x5+44=(x2+4x+4)54

=(x2+4x+4)9=(x+2)2(3)2

x2+4x5=(x+2)2(3)2

x2+4x5dx=(x+2)2(3)2dx

It is known that – x2a2dx=x2x2a2a22log|x+x2a2|+C

(x+2)2(3)2dx=x+22(x+2)2(3)2(3)22log|(x+2)+(x+2)2(3)2|+C=x+22x2+4x592log|(x+2)+x2+4x5|+C

Thus, x2+4x5dx=x+22x2+4x592log|(x+2)+x2+4x5|+C


7. Integrate the function - 1+3xx2

Ans: First simplify –1+3xx2

1+3xx2=1x2+3x+9494=1+94(x23x+94)

=9+44(x23x+94)=(134)(x23x+94)=(132)2(x32)2

1+3xx2=(132)2(x32)2

1+3xx2dx=(132)2(x32)2dx

It is known that – a2x2dx=x2a2x2+a22sin1xa+C

(132)2(x32)2dx=(x32)2(132)2(x32)2+(132)22sin1(x32)(132)+C=2x341+3xx2+138sin12x313+C

Thus, 1+3xx2dx=2x341+3xx2+138sin12x313+C


8. Integrate the function - x2+3x

Ans: First simplify –x2+3x

x2+x=x2+3x+9494=(x2+3x+94)94

=(x+32)2(94)=(x+32)2(32)2

x2+3x=(x+32)2(32)2

x2+3xdx=(x+32)2(32)2dx

It is known that – x2a2dx=x2x2a2a22log|x+x2a2|+C

(x+32)2(32)2dx=(x+32)2(x+32)2(32)2(32)22log|(x+32)+(x+32)2(32)2|+C=2x+34x2+3x98log|(x+32)+x2+3x|+C

Thus, x2+3xdx=2x+34x2+3x98log|(x+32)+x2+3x|+C


9. Integrate the function - 1+x29

Ans: First simplify –1+x29

1+x29=19(9+x2)=19(32+x2)

1+x29=19(32+x2)=13(32+x2)

1+x29dx=13(32+x2)dx=13(32+x2)dx

It is known that – x2+a2dx=x2x2+a2+a22log|x+x2+a2|+C

13(32+x2)dx=13{x2(x)2+(3)2+(3)22log|(x)+(x)2+(3)2|}+C=13{x2x2+9+92log|x+x2+9|}+C

x6x2+9+32log|x+x2+9|+C
Thus, 1+x29dx=x6x2+9+32log|x+x2+9|+C


10. Choose the correct answer: 1+x2dx is equal to –

  1. x21+x2+12log|(x+1+x2)|+C

  2. 23(1+x2)32+C

  3. 23x(1+x2)32+C

  4. x221+x2+12x2log|(x+1+x2)|+C

Ans: It is known that – x2+a2dx=x2x2+a2+a22log|x+x2+a2|+C

Thus,  x2+12dx=x2x2+12+122log|x+x2+12|+C

x2+1dx=x2x2+1+12log|x+x2+1|+C

The correct answer is option A.


11. Choose the correct answer: x28x+7dx is equal to –

  1. 12(x4)x28x+7+9log|(x4+x28x+7)|+C

  2. 12(x+4)x28x+7+9log|(x+4+x28x+7)|+C

  3. 12(x4)x28x+732log|(x4+x28x+7)|+C

  4. 12(x4)x28x+7+92log|(x4+x28x+7)|+C

Ans: First simplify –x28x+7

x28x+7+99=x28x+169=(x28x+16)9

=(x4)2(3)2

x28x+7=(x4)2(3)2

x28x+7dx=(x4)2(3)2dx

It is known that – x2a2dx=x2x2a2a22log|x+x2a2|+C

(x4)2(3)2dx=(x4)2(x4)2(3)2(3)22log|(x4)+(x4)2(3)2|+C=x42x28x+792log|(x4)+x28x+7|+C

Thus, x28x+7dx=x42x28x+792log|(x4)+x28x+7|+C

The correct answer is option D


Exercise 7.8

1. Evaluate the definite integral– 11(x+1)dx

Ans: The second fundamental theorem of integral calculus states that – abf(x)dx=F(b)F(a)

 Here, (x+1)dx=x22+x

So, 11(x+1)dx=[x22+x]11

=[122+1][(1)22+(1)]

=[12+1][121]

=12+112+1=2

Thus, 11(x+1)dx=2


2. Evaluate the definite integral– 231xdx

Ans: The second fundamental theorem of integral calculus states that – abf(x)dx=F(b)F(a)

 Here, 1xdx=log|x|

So, 231xdx=[log|x|]23

=[log|3|][log|2|]

=log32

Thus, 231xdx=log32


3. Evaluate the definite integral– 12(4x35x2+6x+9)dx

Ans: The second fundamental theorem of integral calculus states that – abf(x)dx=F(b)F(a)

 Here, (4x35x2+6x+9)dx=4(x44)5(x33)+6(x22)+9x

=x45x33+3x2+9x

So,  12(4x35x2+6x+9)dx=[x45x33+3x2+9x]12

=[245(2)33+3(2)2+9(2)][145(1)33+3(1)2+9(1)]

=[16403+12+18][153+3+9]

=[46403][1353]

=4640313+53

=33353

=99353

=643

Thus, 12(4x35x2+6x+9)dx=643


4. Evaluate the definite integral– 0π4sin2xdx

Ans: The second fundamental theorem of integral calculus states that – abf(x)dx=F(b)F(a)

 Here, sin2xdx=cos2x2

So, 0π4sin2xdx=[cos2x2]0π4

=[cos2(π4)2][cos02]

=[cos(π2)2]+[12]

=[02]+[12]

=12

Thus, 0π4sin2xdx=12


5. Evaluate the definite integral– 0π2cos2xdx

Ans: The second fundamental theorem of integral calculus states that – abf(x)dx=F(b)F(a)

 Here, cos2xdx=sin2x2

So, 0π2cos2xdx=[sin2x2]0π2

=[sin2(π2)2][sin02]

=[sinπ2]+[02]

=0+0

=0

Thus,  0π2cos2xdx=0


6. Evaluate the definite integral– 45exdx

Ans: The second fundamental theorem of integral calculus states that – abf(x)dx=F(b)F(a)

 Here, exdx=ex

So, 45exdx=[ex]45

=[e5][e4]

=e4(e1)

Thus, 45exdx=e4(e1)


7. 0π4tanxdx

Ans: We know that,

tanxdx=log|cosx|+C

Therefore, by second fundamental theorem of calculus

tanxdx=[log|cosx|]0π4

0π4tanxdx=[log|cosπ4|+log|cos0|]

0π4tanxdx=[log|12|+log|1|]

0π4tanxdx=12log2


8. π6π4cosecxdx

Ans: We know that,

cosecxdx=log|cosecxcotx|+C

Therefore, by second fundamental theorem of calculus

π6π4cosecxdx=[log|cosecxcotx|]π6π4

π6π4cosecxdx=[log|cosecπ4cotπ4|log|cosecπ6cotπ6|]

π6π4cosecxdx=[log|21|log|23|]

π6π4cosecxdx=log(2123)


9. 0111x2dx

Ans: We know that,

11x2dx=sin1x+C

Therefore, by second fundamental theorem of calculus

0111x2dx=[sin1x]01

0111x2dx=[sin11sin10]

0111x2dx=[π20]

0111x2dx=π2


10. 0111+x2dx

Ans: We know that,

11+x2dx=tan1x+C

Therefore, by second fundamental theorem of calculus

0111+x2dx=[tan1x]01

0111+x2dx=[tan11tan10]

0111+x2dx=[π40]

0111+x2dx=π4


11. 231x21dx

Ans: We know that,

1x21dx=12log|x1x+1|+C

Therefore, by second fundamental theorem of calculus

231x21dx=12[log|x1x+1|]23

231x21dx=12[log|313+1|log|212+1|]

231x21dx=12[log12log13]

231x21dx=12log32


12. 0π4cos2xdx

Ans: We know that,

cos2xdx=(1+cos2x2)dx

cos2xdx=x2+sin2x4

Therefore, by second fundamental theorem of calculus

0π4cos2xdx=[x2+sin2x4]0π4

0π4cos2xdx=12[π2sinπ20sin02]

0π4cos2xdx=12[π2+000]

0π4cos2xdx=π4


13. 23xdxx2+1

Ans: We know that,

xdxx2+1=12(2xx2+1)dx

xdxx2+1=12log(1+x2)

Therefore, by second fundamental theorem of calculus

23xdxx2+1=[log(1+32)log(1+22)]23

23xdxx2+1=12[log10log5]

23xdxx2+1=12log105

23xdxx2+1=14log2


14. 012x+35x2+1dx

Ans: Solving 2x+35x2+1dx ,

2x+35x2+1dx=155(2x+3)5x2+1dx

2x+35x2+1dx=1510x+155x2+1dx

2x+35x2+1dx=1510x5x2+1dx+315x2+1dx

2x+35x2+1dx=1510x5x2+1dx+315(x2+15)dx

2x+35x2+1dx=15log(5x2+1)+35tan1(5)x

Therefore, by second fundamental theorem of calculus

012x+35x2+1dx={15log(5+1)+35tan1(5)x}{15log(1)+35tan10}

012x+35x2+1dx=15log6+35tan15


15. 01xex2dx

Ans: Let x2=t ,

Differentiating it we get,

2xdx=dt

Therefore, the integral becomes,

1201etdt

1201etdt=[12et]01

1201etdt=12e12e0

12(e1)


16. 125x2x2+4x+3dx

Ans: The given integral can be written as

125x2x2+4x+3dx=12{520x+15x2+4x+3}dx

125x2x2+4x+3dx=[5x]121220x+15x2+4x+3dx                             …(1)

Solving 1220x+15x2+4x+3dx ,

Let 20x+15=Addx(x2+4x+3)+B

Equating the coefficients of x and constant term we get,

A=10,B=25

Let x2+4x+3=t

Differentiating it we get,

(2x+4)dx=dt

Therefore, the integral becomes

10dtt25dx(x+2)212

10dtt25dx(x+2)212=10logt25[12log(x+21x+2+1)]

1220x+15x2+4x+3dx=[10log(x2+4x+3)25[12log(x+1x+3)]]12

1220x+15x2+4x+3dx=10log1510log825[12log3512log24]

1220x+15x2+4x+3dx=10log5+10log310log410log2252[log3log5log2+log4]

1220x+15x2+4x+3dx=452log5452log452log3+52log2

1220x+15x2+4x+3dx=452log5452log32

Substituting it in (1) we get,

125x2x2+4x+3dx=5[452log5452log32]

125x2x2+4x+3dx=552[9log54log32]


17. 0π4(2sec2x+x3+2)dx

Ans: We know that,

(2sec2x+x3+2)dx=2tanx+x44+2x

Therefore, by second fundamental theorem of calculus

(2sec2x+x3+2)dx=[2tanx+x44+2x]0π4

(2sec2x+x3+2)dx=[2tanπ4+14(π4)2+2(π4)(2tan0+0+0)]

(2sec2x+x3+2)dx=2tanπ4+π445+π2

(2sec2x+x3+2)dx=2+π2+π41024


18. 0π(sin2x2cos2x2)dx

Ans: We know that,

0π(sin2x2cos2x2)dx=0π(cos2x2sin2x2)dx

0π(cos2x2sin2x2)dx=0πcosxdx

cosxdx=sinx+C

Therefore, by second fundamental theorem of calculus

0πcosxdx=sinπsin0

0πcosxdx=0


19. 026x+3x2+4dx

Ans: Solving the integral we get,

6x+3x2+4dx=32x+1x2+4dx

6x+3x2+4dx=32xx2+4dx+31x2+4dx

6x+3x2+4dx=3log(x2+4)+32tan1x2

Therefore, by second fundamental theorem of calculus

026x+3x2+4dx=[3log(x2+4)+32tan1x2]02

026x+3x2+4dx=[3log(22+4)+32tan1223log(02+4)32tan102]

026x+3x2+4dx=3log8+32tan113log432tan10

026x+3x2+4dx=3log8+32(π4)3log40

026x+3x2+4dx=3log84+3π8

026x+3x2+4dx=3log2+3π8


20. 01(xex+sinπx4)dx

Ans: Solving the integral we get,

01(xex+sinπx4)dx=xexdx{(ddxx)exdx}dx+{cosπx4π4}

01(xex+sinπx4)dx=xexexdx4πcosx4

01(xex+sinπx4)dx=xexex4πcosx4

Therefore, by second fundamental theorem of calculus

01(xex+sinπx4)dx=(1e1e14πcosπ4)(0e0e04πcos0)

01(xex+sinπx4)dx=(1+4π22π)


21. 1311+x2dx

  1. π3

  2. 2π3

  3. π6

  4. π12

Ans: Solving the integral we get,

1311+x2dx=tan1x

Therefore, by second fundamental theorem of calculus

1311+x2dx=tan13tan11

1311+x2dx=π3π4

1311+x2dx=π12

Thus, the correct option is (D)


22. 02314+9x2dx

  1. π6

  2. π12

  3. π24

  4. π4

Ans: Solving the integral we get,

14+9x2dx=122+(3x)2dx

Let 3x=t ,

Differentiating it we get,

3dx=dt

122+(3x)2dx=16tan1(3x2)

Therefore, by second fundamental theorem of calculus

02314+9x2dx=16tan1(3223)16tan10

02314+9x2dx=16π4

02314+9x2dx=π24

Thus, the correct answer is (C).


Exercise 7.9

Solve the following integrals.

1. 01xx2+1dx

Ans: Let x2+1

Differentiating 2xdx=dt ,

Therefore, the integral becomes

01xx2+1dx=1212dtt

01xx2+1dx=12[log|t|]12

01xx2+1dx=12[log2log1]

01xx2+1dx=12log2


2. 0π2sinϕcos5ϕdϕ

Ans: The integral can be written as:

0π2sinϕcos5ϕdϕ=0π2sinϕcos4ϕcosϕdϕ

0π2sinϕcos5ϕdϕ=64231

Let sinϕ=t

Differentiating it we get,

cosϕdϕ=dt

Therefore, the integral becomes

0π2sinϕcos5ϕdϕ=01t(1t2)2dt

0π2sinϕcos5ϕdϕ=01t(1+t42t2)dt

0π2sinϕcos5ϕdϕ=01(t12+t922t52)dt

0π2sinϕcos5ϕdϕ=[t3232+t1121122t7272]01

0π2sinϕcos5ϕdϕ=23+21147

0π2sinϕcos5ϕdϕ=154+42132231

0π2sinϕcos5ϕdϕ=64231


3. 01sin1(2x1+x2)dx

Ans: Let x=tanθ

Differentiating it we get,

dx=sec2θdθ

Therefore, the integral becomes

01sin1(2x1+x2)dx=0π4sin1(2tanθ1+(tanθ)2)sec2θdθ

01sin1(2x1+x2)dx=0π4sin1(sin2θ)sec2θdθ

01sin1(2x1+x2)dx=20π4θsec2θdθ

Let u=θ

And v=sec2θ

Using integration by parts we get,

01sin1(2x1+x2)dx=2[θsec2θdθ{(ddθθ)sec2θdθ}dθ]0π4

01sin1(2x1+x2)dx=2[θtanθtanθdθ]0π4

01sin1(2x1+x2)dx=2[θtanθlog|cosθ|]0π4

01sin1(2x1+x2)dx=2[π4tanπ4log|cosπ4|log|cos0|]

01sin1(2x1+x2)dx=2[π4log|12|log1]

01sin1(2x1+x2)dx=π2log2


4. 02xx+2dx 

(Put x+2=t2)

Ans: Let x+2=t2

Differentiating it, dx=2tdt

Therefore, the integral becomes

02xx+2dx=222t2(t22)dt

02xx+2dx=2[t552t33]22

02xx+2dx=2[355163425+423]

02xx+2dx=162(2+1)15


5. 0π2sinx1+cos2xdx

Ans: Let cosx=t

Differentiating it, sinxdx=dt

Therefore, the integral becomes

0π2sinx1+cos2xdx=10dt1+t2

0π2sinx1+cos2xdx=[tan1t]10

0π2sinx1+cos2xdx=[tan10tan11]

0π2sinx1+cos2xdx=π4


6. 021x+4x2dx

Ans: The integral can be written as

021x+4x2dx=02dx((x12)2174)

021x+4x2dx=02dx((172)2(x12)2)

Let x12=t

Differentiating it we get,

dx=dt

Therefore, the integral becomes

021x+4x2dx=1232dt((172)2(t)2)

1232dt((172)2(t)2)=[12(172)log(172)+t(172)t]1232

1232dt((172)2(t)2)=117[log(172)+32(172)32log(172)12(172)+12]

1232dt((172)2(t)2)=117[log17+3173log17117+1]

1232dt((172)2(t)2)=117[log17+3173×17+1171]

1232dt((172)2(t)2)=117[log25+17+10178]

021x+4x2dx=117[log21+5174]


7. 111x2+2x+5dx

Ans: The integral can be written as

111x2+2x+5dx=111(x1)2+22dx

Let x+1=t

Differentiating it we get,

dx=dt

Therefore, the integral becomes

111x2+2x+5dx=02dtt2+22

111x2+2x+5dx=[12tan1t2]02

111x2+2x+5dx=[12tan1112tan10]

111x2+2x+5dx=π8


8. 12(1x12x2)e2xdx

Ans: Let 2x=t

Differentiating it 2dx=dt ,

Therefore, the integral becomes

12(1x12x2)e2xdx=1221(2t2t2)etdt

12(1x12x2)e2xdx=21(1t1t2)etdt

Let 1t=f(t)

Then, f(t)=1t2

21(1t1t2)etdt=21[f(t)+f(t)]etdt

21(1t1t2)etdt=[etf(t)]24

21(1t1t2)etdt=[ett]24

21(1t1t2)etdt=e44e22

12(1x12x2)e2xdx=e2(e22)4


9. The value of the integral 131(xx3)13x4dx

  1. 6

  2. 0

  3. 3

  4. 4

Ans: Let x=sinθ

Differentiating it, dx=cosθdθ

Therefore, the integral becomes

131(xx3)13x4dx=sin113π2(sinθsin3θ)13sin4θcosθdθ

sin113π2(sinθsin3θ)13sin4θcosθdθ=sin113π2(sinθ)13(cosθ)23sin4θcosθdθ

sin113π2(sinθsin3θ)13sin4θcosθdθ=sin113π2(cosθ)53sin53θcosec2θdθ

sin113π2(sinθsin3θ)13sin4θcosθdθ=sin113π2(cotθ)53cosec2θdθ

Let cotθ=t

Differentiating it, cosec2θdθ=dt

Therefore, the integral becomes

131(xx3)13x4dx=220t53dt

131(xx3)13x4dx=38883

131(xx3)13x4dx=38×16

131(xx3)13x4dx=6

Thus, the correct answer is A.


10. If f(x)=0xtsintdt ,then f(x) is

  1. cosx+xsinx

  2. xsinx

  3. xcosx

  4. sinx+xcosx

Ans: Given f(x)=0xtsintdt

Using Integration by parts, we get

f(x)=t0xsintdt0x{(ddtt)sintdt}dt

f(x)=[t(cost)]0x0xcottdt

f(x)=[t(cost)+sint]0x

f(x)=xcosx+sinx

Therefore,

f(x)=[xsinx+cosx]+cosx

f(x)=xsinx

Thus, the correct answer is B.


Exercise 7.10

Solve the following integrals.

1. 0π2cos2xdx

Ans: Given I=0π2cos2xdx                     …(1)

We know that,

0af(x)dx=0af(ax)dx

Therefore, the integral becomes

I=0π2cos2(π2x)dx

I=0π2sin2xdx                          …(2)

Adding equation (1) and (2),

2I=0π2(sin2x+cos2x)dx

2I=0π21dx

2I=[x]0π2

2I=π2

I=π4

0π2cos2xdx=π4


2. 0π2sinxsinx+cosxdx

Ans: Given I=0π2sinxsinx+cosxdx                     …(1)

We know that,

0af(x)dx=0af(ax)dx

Therefore, the integral becomes

I=0π2sin(π2x)sin(π2x)+cos(π2x)dx

I=0π2cosxsinx+cosxdx                                         …(2)

Adding equation (1) and (2),

2I=0π2sinx+cosxsinx+cosxdx

2I=0π21dx

2I=[x]0π2

2I=π2

I=π4

0π2sinxsinx+cosxdx=π4


3. 0π2sin32xdxsin32x+cos32x

Ans: Given I=0π2sin32xdxsin32x+cos32x                        …(1)

We know that,

0af(x)dx=0af(ax)dx

Therefore, the integral becomes

I=0π2sin32(π2x)dxsin32(π2x)+cos32(π2x)

I=0π2cos32xdxsin32x+cos32x                                         …(2)

Adding equation (1) and (2),

2I=0π2sin32x+cos32xsin32x+cos32xdx

2I=0π21dx

2I=[x]0π2

2I=π2

I=π4

0π2sin32xdxsin32x+cos32x=π4


4. 0π2cos5xdxsin5x+cos5x

Ans: Given I=0π2cos5xdxsin5x+cos5x                        …(1)

We know that,

0af(x)dx=0af(ax)dx

Therefore, the integral becomes

I=0π2cos5(π2x)dxsin5(π2x)+cos5(π2x)

I=0π2sin5xdxsin5x+cos5x                                         …(2)

Adding equation (1) and (2),

2I=0π2sin5x+cos5xsin5x+cos5xdx

2I=0π21dx

2I=[x]0π2

2I=π2

I=π4

0π2cos5xdxsin5x+cos5x=π4


5. 55|x+2|dx

Ans:  Let I=55|x+2|dx 

Since, (x+2)0 for interval [5,2] .

Therefore, (x+2)0 for interval [2,5].

As, abf(x)dx=acf(x)dx+cbf(x)dx

Hence, 52(x+2)dx+25(x+2)dx .

Thus, 

I=52(x+2)dx+25(x+2)dx

=[x22+2x]52+[x22+2x]25

=[(2)22+2(2)(5)222(5)]+[(5)22+2(5)(2)222(2)]=[24252+10]+[252+102+4]

=2+4+252+10+252+102+4

=29


6. 28|x5|dx

Ans: Let I=28|x5|dx 

Since, (x5)0 for interval [2,5] .

Therefore, (x5)0 for interval [5,8].

As, abf(x)dx=acf(x)dx+cbf(x)dx

Hence, 25(x5)dx+58(x5)dx .

Thus, 

I=25(x5)dx+58(x5)dx

=[x225x]25+[x225x]58

=[(5)225(5)(2)22+5(2)]+[(8)225(8)(5)22+5(5)]

=[252252+10]+[3240252+25]

=252+25+210+3240252+25

=9


7. 01x(1x)ndx

Ans: Let  I=01x(1x)ndx

Thus, I=01(1x)(1(1x))ndx

Since, 1af(x)dx=0af(ax)dx.

Therefore, 

01(1x)(x)ndx

=01(xnxn+1)dx

=[xn+1n+1xn+2n+2]01

=[1n+11n+2]

=(n+2)(n+1)(n+1)(n+2)

=1(n+1)(n+2)


8. 0π4log(1+tanx)dx

Ans:  Let  I=0π4log(1+tanx)dx

Since, 0af(x)dx=0af(ax)dx

Therefore, I=0π4log[1+tan(π4x)]dx

=0π4log[1+tanπ4tanx1+tanπ4tanx]dx

=0π4log{1+1tanx1+tanx}dx

=0π4log21+tanxdx

=0π4log2dx0π4log(1+tanx)dx

=0π4log2dxI

2I=[xlog2]0π4

2I=π4log2

I=π8log2


9. 02x2xdx

Ans: Let  I=02x2xdx

Since, 0af(x)dx=0af(ax)dx

Therefore, I=02(2x)xdx

=02{2x1/2x3/2}dx

=[2(x3/23/2)x5/25/2]02

=[43x3/225x5/2]02

=43(2)3/225(2)5/2

=823825

=40224215

=16215


10. 0π2(2logsinxlogsin2x)dx

Ans: Let  I=0π2(2logsinxlogsin2x)dx

I=0π2(2logsinxlog(2sinxcosx))dx

I=0π2(2logsinxlogsinxlogcosxlog2)dx

I=0π2(logsinxlogcosxlog2)dx                      …….(1)

Since, 

0af(x)dx=0af(ax)dx

Therefore, 

I=0π2(logcosxlogsinxlog2)dx …….(2)

On adding equation 1 and 2-

2I=0π2(log2log2)dx

2I=2log20π2dx

I=log2[π2]

I=π2[log2]

I=π2[log2]

I=π2[log12]

I=π2log12


11. π2π2sin2xdx

Ans: Let  I=π2π2sin2xdx

Since, sin2x is an even function.

Therefore , π2π2sin2xdx=20π2sin2xdx

As if f(x) is an even function, then aaf(x)dx=20af(x)dx.

Hence,

I=20π2sin2xdx

=20π21cos2x2dx

=0π2(1cos2x)dx

=[xsin2x2]0π2

=π2


12. 0πx1+sinxdx

Ans: Let  I=0πx1+sinxdx               …….(1)

Since, 0af(x)dx=0af(ax)dx

Therefore, I=0π(πx)1+sinx(πx)dx

I=0π(πx)1+sinxdx                   …..(2)

On adding equation 1 and 2-

2I=0ππ1+sinxdx

2I=π0π(1sinx)(1+sinx)+(1sinx)dx

2I=π0π(1sinx)cos2xdx

2I=π0π{sec2xtanxsecx}dx

2I=π[2]

I=π


13. π2π2sin7xdx.

Ans: Let  I=π2π2sin7xdx

Since, sin7x is an even function.

Therefore , π2π2sin2xdx=0

As if f(x) is an odd function, then aaf(x)dx=0.

Hence, I=0


14. 02πcos5xdx.

Ans: Let  

I=02πcos5xdx      

cos5(2πx)=cos5x                   …..(1)

If f(2ax)=f(x) then 02af(x)dx=20af(x)dx.

If f(2ax)=f(x) then 02af(x)dx=0

Since, cos5(πx)=cos5x

Therefore, 

I=202πcos5xdx

I=2(0)

I=0


15. 0π2sinxcosx1+sinxcosxdx

Ans:   Let I=0π2sinxcosx1+sinxcosxdx                     ……(1)

Since, 

0af(x)dx=0af(ax)dx

Therefore, 

I=0π2sin(π2x)cos(π2x)1+sin(π2x)cos(π2x)dx

I=0π2cosxsinx1+cosxsinxdx                               ……(2)

On adding equation 1 and 2

2I=0π201+cosxsinxdx

I=0


16. 0πlog(1+cosx)dx

Ans: Let  

I=0πlog(1+cosx)dx       …….(1)

Since, 

0af(x)dx=0af(ax)dx

Therefore, 

I=0πlog(1+cos(πx))dx

I=0πlog(1cosx)dx                 …….(2)

On adding equation 1 and 2-

2I=0π{log(1cosx)+log(1cosx)}dx

2I=0πlog(1cos2x)dx

 2I=0πlogsin2xdx

2I=20πlogsinxdx

I=0πlogsinxdx                                     …..(3)

Since, sin(πx)=sinx

Therefore, I=0π2logsinxdx                        ……(4)

I=20π2logsin(π2x)dx

I=20π2logcosxdx                                   …….(5)

On adding equation 4 and 5-

2I=0π2(logsinx+logcosx)dx

I=0π2(logsinx+logcosx+log2log2)dx

I=0π2(log2sinxcosxlog2)dx

I=0π2(log2sinxcosx)dx0π2log2dx

Let 2x=t

On differentiating-

2dx=dt

If x=0 then t=0.

Thus,

I=I2π2log2

I2=π2log2

I=πlog2


17. 0axx+axdx

Ans:  Let I=0axx+axdx                              …….(1)

Since, 

0af(x)dx=0af(ax)dx

Therefore, 

I=0aaxax+xdx                                     …….(2)

On adding equation 1 and 2-

2I=0ax+axax+xdx

2I=0adx

2I=[x]0a

2I=a

I=a2


18. 04|x1|dx

Ans: Let I=04|x1|dx

Thus, (x1)0 when 0x1  and (x1)0 when 1x4

Since, abf(x)dx=acf(x)dx+cbf(x)

Therefore, I=01|x1|dx+14|x1|dx

I=01(x1)dx+14(x1)dx

=[xx22]01+[x22x]14

=112+(4)22412+1

=112+8412+1

=5


19. Show that 0af(x)g(x)dx=20af(x)dx , if fand g are defined as f(x)=f(ax) and g(x)+g(ax)=4 .

Ans: Let 0af(x)g(x)dx              …….(1)

Since, 

0af(x)dx=0af(ax)dx

Therefore, 

0af(ax)g(ax)dx

0af(x)g(ax)dx   ……(2)

On adding equation 1 and 2-

2I=0a{f(x)g(x)+f(x)g(ax)}dx

2I=0af(x){g(x)+g(ax)}dx

As, g(x)+g(ax)=4.

Thus,

 2I=0a4f(x)dx

I=20af(x)dx

Hence, 0af(x)g(x)dx=20af(x)dx , if fand g are defined as f(x)=f(ax) and g(x)+g(ax)=4 .


20. The value of π2π2(x3+xcosx+tan5x+1)dx is 

  1. 0

  2. 2

  3. π

  4. 1

Ans: Let I=π2π2(x3+xcosx+tan5x+1)dx

I=π2π2(x3)dx+π2π2(xcosx)dx+π2π2(tan5x)dx+π2π2(1)dx

If f(x) is an even function, then aaf(x)dx=20af(x)dx

And f(x) is an odd function, then aaf(x)dx=0

Thus,

I=0+0+0+20π2dx

=2[x]0π2

=2[π2]

=π

Hence, the correct option is C.


21. The value of 0π2(4+3sinx4+3cosx)dx is

  1. 2

  2. 34

  3. 0

  4. 2

Ans: Let I=0π2(4+3sinx4+3cosx)dx                …..(1)

Since, 

0af(x)dx=0af(ax)dx

Therefore, 

I=0π2(4+3sin(π2x)4+3cos(π2x))dx

I=0π2(4+3cosx4+3sinx)dx                       …….(2)

On adding equation 1 and 2-

2I=0π2log1dx

2I=0π20dx

I=0

Hence, the correct option is C.


Miscellaneous Exercise

1. 1xx3

Ans: Given 1xx3

So, 1xx3=1x(1x2)

=1x(1x)(1+x)

Let 1x(1x)(1+x)=Ax+B(1x)+C1+x                 …….(1)

1=A(1x2)+Bx(1+x)+Cx(1x)

1=AAx2+Bx+Bx2+CxCx2

On equating the coefficients of x2,x and constant term –

A+BC=0              

B+C=0

A=1

Thus, we get A=1,B=12 and C=12

By equation 1-

1x(1x)(1+x)=1x+12(1x)12(1+x)

1x(1x)(1+x)dx=1xdx+121(1x)dx121(1+x)dx

=logx12log(1x)12log(1+x)

=logx12log(1x)1212log(1+x)12

=log(x(1x)12(1+x)12)+C

=log(x2(1x2))12+C

=12log(x21x2)+C


2. 1x+a+x+b

Ans: Given 1x+a+x+b

=1x+a+x+b×x+ax+bx+ax+b

=x+ax+b(x+a)(x+b)

=x+ax+bab

1x+a+x+bdx=1ab(x+ax+b)dx

=1ab[(x+a)3232(x+b)3232]

=23(ab)[(x+a)32(x+b)32]+C


3. 1xaxx2                    [Hint: x=at]

Ans: Given

1xaxx2

Let x=at

On differentiating-

dx=at2dt

1xaxx2dx=1ata.at(at)2(at2dt)

=1at.11t1t2dt

=1a1t2tt2t2dt

=1a1t1dt

=1a[2t1]+C

Substituting value of t-

=1a[2ax1]+C

=2a[axx]+C

=2a[axx]+C


4. Integrate the expression: 1x2(x4+1)34

Ans:The given expression is, 1x2(x4+1)34

On multiplying and dividing by x3, the following can be obtained as shown below,

x3x2.x3(x4+1)34=x3(x4+1)34x2x3=(x4+1)34x5(x4)34=1x5(x4+1x4)34=1x5(1+1x4)34 

Now, consider 1x4=t 

4x5=dtdx

dxx5=dt4

1x2(x4+1)34dx=1x5(1+1x4)34dx=14(1+t)34dt 

1x2(x4+1)34dx=14[(1+t)1414]+C=(1+1x4)14+C, where C is any arbitrary constant.


5. Integrate the expression: 1x12+x13. [Hint: 1x12+x13=1x13(1+x16) Put, x=t6 ]

Ans: The given expression is, 1x12+x13

Observe the given hint and obtain as shown below,

1x12+x13=1x13(1+x16) 

Consider x=t6 

x=t6dx=6t5

1x12+x13dx=1x13(1+x16)dx=6t5t2(1+t)dt=6t3(1+t)dt 

Now on dividing, we can obtain as shown below,

1x12+x13dx=6{(t2t+1)11+t}dt

=6[(t33)(t22)+tlog|1+t|]dt

=2x123x13+6x166log(1+x16)+C

=2x3x13+6x166log(1+x16)+C, where C is any arbitrary constant.


6. Integrate the expression: 5x(x+1)(x2+9).

Ans: The given expression is, 5x(x+1)(x2+9)

Now consider it as shown below,

5x(x+1)(x2+9)=A(x+1)+Bx+C(x2+9)...(1)

5x=A(x2+9)+Bx+C(x+1)

5x=Ax2+9A+Bx2+Bx+Cx+C

On equating the coefficients of x2,x and constant term, it can be obtained that,  

A+B=0...(2) 

B+C=5...(3)

9A+C=0...(4)

And on solving these equations, the values of A,B,C can be obtained as,

A=12,B=12,C=92 respectively.

Now, from equation (1) it can be clearly obtained that,

5x(x+1)(x2+9)dx={12(x+1)+x+92(x2+9)}dx 

=12log|x+1|+12xx2+9dx+921x2+9dx

=12log|x+1|+14log|x2+9|+(92)(13)tan1(x3)

=12log|x+1|+14log|x2+9|+32tan1(x3)+C, where C is any arbitrary constant.


7. Integrate the expression, that is, sinxsin(x- α ).

Ans: The given expression is, sinxsin(xα)

 Now, substitute xα=t 

dx=dt

sinxsin(xα)dx=sin(t+α)sintdt=sintcosα+costsinαsintdt=cosα+cottsinαdtsinxsin(xα)dx=tcosα+sinαlog|sint|+C1=(xα)cosα+sinαlog|sin(xα)|+C1 

sinxsin(xα)dx=xcosα+sinαlog|sin(xα)|αcosα+C1=xcosα+sinαlog|sin(xα)|+C

 where C1,C are any arbitrary constants and C=C1αcosα.

 

8. Integrate the expression, that is, e5logx-e4logxe3logx-e2logx.

Ans: The given expression is, e5logxe4logxe3logxe2logx

 e5logxe4logxe3logxe2logx=e4logx(elogx1)e2logx(elogx1)=e2logx=x2

Now, integrate the given expression as shown below

e5logxe4logxe3logxe2logxdx=x2dx=x33+C, where C is any arbitrary constant. 


9. Integrate the expression, that is, cosx4-sin2x.

Ans: The given expression is, cosx4sin2x

 Now, substitute sinx=t 

cosxdx=dt

cosx4sin2xdx=dt(2)2(t)2=sin1(t2)+C=sin1(sinx2)+C, where C is any arbitrary constant. 


10. Integrate the expression, that is, sin8x-cos8x1-2sin2xcos2x.

Ans: The given expression is, sin8xcos8x12sin2xcos2x

 sin8xcos8x12sin2xcos2x=(sin4xcos4x)(sin4x+cos4x)sin2x+cos2xsin2xcos2xsin2xcos2x

=(sin2x+cos2x)(sin2xcos2x)(sin4x+cos4x)sin2x(1cos2x)+cos2x(1sin2x)

=(sin2x+cos2x)(sin4x+cos4x)sin4x+cos4x=cos2x

Now, integrate the given expression as shown below

sin8xcos8x12sin2xcos2xdx=cos2xdx=sin2x2+C, where C is any arbitrary constant.

 

11. Integrate the expression, that is, 1cos(x+a)cos(x+b).

Ans: The given expression is, 1cos(x+a)cos(x+b)

On multiplying and dividing by sin(αβ), the following can be obtained as shown below,

1sin(ab)[sin(ab)cos(x+a)cos(x+b)] 

1sin(ab)[sin[(x+a)(x+b)]cos(x+a)cos(x+b)]

1sin(ab)[sin(x+a)cos(x+b)cos(x+a)sin(x+b)cos(x+a)cos(x+b)]

1sin(ab)[sin(x+a)cos(x+a)sin(x+b)cos(x+b)]=1sin(ab)(tan(x+a)tan(x+b))

1cos(x+a)cos(x+b)dx=1sin(ab)(tan(x+a)tan(x+b))dx 

1cos(x+a)cos(x+b)dx=1sin(ab)[log|cos(x+b)cos(xa)|]+C, where C is any arbitrary constant.


12. Integrate the expression, that is, x31-x8.

Ans: The given expression is, x31x8

 Now, substitute x4=t 

4x3dx=dt

x31x8dx=14dt1(t)2=14sin1t+C=14sin1(x4)+C, where C is any arbitrary constant. 


13. Integrate the expression, that is, ex(1+ex)(2+ex).

Ans: The given expression is, ex(1+ex)(2+ex)

 Now, substitute ex=t 

exdx=dt

ex(1+ex)(2+ex)dx=dt(t+1)(t+2)=[1(t+1)1(t+2)]dt

ex(1+ex)(2+ex)dx=log|t+1|log|t+2|+C=log|ex+1ex+2|+C, where C is any arbitrary constant. 


14. Integrate the expression, 1(x2+1)(x2+4)

Ans: The given expression is, 1(x2+1)(x2+4)

Now consider it as shown below,

1(x2+1)(x2+4)=Ax+B(x2+1)+Cx+D(x2+4)...(1)

1=(Ax+B)(x2+4)+(Bx+C)(x2+9)

1=Ax3+4Ax+Bx2+4B+Cx3+Cx+Dx2+D

On equating the coefficients of x3,x2,x and constant term, it can be obtained that,  

A+C=0...(2) 

B+D=0...(3)

4A+C=0...(4)

4B+D=1...(5)

And on solving these equations, the values of A,B,C,D can be obtained as,

A=0,B=13,C=0,D=13 respectively.

Now, from equation (1) it can be clearly obtained that,

1(x2+1)(x2+4)dx=13{1(x2+1)1(x2+4)}dx 

=13tan1x1(3)(2)tan1x2+C

=13tan1x16tan1x2+C, where C is any arbitrary constant.


15. Integrate the expression, that is, cos3xelogsinx.

Ans: The given expression is, cos3xelogsinx

Observe as shown below,

cos3xelogsinx=cos3xsinx

Now, consider cosx=t 

sinxdx=dt

cos3xelogsinxdx=cos3xsinxdx=t3dt=t44+C=cos4x4+C, where C is any arbitrary constant. 


16. Integrate the expression, that is, e3logx(x4+1)-1.

Ans: The given expression is, e3logx(x4+1)1

Observe as shown below,

e3logx(x4+1)1=x3(x4+1)

Now, consider x4+1=t 

4x3dx=dt

e3logx(x4+1)1dx=x3x4+1dx=14dtt=14log|t|+C=log|x4+1|4+C, where C is any arbitrary constant. 


17. Integrate the expression, that is,  (ax+b)[f(ax+b)]n.

Ans: The given expression is, f(ax+b)[f(ax+b)]n

Now, consider [f(ax+b)]=t 

af(ax+b)dx=dt

f(ax+b)[f(ax+b)]ndx=1atndt=tn+1a(n+1)+C=[f(ax+b)]n+1a(n+1)+C, where C is any arbitrary constant. 


18. Integrate the expression, that is, 1sin3xsin(x+ α ).

Ans: The given expression is, 1sin3xsin(x+α)

1sin3xsin(x+α)=1sin3xsinxcosα+cosαsinx

=1sin4xcosα+sin3xsinαcosx

=1sin2xcosα+sinαcotx=cosec2xcosα+sinαcotx

Now, substitute cosα+sinαcotx=t 

cosec2xsinαdx=dt

1sin3xsin(x+α)dx=cosec2xcosα+sinαcotx=1sinαdtt=2tsinα+C  

 1sin3xsin(x+α)dx=2cosα+sinαcotxsinα+C=2sinαcosα+sinαcosxsinx+C 

, where C is any arbitrary constant. 


19. Integrate the expression, that is, 1-x1+x.

Ans: The given expression is, 1x1+x

Assume, I=1x1+xdx 

Now, substitute x=cos2θ 

dx=2sinθcosθdt

I=1cosθ1+cosθ(2sinθcosθ)dθ=2sin2θ22cos2θ2sin2θdθ=tanθ22sinθcosθdθ

I=2sinθ2cosθ22sinθ2cosθ2cosθdθ=4sin2θ2(2cos2θ21)dθ

I=8sin2θ2cos2θ2dθ+4sin2θ2dθ=2sin2θ2dθ+4sin2θ2dθ

I=2(1cos2θ2)dθ+4(1cosθ2)dθ=2[θ2sin2θ2]+4[θ2sinθ2]+CI=θ+sin2θ2+2sinθ+C=θ+1cos2θcosθ21cos2θ+C

I=cos1x+x(1x)21x+C=21x+cos1x+xx2+C, where C is any arbitrary constant. 


20. Integrate the expression, that is, 2+sin2x1+cos2xex.

Ans: The given expression is, 2+sin2x1+cos2xex

Assume, I=2+sin2x1+cos2xexdx 

I=2+2sinxcosx2cos2xexdx=(1+sinxcosxcos2x)exdx=(sec2x+tanx)exdx

Now, consider f(x)=tanx 

f(x)=sec2xdx

I=2+sin2x1+cos2xexdx=(f(x)+f(x))exdx=exf(x)+C=extanx+C, where C is any arbitrary constant. 


21. Integrate the expression: x2+x+1(x+1)2(x+2).

Ans: The given expression is, x2+x+1(x+1)2(x+2)

Now consider it as shown below,

x2+x+1(x+1)2(x+2)=A(x+1)+B(x+1)+C(x+2)...(1)

x2+x+1=A(x+1)(x+2)+B(x+2)+C(x+1)2

x2+x+1=A(x2+3x+2)+B(x+2)+C(x2+2x+1)

x2+x+1=(A+C)x2+x(3A+B+2C)+(2A+2B+C)

On equating the coefficients of x2,x and constant term, it can be obtained that,  

A+C=1...(2) 

3A+B+2C=1...(3)

2A+2B+C=1...(4)

And on solving these equations, the values of A,B,C can be obtained as,

A=2,B=1,C=3 respectively.

Now, from equation (1) it can be clearly obtained that,

x2+x+1(x+1)2(x+2)dx={2(x+1)+1(x+1)+3(x+2)}dx 

=21x+1dx+1(x+1)2dx+31x+2dx

=2log|x+1|+3log|x+2|1(x+1)+C, where C is any arbitrary constant.


22. Integrate the expression, that is, tan-11-x1+x.

Ans: The given expression is, tan11x1+x

Assume, I=tan11x1+xdx 

Now, consider x=cosθ 

dx=sinθdθ

I=tan11cosθ1+cosθ(sinθ)dθ=tan12sin2θ22cos2θ2sinθdθ=tan1tanθ2sinθdθ I=12θsinθdθ=12[θ(cosθ)1.(cosθ)dθ]=12[θ(cosθ)+sinθ]I=x2cos1x121x2+C=12(xcos1x1x2)+C, where C is any arbitrary constant. 


23. Integrate the expression, that is, x2+1[log(x2+1)-2logx]x4.

Ans: The given expression is, x2+1[log(x2+1)2logx]x4

Assume, I=x2+1[log(x2+1)2logx]x4dx I=x2+1x4[log(x2+1)logx2]=x2+1x4[log(x2+1x2)]=1x3x2+1x2[log(1+1x2)]Consider 1+1x2=t 

2x3dx=dt

Now, integrate the given expression as shown below I=x2+1[log(x2+1)2logx]x4dx=1x3x2+1x2[log(1+1x2)]dx=12t12logtdt+CUsing integration by parts, it can be obtained that,

I=12[logt.t12dt{(ddtlogt)t12dt}dt]=12[logt.t32321t.t3232dt] 

I=12[23t32logt23t12dt]=13t32logt+29t32=13t32[logt23]

I=12[23t32logt23t12dt]=13t32logt+29t32=13t32[logt23]

I=12[1+1x2](log(1+1x2)23)+C, where C is any arbitrary constant. 


24. Find the value of the expression, that is,  π 2 π ex(1-sinx1-cosx)dx.

Ans: The given expression is, π2πex(1sinx1cosx)dx

Assume, I=π2πex(1sinx1cosx)dx 

I=π2πex(12sinx2cosx2+2sin2x2)dx=π2πex(cosec2x22cotx2)dx

Now, substitute f(x)=cotx2 

f(x)=(12cosec2x2)dx=12cosec2x2dx

I=π2πex(f(x)+f(x))dx=[exf(x)]π2π=[excotx2]π2π

I=[eπcotπ2eπ2cotπ4]=[0eπ2]=eπ2


25. Find the value of the expression, that is, 0 π 4sinxcosxsin4x+cos4xdx.

Ans: The given expression is, 0π4sinxcosxsin4x+cos4xdx

Assume, I=0π4sinxcosxsin4x+cos4xdx 

I=0π4sinxcosxcos4xsin4x+cos4xcos4xdx=0π4tanxsec2x1+tan4xdx

Now, substitute tan2x=t 

2tanxsec2xdx=dt

And also when x=0,t=0 and when x=π4,t=1.

I=1201dt1+t2=12[tan1t]01=12[tan1(1)tan1(0)]=12(π4)=π8


26. Find the value of the expression, that is, 0 π 2cos2xcos2x+4sin2xdx.

Ans: The given expression is, 0π2cos2xcos2x+4sin2xdx

Assume, I=0π2cos2xcos2x+4sin2xdx 

I=0π2cos2xcos2x+4(1cos2x)dx=130π2443cos2x3cos2x+4dx

I=130π243cos2x43cos2xdx+130π2443cos2xdx=130π2dx+130π24sec2x4sec2x3dx

I=13[x]0π2+130π24sec2x4(1+tan2x)3dx=π6+230π22sec2x(1+4tan2x)dx...(1)

Observe, 0π22sec2x(1+4tan2x)dx

Now, substitute 2tanx=t 

2sec2xdx=dt

And also when x=0,t=0 and when x=π2,t=

0π22sec2x(1+4tan2x)dx=0dt(1+t2)dx=[tan1(t)]0=[tan1()tan1(0)]=π2Henceforth from equation (1), it can be obtained that, 

I=π6+23(π2)=π6+2π6=π6


27. Find the value of the expression, that is,  π 6 π 2sinx+cosxsin2xdx.

Ans: The given expression is, π6π2sinx+cosxsin2xdx

Assume, I=π6π2sinx+cosxsin2xdx 

I=0π2sinx+cosx(1+12sinxcosx)dx=0π2sinx+cosx1(sin2x+cos2x2sinxcosx)dx

I=0π2sinx+cosx1(sinxcosx)2dx

Now, substitute (sinxcosx)=t 

(sinx+cosx)dx=dt

And also when x=π6,t=(132) and when x=π3,t=(312)

I=132312dt1t2=(1+32)312dt1t2

As 11(t)2=11t2, it can be thus obtained that 11t2 is an even function, 

aaf(x)dx=20af(x)dx 

I=20312dt1t2=[2sin1t]0312=2sin1(312) x=π6,t=(132) and when x=π3,t=(312)


28. Find the value of the expression, that is, 01dx1+x-x.

Ans: The given expression is, 01dx1+xx

Assume, I=01dx1+xx 

I=0111+xx×1+x+x1+x+xdx=011+x+x1+xxdx

I=011+xdx+01xdx=23[(1+x)23]01+23[(x)32]01=23[(2)231]+23=423


29. Find the value of the expression, that is, 0 π4sinx+cosx9+16sin2xdx.

Ans: The given expression is, 0π4sinx+cosx9+16sin2xdx

Assume, I=0π4sinx+cosx9+16sin2xdx 

Now, substitute sinxcosx=t 

(cosx+sinx)dx=dt

And also when x=0,t=1 and when x=π4,t=0.

(sinxcosx)2=t2

12sinxcosx=t2

1sin2x=t2

sin2x=1t2

I=10dt9+16(1t2)=10dt2516t2=10dt(5)2(4t)2

I=14[12(5)log|5+4t54t|]10=140[log|1|log|19|]=140log|9|


30. Find the value of the expression, that is, 0 π 2sin2xtan-1(sinx)dx.

Ans: The given expression is, 0π2sin2xtan1(sinx)dx

Assume, I=0π2sin2xtan1(sinx)dx 

I=0π2sin2xtan1(sinx)dx=0π22sinxcosxtan1(sinx)dx

Now, substitute sinx=t 

cosxdx=dt

And also when x=0,t=0 and when x=π2,t=1

I=201ttan1(t)dt

Observe, ttan1(t)dt

ttan1(t)dt=tan1ttdt{d(tan1t)dttdt}dt=tan1t.t2211+t2.t22dt

=t2tan1t2t2+111+t2dt=t2tan1t21dt+11+t2dt=t2tan1t212t+12tan1t

01t.tan1tdt=[t2tan1t212t+12tan1t]01=12[π41+π4]=π412

Henceforth from equation (1), it can be obtained that, 

I=2[π212]=π21


31. Find the value of the expression, that is, 14[|x-1|+|x-2|+|x-3|]dx.

Ans: The given expression is, 14[|x1|+|x2|+|x3|]dx

Assume, 14[|x1|+|x2|+|x3|]dx 

I=14|x1|dx+14|x2|dx+14|x3|dx

I=I1+I2+I3...(1)

where, I1=14|x1|dx,I2=14|x2|dx,I3=+14|x3|dx 

Now, consider, I1=14|x1|dx, where (x1)01x4  I1=14(x1)dx=[x22x]14=[8412+1]=92...(2)

Again, consider, I2=14|x2|dx, where (x2)02x4 and (x2)01x2.

 I2=12(2x)dx+24(x2)dx=[2xx22]14+[x222x]24

I2=[422+12]+[882+4]=12+2=52...(3)

Also, consider, I3=14|x3|dx, where (x3)03x4 and (x3)01x3.

 I3=13(3x)dx+34(x3)dx=[3x22]13+[x223x]34

I3=[9923+12]+[81292+9]=2+12=52...(4)

Now, from equations (1), (2), (3) and (4) it can be obtained that, 

I=92+52+52=192

2I=π0πsinx+111+sinxdx=π0πdxπ0π11+sinxdx=π[x]0ππ0π1sinxcos2xdx

2I=π[x]0ππ0π(sec2xtanxsecx)dx=π2π[tanxsecx]0π

2I=π2π[0(1)0+1]=π22π

I=π(π2)2


32. Prove the following equation: 13dxx2(x+1)=23+log23.

Ans: The given equation is, 13dxx2(x+1)=23+log23

Assume, 13dxx2(x+1) 

Now consider it as shown below,

1x2(x+1)=Ax+Bx2+C(x+1)...(1)

1=Ax(x+1)+B(x+1)+C(x2)

1=Ax2+Ax+Bx+B+Cx2

On equating the coefficients of x2,x and constant term, it can be obtained that,  

A+C=0...(2) 

A+B=0...(3)

B=1...(4)

And on solving these equations, the values of A,B,C can be obtained as,

A=1,B=1,C=1 respectively.

Now, from equation (1) it can be clearly obtained that,

I=13dxx2(x+1)=13{1x+1x2+1(x+1)}dx 

I=[logx1x+log(x+1)]13=[log(x+1x)1x]13=log(43)13log(2)+1

I=log4log3log2+23=log2log3+23=log(23)+23

Henceforth, it can be clearly proved.


33. Prove the following equation: $\int_{\text{0}}^{\text{4}}{\text{x}{{\text{e}}^{\text{x}}}\text{dx}}\text{=1}.

Ans: The given equation is, 04xexdx=1

Assume, I=04xexdx 

Using integration by parts, it can be obtained that,

I=x04exdx04{(d(x)dx)ex}=[xex]01[ex]01=ee+1=1 

Henceforth, it can be clearly proved.


34. Prove the following equation: 1-1x17cos4xdx=0.

Ans: The given equation is, 11x17cos4xdx=0

Assume, I=11x17cos4xdx 

Now, consider f(x)=x17cos4x 

f(x)=(x)17cos4(x)=x17cos4x=f(x)

f(x) is an odd function and henceforth it is clearly known to us that when f(x) is an odd function, then aaf(x)dx=0

I=11x17cos4xdx=0

Henceforth, it can be clearly proved.


35. Prove the following equation: 0 π 2sin3xdx=23.

Ans: The given equation is, 0π2sin3xdx=23

Assume, I=0π2sin3xdx 

I=0π2sin2xsinxdx=0π2(1cos2x)sinxdx=0π2sinxdx0π2cos2xsinxdx

I=[cosx]0π2+[cos3x3]0π2=113=23

Henceforth, it can be clearly proved.


36. Prove the following equation: 0 π 42tan3xdx=1-log2.

Ans: The given equation is, 0π42tan3xdx=1log2

Assume, 0π42tan3xdx 

I=0π42tan2xtanxdx=0π4(1sec2x)tanxdx=0π4tanxdx0π4sec2xtanxdx

I=2[tan2x2]0π4+2[logcosx]0π4=1+2[logcosπ4logcos0]0π2=1log2log1

I=1log2

Henceforth, it can be clearly proved.


37. Prove the following equation: 01sin-1xdx= π 2-1.

Ans: The given equation is, 01sin1xdx=π21

Assume, I=01sin1xdx 

I=01sin1x.1dx

Using integration by parts, it can be obtained that,

I=[sin1x.x]010111x2xdx=[xsin1x]01+1201(2x)1x2dx 

Now, substitute 1x2=t 

(2x)dx=dt

And also when x=0,t=1 and when x=1,t=0.

I=[xsin1x]01+1201dtt=[xsin1x]01+12[2t]10=sin111=π21 Henceforth, it can be clearly proved.


38. The expression, that is, dxex+e-x is equal to

A. tan-1(ex)+C

B. tan-1(e-x)+C 

C. log(ex-e-x)+C 

D. log(ex+e-x)+C 

Ans: The given expression is, dxex+ex

Assume, I=dxex+ex 

Now, consider ex=t 

exdx=dt

I=dxex+ex=11+t2dt=tan1tdt+C, where C is any arbitrary constant.

Hence, the correct answer is option (A). 


39. The expression, that is, cos2x(sinx+cosx)2dx is

A. -1sinx+cosx+C

B. log|sinx+cosx|+C 

C. log|sinx-cosx|+C 

D. 1(sinx+cosx)2+C 

Ans: The given expression is, cos2x(sinx+cosx)2dx

Assume, I=cos2x(sinx+cosx)2dx 

I=(sinx+cosx)(cosxsinx)(sinx+cosx)2dx=(cosxsinx)(sinx+cosx)dx

Now, substitute (sinx+cosx)=t 

(cosxsinx)dx=dt

I=I=1tdt=log|t|+C=log|cosx+sinx|+C, where C is any arbitrary constant.

Hence, the correct answer is option (B). 


40. If f(a+b-x)=f(x),then abxf(x)dx is equal to

A. a+b2abf(b-x)dx

B. a+b2abf(b+x)dx 

C. b-a2abf(x)dx 

D. a+b2abf(x)dx 

Ans: Assume, I=abxf(x)dx...(1) 

I=ab(a+bx)f(a+bx)dx[abf(x)dx=abf(a+bx)dx]

I=ab(a+bx)f(x)dx=(a+b)abf(x)dxI   using (1)

2I=(a+b)abf(x)dx

I=(a+b)2abf(x)dx

Hence, the correct answer is option (D).


NCERT Solutions for Class 12 Integration Maths

7.1 Introduction

In Chapter 7 Maths Class 12, the introduction part delves into the history of differential calculus and how integral calculus came into existence. You would learn how the original idea of derivative came about to solve the problem of defining tangent lines to the graphs of functions. It also deals with calculating the slope of these tangent lines.


This chapter will introduce the prime concept of the integral calculus, which involves trying to find the area bounded by the graph of these functions and learn how integration and differentiation are interrelated, and integration is the reverse process of differentiation. In differentiation, we are given a function, and we need to figure out the differentiation of that function. Conversely, in integration, you are given the differential of a function, and we need to find the function.

 

7.2 Integration as a Reverse Process of Differentiation

In NCERT Solutions for Class 12 Chapter 7 Applications of Derivatives, you would learn how one can find the integral of a function given its derivative. The other name of integral is also anti-differentiation. You would understand terms like “arbitrary constant” which are varied to get different integrals of any given function. This “arbitrary constant” is also known as “constant of integration” and for any arbitrary real number K, ∫f(x) dx = F(x) + K. This is an indefinite integral. You will get acquainted with a lot of basic formulas and properties of the indefinite integral in this section and how it is interpreted geometrically.

 

This chapter would take you through a comparison between integration and differentiation and you will realize a few basics about these 2 parts of calculus like:


  • Differentiation and integration are operations on functions

  • They both satisfy linearity properties.

  • There could be functions that are neither differentiable nor integrable.

  • They differ in the sense that differentiation of a function (wherever it exists) is a unique function while integral is not.


7.3 Methods of Integration

In this part of Integration NCERT Integrals Class 12 Solutions, you will gain knowledge on other methods of finding integral apart from the method of inspection discussed in the above part. You would realize how this method is useful when an inspection is not suitable for many different kinds of functions. Here you will understand 3 different ways of integration i.e.:


  • By Substitutions

  • Using Partial Functions 

  • By Parts


You would further learn how to integrate using trigonometric identities for trigonometric functions with the use of many known trigonometric identities like:


  • Sin2θ+Cos2θ=1

  • 2SinθCosθ=Sin2θ

  • 2Sinθ1Cosθ2=Sin(θ1+θ2)+Sin(θ1θ2)

 

7.4 Integrals of Some Particular Functions

In this part of NCERT Integrals Class 12 Solutions, you would learn many important integral formulas and how to apply them for many other standard integrals that are related to them. These short cut techniques provided in our solutions to problems on Integration Class 12 will help immensely in tackling many types of questions really fast. Understand how to prove these standard integrals, some of those are mentioned below:


  • ∫ dx/ (x2 – b2) = 1/2b log |x – b/x + a| + C

  • ∫ dx/ (x2 + b2) = 1/b tan-1 x/b + C

  • ∫ dx/ (√x2 + b2) = log |x + √x2 + b2| + C


7.5 Integration by Partial Functions

This unit of Chapter 7 Class 12 Maths NCERT solutions further expands what you learned in unit 7.3 about integration by partial functions. In this section, you would learn how an improper rational function can be converted into a proper rational function by a long division process. An improper rational function is the one where for 2 polynomials p1(x) and p2(x) on x,  p2(x) <>0 and degrees of p1(x) > p2(x) t.

 

Understand here how to disintegrate an equation into parts and find the integral of each of the parts. This is known as partial fraction decomposition. 


7.6 Integration by Parts

This part would teach you methods on how to integrate products of functions. This method is also called partial integration. If for a single variable a, there are 2 differentiable functions f1 and f2, then apply the product rule of differentiation.

And apply integration on both sides and conclude that integral of the product of 2 functions is given by:


  • (1st function) * (integral of the 2nd function) – Integral of ((differential coefficient of 1st function) * (integral of the 2nd function))


7.7 Definite Integral

In this section, you will closely learn about what a definite integral is. You would learn how to denote a definite integral and its notation.


  • abf(x)dx


In this, a is the lower limit and b is the upper limit of the integral.

 

You can learn how to represent a definite integral either as a limit of a sum or an antiderivative in the interval (a, b).


7.8 Fundamental Theorem of Calculus

In this chapter, you would learn how concepts of integration and differentiation of a function are linked. This is done by calculating the anti-derivative difference at the upper and lower limits of the integration process.

 

7.9 Evaluation of Definite Integrals by Substitution

In this chapter, you would learn steps to evaluate definite integrals, by substitution as described below:


  • Reduce the given integral to a known form by replacing y = f(x) and x = q(y) (considering the integral without limits).

  • Now integrate the new integrand without mentioning the constant of integration.


7.10 Some Properties of Definite Integral

Here you will learn many properties of definite integrals which will simplify the process of evaluating definite integrals. 


Overview of Deleted Syllabus for CBSE Class 12 Maths Chapter 7 Integrals

Chapter

Dropped Topics

Integrals

Points (xi)–(xiii) in the List of Derivatives

Exercise 7.2.1 : Geometrical Interpretation of Indefinite Integral

Exercise 7.2.3 : Comparison between Differentiation and Integration

Exercise 7.6.3 : Type of Integral

Exercise 7.7.1 : Definite Integral as the Limit of a Sum

Question Number 19, 32, 40 and 44

Point 2 in the Summary

(xiv) and (xv) in Some Standard Integrals



Class 12 Maths Chapter 7: Exercises Breakdown

Exercise

Number of Questions

Exercise 7.1

22 Questions and Solutions

Exercise 7.2

39 Questions and Solutions

Exercise 7.3

24 Questions and Solutions

Exercise 7.4

25 Questions and Solutions

Exercise 7.5

23 Questions and Solutions

Exercise 7.6

24 Questions and Solutions

Exercise 7.7

11 Questions and Solutions

Exercise 7.8

22 Questions and Solutions

Exercise 7.9

10 Questions and Solutions

Exercise 7.10

21 Questions and Solutions

Miscellaneous Exercise

40 Questions and Solutions



Conclusion

The NCERT Solutions for Integration in Class 12 Math, provided by Vedantu, offer a comprehensive understanding of this crucial topic. These solutions simplify complex integration concepts into easy-to-understand language, making learning smoother. The key focus should be on grasping the fundamental concepts of integration and mastering problem-solving techniques. Understanding the various methods of integration, such as substitution, integration by parts, and partial fractions, is essential. Additionally, practising a variety of problems is crucial to reinforce learning. Looking at previous-year question papers, integration questions typically range from 6 to 8 in number, emphasizing the importance of thorough preparation in this area. Overall, utilizing these Integrals Class 12 Solutions effectively can greatly enhance one's proficiency in integration.


CBSE Class 12 Maths Chapter 7 Other Study Materials



NCERT Solutions for Class 12 Maths | Chapter-wise List

Given below are the chapter-wise NCERT 12 Maths solutions PDF. Using these chapter-wise class 12th maths ncert solutions, you can get clear understanding of the concepts from all chapters.




Explore these essential links for NCERT Class 12 Maths in Hindi, providing detailed solutions, explanations, and study resources to help students excel in their mathematics exams.




WhatsApp Banner

FAQs on NCERT Solutions for Class 12 Maths Chapter 7 Integrals

1. What is integral in simple terms?

In Calculus, an integral is often referred to as the area under a curve. As mathematical functions can be represented on a graph paper, the area enclosed between the curve of a function and the x-axis is the integral value of that particular equation. You will come across a list of formulas for calculating the integration of various functions, in class 12 calculus. Integral is also known as anti-derivative and you may observe that the integration formulas for some functions are just the reverse of that of their differentiation formulas. Integral calculus is one of the most important topics of Class 12 Mathematics.

2. What is the difference between definite and indefinite integrals?

When the upper and lower limits are given for an integral, it is called a definite integral. While calculating the definite integration of a given function f(x), for upper limit a, and lower limit b, it must be noted that you are calculating the area under the curve f(x) from x=a to x=b. Unlike definite integrals, upper and lower limits are not provided for indefinite integrals. So, you calculate a generic integral value for a family of similar functions f(x), in indefinite integral, where ‘x’ can have a range of solutions. Also, there is a notation for additive constant, C, written along with the indefinite integral value of any function.

3. Is Class 12 integral calculus difficult to understand?

No, Class 12 integral calculus is not much difficult to understand, instead it is one of the most interesting topics in the Maths syllabus 12th boards. The basic sums of integration can be solved if you have a good knowledge of the integration formulas for various types of functions. Also, understanding the concepts of integral calculus becomes easier if you have proper knowledge of derivatives. Integration is also termed as the antiderivative. A good understanding of all the concepts of integral calculus introduced in Class 12 is very essential. These concepts lay the foundation of the theories of advanced mathematics and statistical studies.

4. Where can I find reliable NCERT Solutions for Class 12 Maths Chapter 7- Integrals online?

You can find reliable NCERT Solutions for Class 12 Maths Chapter 7 - Integrals on Vedantu. The NCERT solutions on Vedantu are prepared by our team of subject matter experts. All the sums of NCERT Class 12 Maths Chapter 7 are worked out in a stepwise manner so that students can verify their own solutions. Our subject matter experts have followed the updated CBSE guidelines for Class 12, for preparing the NCERT Maths solutions for integrals. You can download these NCERT solutions for free and you can refer to them for practice purposes.

5. What is the meaning of integrals in NCERT Class 12 Maths Chapter 7?

Integrals in Mathematical language can be described as a generalization of area or area under a curve of a function. They come under the topic of calculus along with derivatives. It can also be represented as a numerical value. Learning about integrals and derivatives can be fun and interesting but at the same time, thorough practice is needed as integrals are often very tricky and there can be multiple ways of solving the same problem. 

6. Where can I download the NCERT Solutions for Class 12 Maths Chapter 7 PDF online?

To download the solutions for Class 12 Maths Chapter 7, follow the steps mentioned below:

  • Visit the page-NCERT Solutions for Class 12 Maths.

  • Choose the chapter of your choice, here, it is Chapter 7

  • The webpage with Vedantu’s solutions for Class 12 Maths Chapter 7 will open.

  • To download this, click on the Download PDF button and you can view the solutions offline free of cost.

For more efficient doubt clearing sessions or other help, one can visit the Vedantu site and avail their help for cracking exams and achieving good marks. The students are advised to first try out the exercises based on their knowledge and practice before referring to the solution so that they can get a clear idea as to where they are lacking behind.

7. Why are integrals so hard?

If any student skips any topic or finds it hard to grasp the basic idea of any topic, integrals could be a nightmare for that student. Hence, it is crucial that you practice all different types of sums and get used to the different difficulty levels of the questions. Practice as many sums as you can to completely understand any topic.

8. What do you mean by differentiation?

Differentiation is a technique for determining a function's derivative. Differentiation is a mathematical procedure for determining the instantaneous rate of change of a function depending on one of its variables. The most prominent example is velocity, which is the rate of change of displacement with respect to time. It is an important topic and hence must be practised judiciously.

9. What are definite and indefinite integrals?

In cases when the lower and upper bounds are constants, the number can be represented or solved by a definite integral. There are several functions whose derivatives are represented by the indefinite integral, and they are called f's. Any two functions in the same family will always be distinct from each other. For a detailed explanation of the same, you can visit Vedantu website and the app.

10. How many types of integration are there in Chapter 7 Maths Class 12?

The types of integration are:

  • Integration by Parts

  • Method of Integration Using Partial Fractions

  • Integration by Substitution Method

  • Integration by Decomposition

  • Reverse Chain Rule.

11. What is the integral symbol called (Chapter 7 Maths Class 12)?

The integral symbol is the elongated "S" which you may have seen or represented as ∫.

12. Who is the father of integration?

  • Isaac Newton: He basically invented integration alongside differentiation (think opposite processes).

  • Gottfried Wilhelm Leibniz: He created a widely used notation system for writing integrals.

13. What is the rule of Integral Class 12 Maths Chapter 7?

The integration rule is defined in four types.


The basic rules are:

  • Constant

  • Variable

  • Square

  • Reciprocal

  • Exponential

  • Trigonometry

14. What is Integration all about?

Area under a curve is called Integration. Imagine a curvy line on a graph. Integration helps you find the exact area under that curve, like measuring the exact area of a weirdly shaped field which represents the Integration.

15. Are there any formulas to learn in Integration Class 12 NCERT Solutions?

Yes! Integration involves various formulas, kind of like having a toolbox with different tools for different problems. You will learn formulas for different functions and techniques.

16. Are there any tricks involved?

Yes , to learn special techniques like substitution or using trigonometric identities to solve trickier integral problems.

17. What is covered in Class 12 Maths Chapter 7?

The definition of integration, its relationship to differentiation, integration techniques, substitution methodology, integration of specific functions, integration of partial functions, and definite and indefinite integrals are the main aspects of this chapter.

18. Are there different types of integration problems?

There are two main types in class 12 integration 

  • Indefinite Integrals: Finding a general expression for the area under the curve (like estimating total distance traveled).

  • Definite Integrals: Calculating the exact area within specific boundaries (like the amount of juice in a weird bottle).

19.  Do I need to memorize a bunch of formulas in Integrals class 12 solutions?

Integration uses different approaches depending on the problem, like having a toolbox with various tools. NCERT solutions can help you grasp these techniques and their applications.

20. Are there any tricks to solving integration problems?

Absolutely, there are few special techniques like:

  • Substitution: Replacing parts of the integral with new variables.

  • Integration by Parts: A specific method for integrating certain functions.

  • Trigonometric Identities: Using trigonometric properties to simplify integrals.