NCERT Solutions for Maths Class 12 Chapter 7 Integrals Exercise 7.10 - FREE PDF Download
The topic of "Some Properties of Definite Integrals" is the main focus of the NCERT Solutions for Maths Exercise 7.10 in Class 12 Chapter 7 - Integrals by Vedantu. This exercise explores essential properties that are fundamental for evaluating and understanding definite integrals. By studying these properties, students can gain a deeper insight into how integrals work and how to apply them effectively.
Exercise 7.10 contains 21 questions designed to give students plenty of practise with properties of definite integrals from NCERT Solutions for Class 12 Maths. The solutions provided by Vedantu offer clear, step-by-step guidance to help students master these concepts and excel in their exams. The goal of these solutions is to help students become better at solving problems and to increase their exam confidence by using CBSE Class 12 Maths Syllabus.
Glance on NCERT Solutions Maths Chapter 7 Exercise 7.10 Class 12 | Vedantu
The Maths Chapter 7 Exercise 7.10 explores key properties of definite integrals, essential for understanding and solving integral problems.
Exercise 7.10 explores key properties of definite integrals, essential for understanding and solving integral problems.
Provides step-by-step solutions to help students understand and solve integrals efficiently.
Aims to improve problem-solving skills and prepare for CBSE exams by focusing on integral properties.
Access NCERT Solutions for Maths Class 12 Chapter 7 - Integrals
Exercise 7.10
Solve the following integrals.
1. $\int\limits_{0}^{\dfrac{\pi }{2}}{{{\cos }^{2}}xdx}$
Ans: Given $I=\int\limits_{0}^{\dfrac{\pi }{2}}{{{\cos }^{2}}xdx}$ …(1)
We know that,
$\int\limits_{0}^{a}{f\left( x \right)dx}=\int\limits_{0}^{a}{f\left( a-x \right)dx}$
Therefore, the integral becomes
$I=\int\limits_{0}^{\dfrac{\pi }{2}}{{{\cos }^{2}}\left( \dfrac{\pi }{2}-x \right)dx}$
$\Rightarrow I=\int\limits_{0}^{\dfrac{\pi }{2}}{{{\sin }^{2}}xdx}$ …(2)
Adding equation (1) and (2),
$2I=\int\limits_{0}^{\dfrac{\pi }{2}}{\left( {{\sin }^{2}}x+{{\cos }^{2}}x \right)dx}$
$\Rightarrow 2I=\int\limits_{0}^{\dfrac{\pi }{2}}{1dx}$
$\Rightarrow 2I=\left[ x \right]_{0}^{\dfrac{\pi }{2}}$
$\Rightarrow 2I=\dfrac{\pi }{2}$
$\Rightarrow I=\dfrac{\pi }{4}$
$\therefore \int\limits_{0}^{\dfrac{\pi }{2}}{{{\cos }^{2}}xdx}=\dfrac{\pi }{4}$
2. $\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{\sqrt{\sin x}}{\sqrt{\sin x}+\sqrt{\cos x}}dx}$
Ans: Given $I=\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{\sqrt{\sin x}}{\sqrt{\sin x}+\sqrt{\cos x}}dx}$ …(1)
We know that,
$\int\limits_{0}^{a}{f\left( x \right)dx}=\int\limits_{0}^{a}{f\left( a-x \right)dx}$
Therefore, the integral becomes
$I=\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{\sqrt{\sin \left( \dfrac{\pi }{2}-x \right)}}{\sqrt{\sin \left( \dfrac{\pi }{2}-x \right)}+\sqrt{\cos \left( \dfrac{\pi }{2}-x \right)}}dx}$
$\Rightarrow I=\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{\sqrt{\cos x}}{\sqrt{\sin x}+\sqrt{\cos x}}dx}$ …(2)
Adding equation (1) and (2),
$\Rightarrow 2I=\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{\sqrt{\sin x}+\sqrt{\cos x}}{\sqrt{\sin x}+\sqrt{\cos x}}dx}$
$\Rightarrow 2I=\int\limits_{0}^{\dfrac{\pi }{2}}{1dx}$
$\Rightarrow 2I=\left[ x \right]_{0}^{\dfrac{\pi }{2}}$
$\Rightarrow 2I=\dfrac{\pi }{2}$
$\Rightarrow I=\dfrac{\pi }{4}$
$\therefore \int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{\sqrt{\sin x}}{\sqrt{\sin x}+\sqrt{\cos x}}dx}=\dfrac{\pi }{4}$
3. $\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{{{\sin }^{\dfrac{3}{2}}}xdx}{{{\sin }^{\dfrac{3}{2}}}x+{{\cos }^{\dfrac{3}{2}}}x}}$
Ans: Given $I=\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{{{\sin }^{\dfrac{3}{2}}}xdx}{{{\sin }^{\dfrac{3}{2}}}x+{{\cos }^{\dfrac{3}{2}}}x}}$ …(1)
We know that,
$\int\limits_{0}^{a}{f\left( x \right)dx}=\int\limits_{0}^{a}{f\left( a-x \right)dx}$
Therefore, the integral becomes
$I=\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{{{\sin }^{\dfrac{3}{2}}}\left( \dfrac{\pi }{2}-x \right)dx}{{{\sin }^{\dfrac{3}{2}}}\left( \dfrac{\pi }{2}-x \right)+{{\cos }^{\dfrac{3}{2}}}\left( \dfrac{\pi }{2}-x \right)}}$
$\Rightarrow I=\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{{{\cos }^{\dfrac{3}{2}}}xdx}{{{\sin }^{\dfrac{3}{2}}}x+{{\cos }^{\dfrac{3}{2}}}x}}$ …(2)
Adding equation (1) and (2),
$\Rightarrow 2I=\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{{{\sin }^{\dfrac{3}{2}}}x+{{\cos }^{\dfrac{3}{2}}}x}{{{\sin }^{\dfrac{3}{2}}}x+{{\cos }^{\dfrac{3}{2}}}x}dx}$
$\Rightarrow 2I=\int\limits_{0}^{\dfrac{\pi }{2}}{1dx}$
$\Rightarrow 2I=\left[ x \right]_{0}^{\dfrac{\pi }{2}}$
$\Rightarrow 2I=\dfrac{\pi }{2}$
$\Rightarrow I=\dfrac{\pi }{4}$
$\therefore \int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{{{\sin }^{\dfrac{3}{2}}}xdx}{{{\sin }^{\dfrac{3}{2}}}x+{{\cos }^{\dfrac{3}{2}}}x}}=\dfrac{\pi }{4}$
4. $\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{{{\cos }^{5}}xdx}{{{\sin }^{5}}x+{{\cos }^{5}}x}}$
Ans: Given $I=\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{{{\cos }^{5}}xdx}{{{\sin }^{5}}x+{{\cos }^{5}}x}}$ …(1)
We know that,
$\int\limits_{0}^{a}{f\left( x \right)dx}=\int\limits_{0}^{a}{f\left( a-x \right)dx}$
Therefore, the integral becomes
$I=\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{{{\cos }^{5}}\left( \dfrac{\pi }{2}-x \right)dx}{{{\sin }^{5}}\left( \dfrac{\pi }{2}-x \right)+{{\cos }^{5}}\left( \dfrac{\pi }{2}-x \right)}}$
$\Rightarrow I=\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{{{\sin }^{5}}xdx}{{{\sin }^{5}}x+{{\cos }^{5}}x}}$ …(2)
Adding equation (1) and (2),
$\Rightarrow 2I=\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{{{\sin }^{5}}x+{{\cos }^{5}}x}{{{\sin }^{5}}x+{{\cos }^{5}}x}dx}$
$\Rightarrow 2I=\int\limits_{0}^{\dfrac{\pi }{2}}{1dx}$
$\Rightarrow 2I=\left[ x \right]_{0}^{\dfrac{\pi }{2}}$
$\Rightarrow 2I=\dfrac{\pi }{2}$
$\Rightarrow I=\dfrac{\pi }{4}$
$\therefore \int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{{{\cos }^{5}}xdx}{{{\sin }^{5}}x+{{\cos }^{5}}x}}=\dfrac{\pi }{4}$
5. $\int\limits_{-5}^{5}{\left| x+2 \right|}dx$
Ans: Let $I=\int\limits_{-5}^{5}{\left| x+2 \right|}dx$
Since, $\left( x+2 \right)\le 0$ for interval $\left[ -5,-2 \right]$ .
Therefore, $\left( x+2 \right)\ge 0$ for interval $\left[ -2,5 \right]$.
As, $\int\limits_{a}^{b}{f\left( x \right)}dx=\int\limits_{a}^{c}{f\left( x \right)}dx+\int\limits_{c}^{b}{f\left( x \right)dx}$
Hence, $\int\limits_{-5}^{-2}{-\left( x+2 \right)}dx+\int\limits_{-2}^{5}{\left( x+2 \right)dx}$ .
Thus,
$I=\int\limits_{-5}^{-2}{-\left( x+2 \right)}dx+\int\limits_{-2}^{5}{\left( x+2 \right)dx}$
$=-\left[ \dfrac{{{x}^{2}}}{2}+2x \right]_{-5}^{2}+\left[ \dfrac{{{x}^{2}}}{2}+2x \right]_{-2}^{5}$
$=-\left[ \dfrac{{{\left( 2 \right)}^{2}}}{2}+2\left( 2 \right)-\dfrac{{{\left( -5 \right)}^{2}}}{2}-2\left( -5 \right) \right]+\left[ \dfrac{{{\left( 5 \right)}^{2}}}{2}+2\left( 5 \right)-\dfrac{{{\left( -2 \right)}^{2}}}{2}-2\left( -2 \right) \right]$$=-\left[ 2-4-\dfrac{25}{2}+10 \right]+\left[ \dfrac{25}{2}+10-2+4 \right]$
$=-2+4+\dfrac{25}{2}+10+\dfrac{25}{2}+10-2+4$
$=29$
6. $\int\limits_{2}^{8}{\left| x-5 \right|}dx$
Ans: Let $I=\int\limits_{2}^{8}{\left| x-5 \right|}dx$
Since, $\left( x-5 \right)\le 0$ for interval $\left[ 2,5 \right]$ .
Therefore, $\left( x-5 \right)\ge 0$ for interval $\left[ 5,8 \right]$.
As, $\int\limits_{a}^{b}{f\left( x \right)}dx=\int\limits_{a}^{c}{f\left( x \right)}dx+\int\limits_{c}^{b}{f\left( x \right)dx}$
Hence, $\int\limits_{2}^{5}{-\left( x-5 \right)}dx+\int\limits_{5}^{8}{\left( x-5 \right)dx}$ .
Thus,
$I=\int\limits_{2}^{5}{-\left( x-5 \right)}dx+\int\limits_{5}^{8}{\left( x-5 \right)dx}$
$=-\left[ \dfrac{{{x}^{2}}}{2}-5x \right]_{2}^{5}+\left[ \dfrac{{{x}^{2}}}{2}-5x \right]_{5}^{8}$
$=-\left[ \dfrac{{{\left( 5 \right)}^{2}}}{2}-5\left( 5 \right)-\dfrac{{{\left( 2 \right)}^{2}}}{2}+5\left( 2 \right) \right]+\left[ \dfrac{{{\left( 8 \right)}^{2}}}{2}-5\left( 8 \right)-\dfrac{{{\left( 5 \right)}^{2}}}{2}+5\left( 5 \right) \right]$
$=-\left[ \dfrac{25}{2}-25-2+10 \right]+\left[ 32-40-\dfrac{25}{2}+25 \right]$
$=-\dfrac{25}{2}+25+2-10+32-40-\dfrac{25}{2}+25$
$=9$
7. $\int\limits_{0}^{1}{x{{\left( 1-x \right)}^{n}}dx}$
Ans: Let $I=\int\limits_{0}^{1}{x{{\left( 1-x \right)}^{n}}dx}$
Thus, $I=\int\limits_{0}^{1}{\left( 1-x \right){{\left( 1-\left( 1-x \right) \right)}^{n}}dx}$
Since, $\int\limits_{1}^{a}{f\left( x \right)dx}=\int\limits_{0}^{a}{f\left( a-x \right)dx}$.
Therefore,
$\int\limits_{0}^{1}{\left( 1-x \right){{\left( x \right)}^{n}}}dx$
$=\int\limits_{0}^{1}{\left( {{x}^{n}}-{{x}^{n+1}} \right)dx}$
$=\left[ \dfrac{{{x}^{n+1}}}{n+1}-\dfrac{{{x}^{n+2}}}{n+2} \right]_{0}^{1}$
$=\left[ \dfrac{1}{n+1}-\dfrac{1}{n+2} \right]$
$=\dfrac{\left( n+2 \right)-\left( n+1 \right)}{\left( n+1 \right)\left( n+2 \right)}$
$=\dfrac{1}{\left( n+1 \right)\left( n+2 \right)}$
8. $\int\limits_{0}^{\dfrac{\pi }{4}}{\log \left( 1+\tan x \right)dx}$
Ans: Let $I=\int\limits_{0}^{\dfrac{\pi }{4}}{\log \left( 1+\tan x \right)dx}$
Since, $\int\limits_{0}^{a}{f\left( x \right)dx}=\int\limits_{0}^{a}{f\left( a-x \right)dx}$
Therefore, $I=\int\limits_{0}^{\dfrac{\pi }{4}}{\log \left[ 1+\tan \left( \dfrac{\pi }{4}-x \right) \right]dx}$
$=\int\limits_{0}^{\dfrac{\pi }{4}}{\log \left[ 1+\dfrac{\tan \dfrac{\pi }{4}-\tan x}{1+\tan \dfrac{\pi }{4}\tan x} \right]dx}$
$=\int\limits_{0}^{\dfrac{\pi }{4}}{\log \left\{ 1+\dfrac{1-\tan x}{1+\tan x} \right\}dx}$
$=\int\limits_{0}^{\dfrac{\pi }{4}}{\log \dfrac{2}{1+\tan x}}dx$
$=\int\limits_{0}^{\dfrac{\pi }{4}}{\log 2dx}-\int\limits_{0}^{\dfrac{\pi }{4}}{\log \left( 1+\tan x \right)}dx$
$=\int\limits_{0}^{\dfrac{\pi }{4}}{\log 2dx}-I$
$2I=\left[ x\log 2 \right]_{0}^{\dfrac{\pi }{4}}$
$2I=\dfrac{\pi }{4}\log 2$
$I=\dfrac{\pi }{8}\log 2$
9. $\int\limits_{0}^{2}{x\sqrt{2-x}dx}$
Ans: Let $I=\int\limits_{0}^{2}{x\sqrt{2-x}dx}$
Since, $\int\limits_{0}^{a}{f\left( x \right)}dx=\int\limits_{0}^{a}{f\left( a-x \right)}dx$
Therefore, $I=\int\limits_{0}^{2}{\left( 2-x \right)}\sqrt{x}dx$
$=\int\limits_{0}^{2}{\left\{ 2{{x}^{{1}/{2}\;}}-{{x}^{{3}/{2}\;}} \right\}}dx$
$=\left[ 2\left( \dfrac{{{x}^{{3}/{2}\;}}}{{3}/{2}\;} \right)-\dfrac{{{x}^{{5}/{2}\;}}}{{5}/{2}\;} \right]_{0}^{2}$
$=\left[ \dfrac{4}{3}{{x}^{{3}/{2}\;}}-\dfrac{2}{5}{{x}^{{5}/{2}\;}} \right]_{0}^{2}$
$=\dfrac{4}{3}{{\left( 2 \right)}^{{3}/{2}\;}}-\dfrac{2}{5}{{\left( 2 \right)}^{{5}/{2}\;}}$
$=\dfrac{8\sqrt{2}}{3}-\dfrac{8\sqrt{2}}{5}$
$=\dfrac{40\sqrt{2}-24\sqrt{2}}{15}$
$=\dfrac{16\sqrt{2}}{15}$
10. $\int\limits_{0}^{\dfrac{\pi }{2}}{\left( 2\log \sin x-\log \sin 2x \right)dx}$
Ans: Let $I=\int\limits_{0}^{\dfrac{\pi }{2}}{\left( 2\log \sin x-\log \sin 2x \right)dx}$
$\Rightarrow I=\int\limits_{0}^{\dfrac{\pi }{2}}{\left( 2\log \sin x-\log \left( 2\sin x\cos x \right) \right)dx}$
$\Rightarrow I=\int\limits_{0}^{\dfrac{\pi }{2}}{\left( 2\log \sin x-\log \sin x-\log \cos x-\log 2 \right)dx}$
$\Rightarrow I=\int\limits_{0}^{\dfrac{\pi }{2}}{\left( \log \sin x-\log \cos x-\log 2 \right)dx}$ …….(1)
Since,
$\int\limits_{0}^{a}{f\left( x \right)dx}=\int\limits_{0}^{a}{f\left( a-x \right)dx}$
Therefore,
$\Rightarrow I=\int\limits_{0}^{\dfrac{\pi }{2}}{\left( \log \cos x-\log \sin x-\log 2 \right)dx}$ …….(2)
On adding equation 1 and 2-
$2I=\int\limits_{0}^{\dfrac{\pi }{2}}{\left( -\log 2-\log 2 \right)dx}$
$\Rightarrow 2I=-2\log 2\int\limits_{0}^{\dfrac{\pi }{2}}{dx}$
$\Rightarrow I=-\log 2\left[ \dfrac{\pi }{2} \right]$
$\Rightarrow I=-\dfrac{\pi }{2}\left[ \log 2 \right]$
$\Rightarrow I=\dfrac{\pi }{2}\left[ -\log 2 \right]$
$\Rightarrow I=\dfrac{\pi }{2}\left[ \log \dfrac{1}{2} \right]$
$\Rightarrow I=\dfrac{\pi }{2}\log \dfrac{1}{2}$
11. $\int\limits_{\dfrac{-\pi }{2}}^{\dfrac{\pi }{2}}{{{\sin }^{2}}xdx}$
Ans: Let $I=\int\limits_{\dfrac{-\pi }{2}}^{\dfrac{\pi }{2}}{{{\sin }^{2}}xdx}$
Since, ${{\sin }^{2}}x$ is an even function.
Therefore , $\int\limits_{\dfrac{-\pi }{2}}^{\dfrac{\pi }{2}}{{{\sin }^{2}}xdx}=2\int\limits_{0}^{\dfrac{\pi }{2}}{{{\sin }^{2}}xdx}$
As if $f\left( x \right)$ is an even function, then $\int\limits_{-a}^{a}{f\left( x \right)dx}=2\int\limits_{0}^{a}{f\left( x \right)dx}$.
Hence,
$I=2\int\limits_{0}^{\dfrac{\pi }{2}}{{{\sin }^{2}}xdx}$
$=2\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{1-\cos 2x}{2}dx}$
$=\int\limits_{0}^{\dfrac{\pi }{2}}{\left( 1-\cos 2x \right)dx}$
$=\left[ x-\dfrac{sin2x}{2} \right]_{0}^{\dfrac{\pi }{2}}$
$=\dfrac{\pi }{2}$
12. $\int\limits_{0}^{\pi }{\dfrac{x}{1+\sin x}dx}$
Ans: Let $I=\int\limits_{0}^{\pi }{\dfrac{x}{1+\sin x}dx}$ …….(1)
Since, $\int\limits_{0}^{a}{f\left( x \right)dx}=\int\limits_{0}^{a}{f\left( a-x \right)dx}$
Therefore, $I=\int\limits_{0}^{\pi }{\dfrac{\left( \pi -x \right)}{1+\sin x\left( \pi -x \right)}dx}$
$I=\int\limits_{0}^{\pi }{\dfrac{\left( \pi -x \right)}{1+\sin x}dx}$ …..(2)
On adding equation 1 and 2-
$2I=\int\limits_{0}^{\pi }{\dfrac{\pi }{1+\sin x}dx}$
$\Rightarrow 2I=\pi \int\limits_{0}^{\pi }{\dfrac{\left( 1-\sin x \right)}{\left( 1+\sin x \right)+\left( 1-\sin x \right)}dx}$
$\Rightarrow 2I=\pi \int\limits_{0}^{\pi }{\dfrac{\left( 1-\sin x \right)}{{{\cos }^{2}}x}dx}$
$\Rightarrow 2I=\pi \int\limits_{0}^{\pi }{\left\{ {{\sec }^{2}}x-\tan x\sec x \right\}dx}$
$\Rightarrow 2I=\pi \left[ 2 \right]$
$\Rightarrow I=\pi $
13. $\int\limits_{\dfrac{-\pi }{2}}^{\dfrac{\pi }{2}}{{{\sin }^{7}}xdx}$.
Ans: Let $I=\int\limits_{\dfrac{-\pi }{2}}^{\dfrac{\pi }{2}}{{{\sin }^{7}}xdx}$
Since, ${{\sin }^{7}}x$ is an even function.
Therefore , $\int\limits_{\dfrac{-\pi }{2}}^{\dfrac{\pi }{2}}{{{\sin }^{2}}xdx}=0$
As if $f\left( x \right)$ is an odd function, then $\int\limits_{-a}^{a}{f\left( x \right)dx}=0$.
Hence, $I=0$
14. $\int\limits_{0}^{2\pi }{{{\cos }^{5}}xdx}$.
Ans: Let
$I=\int\limits_{0}^{2\pi }{{{\cos }^{5}}xdx}$
${{\cos }^{5}}\left( 2\pi -x \right)={{\cos }^{5}}x$ …..(1)
If $f\left( 2a-x \right)=f\left( x \right)$ then $\int\limits_{0}^{2a}{f\left( x \right)dx}=2\int\limits_{0}^{a}{f\left( x \right)dx}$.
If $f\left( 2a-x \right)=-f\left( x \right)$ then $\int\limits_{0}^{2a}{f\left( x \right)dx}=0$
Since, ${{\cos }^{5}}\left( \pi -x \right)=-{{\cos }^{5}}x$
Therefore,
$I=2\int\limits_{0}^{2\pi }{{{\cos }^{5}}xdx}$
$\Rightarrow I=2\left( 0 \right)$
$\Rightarrow I=0$
15. $\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{\sin x-\cos x}{1+\sin x\cos x}dx}$
Ans: Let $I=\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{\sin x-\cos x}{1+\sin x\cos x}dx}$ ……(1)
Since,
$\int\limits_{0}^{a}{f\left( x \right)dx}=\int\limits_{0}^{a}{f\left( a-x \right)dx}$
Therefore,
$I=\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{\sin \left( \dfrac{\pi }{2}-x \right)-\cos \left( \dfrac{\pi }{2}-x \right)}{1+\sin \left( \dfrac{\pi }{2}-x \right)\cos \left( \dfrac{\pi }{2}-x \right)}dx}$
$\Rightarrow I=\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{\cos x-\sin x}{1+\cos x\sin x}dx}$ ……(2)
On adding equation 1 and 2
$\Rightarrow 2I=\int\limits_{0}^{\dfrac{\pi }{2}}{\dfrac{0}{1+\cos x\sin x}dx}$
$\Rightarrow I=0$
16. $\int\limits_{0}^{\pi }{\log \left( 1+\cos x \right)dx}$
Ans: Let
$I=\int\limits_{0}^{\pi }{\log \left( 1+\cos x \right)dx}$ …….(1)
Since,
$\int\limits_{0}^{a}{f\left( x \right)dx}=\int\limits_{0}^{a}{f\left( a-x \right)dx}$
Therefore,
$\Rightarrow I=\int\limits_{0}^{\pi }{\log \left( 1+\cos \left( \pi -x \right) \right)dx}$
$\Rightarrow I=\int\limits_{0}^{\pi }{\log \left( 1-\cos x \right)dx}$ …….(2)
On adding equation 1 and 2-
$2I=\int\limits_{0}^{\pi }{\left\{ \log \left( 1-\cos x \right)+\log \left( 1-\cos x \right) \right\}dx}$
$\Rightarrow 2I=\int\limits_{0}^{\pi }{\log \left( 1-{{\cos }^{2}}x \right)dx}$
$\Rightarrow 2I=\int\limits_{0}^{\pi }{\log {{\sin }^{2}}xdx}$
$\Rightarrow 2I=2\int\limits_{0}^{\pi }{\log \sin xdx}$
$\Rightarrow I=\int\limits_{0}^{\pi }{\log \sin xdx}$ …..(3)
Since, $\sin \left( \pi -x \right)=\sin x$
Therefore, $I=\int\limits_{0}^{\dfrac{\pi }{2}}{\log \sin xdx}$ ……(4)
$\Rightarrow I=2\int\limits_{0}^{\dfrac{\pi }{2}}{\log \sin \left( \dfrac{\pi }{2}-x \right)dx}$
$\Rightarrow I=2\int\limits_{0}^{\dfrac{\pi }{2}}{\log \cos xdx}$ …….(5)
On adding equation 4 and 5-
$2I=\int\limits_{0}^{\dfrac{\pi }{2}}{\left( \log \sin x+\log \cos x \right)dx}$
$\Rightarrow I=\int\limits_{0}^{\dfrac{\pi }{2}}{\left( \log \sin x+\log \cos x+\log 2-\log 2 \right)dx}$
$\Rightarrow I=\int\limits_{0}^{\dfrac{\pi }{2}}{\left( \log 2\sin x\cos x-\log 2 \right)dx}$
$\Rightarrow I=\int\limits_{0}^{\dfrac{\pi }{2}}{\left( \log 2\sin x\cos x \right)dx}-\int\limits_{0}^{\dfrac{\pi }{2}}{\log 2dx}$
Let $2x=t$
On differentiating-
$2dx=dt$
If $x=0$ then $t=0$.
Thus,
$\Rightarrow I=\dfrac{I}{2}-\dfrac{\pi }{2}\log 2$
$\Rightarrow \dfrac{I}{2}=-\dfrac{\pi }{2}\log 2$
$\Rightarrow I=-\pi \log 2$
17. $\int\limits_{0}^{a}{\dfrac{\sqrt{x}}{\sqrt{x}+\sqrt{a-x}}dx}$
Ans: Let $I=\int\limits_{0}^{a}{\dfrac{\sqrt{x}}{\sqrt{x}+\sqrt{a-x}}dx}$ …….(1)
Since,
$\int\limits_{0}^{a}{f\left( x \right)dx}=\int\limits_{0}^{a}{f\left( a-x \right)dx}$
Therefore,
$I=\int\limits_{0}^{a}{\dfrac{\sqrt{a-x}}{\sqrt{a-x}+\sqrt{x}}dx}$ …….(2)
On adding equation 1 and 2-
$2I=\int\limits_{0}^{a}{\dfrac{\sqrt{x}+\sqrt{a-x}}{\sqrt{a-x}+\sqrt{x}}dx}$
$\Rightarrow 2I=\int\limits_{0}^{a}{dx}$
$\Rightarrow 2I=\left[ x \right]_{0}^{a}$
$\Rightarrow 2I=a$
$\Rightarrow I=\dfrac{a}{2}$
18. $\int\limits_{0}^{4}{\left| x-1 \right|dx}$
Ans: Let $I=\int\limits_{0}^{4}{\left| x-1 \right|dx}$
Thus, $\left( x-1 \right)\le 0$ when $0\le x\le 1$ and $\left( x-1 \right)\ge 0$ when $1\le x\le 4$
Since, $\int\limits_{a}^{b}{f\left( x \right)}dx=\int\limits_{a}^{c}{f\left( x \right)dx}+\int\limits_{c}^{b}{f\left( x \right)}$
Therefore, $I=\int\limits_{0}^{1}{\left| x-1 \right|}dx+\int\limits_{1}^{4}{\left| x-1 \right|dx}$
$\Rightarrow I=\int\limits_{0}^{1}{-\left( x-1 \right)}dx+\int\limits_{1}^{4}{\left( x-1 \right)dx}$
$=\left[ x-\dfrac{{{x}^{2}}}{2} \right]_{0}^{1}+\left[ \dfrac{{{x}^{2}}}{2}-x \right]_{1}^{4}$
$=1-\dfrac{1}{2}+\dfrac{{{\left( 4 \right)}^{2}}}{2}-4-\dfrac{1}{2}+1$
$=1-\dfrac{1}{2}+8-4-\dfrac{1}{2}+1$
$=5$
19. Show that $\int\limits_{0}^{a}{f\left( x \right)g\left( x \right)}dx=2\int\limits_{0}^{a}{f\left( x \right)}dx$ , if $f$and $g$ are defined as $f\left( x \right)=f\left( a-x \right)$ and $g\left( x \right)+g\left( a-x \right)=4$ .
Ans: Let $\int\limits_{0}^{a}{f\left( x \right)}g\left( x \right)dx$ …….(1)
Since,
$\int\limits_{0}^{a}{f\left( x \right)dx}=\int\limits_{0}^{a}{f\left( a-x \right)dx}$
Therefore,
$\Rightarrow \int\limits_{0}^{a}{f\left( a-x \right)}g\left( a-x \right)dx$
$\Rightarrow \int\limits_{0}^{a}{f\left( x \right)}g\left( a-x \right)dx$ ……(2)
On adding equation 1 and 2-
$2I=\int\limits_{0}^{a}{\left\{ f\left( x \right)g\left( x \right)+f\left( x \right)g\left( a-x \right) \right\}dx}$
$\Rightarrow 2I=\int\limits_{0}^{a}{f\left( x \right)\left\{ g\left( x \right)+g\left( a-x \right) \right\}dx}$
As, $g\left( x \right)+g\left( a-x \right)=4$.
Thus,
$\Rightarrow 2I=\int\limits_{0}^{a}{4f\left( x \right)dx}$
$\Rightarrow I=2\int\limits_{0}^{a}{f\left( x \right)dx}$
Hence, $\int\limits_{0}^{a}{f\left( x \right)g\left( x \right)}dx=2\int\limits_{0}^{a}{f\left( x \right)}dx$ , if $f$and $g$ are defined as $f\left( x \right)=f\left( a-x \right)$ and $g\left( x \right)+g\left( a-x \right)=4$ .
20. The value of $\int\limits_{\dfrac{-\pi }{2}}^{\dfrac{\pi }{2}}{\left( {{x}^{3}}+x\cos x+{{\tan }^{5}}x+1 \right)dx}$ is
$0$
$2$
$\pi $
$1$
Ans: Let $I=\int\limits_{\dfrac{-\pi }{2}}^{\dfrac{\pi }{2}}{\left( {{x}^{3}}+x\cos x+{{\tan }^{5}}x+1 \right)dx}$
$\Rightarrow I=\int\limits_{\dfrac{-\pi }{2}}^{\dfrac{\pi }{2}}{\left( {{x}^{3}} \right)dx}+\int\limits_{\dfrac{-\pi }{2}}^{\dfrac{\pi }{2}}{\left( x\cos x \right)dx}+\int\limits_{\dfrac{-\pi }{2}}^{\dfrac{\pi }{2}}{\left( {{\tan }^{5}}x \right)dx}+\int\limits_{\dfrac{-\pi }{2}}^{\dfrac{\pi }{2}}{\left( 1 \right)dx}$
If $f\left( x \right)$ is an even function, then $\int\limits_{-a}^{a}{f\left( x \right)dx}=2\int\limits_{0}^{a}{f\left( x \right)}dx$
And $f\left( x \right)$ is an odd function, then $\int\limits_{-a}^{a}{f\left( x \right)dx}=0$
Thus,
$I=0+0+0+2\int\limits_{0}^{\dfrac{\pi }{2}}{dx}$
$=2\left[ x \right]_{0}^{\dfrac{\pi }{2}}$
$=2\left[ \dfrac{\pi }{2} \right]$
$=\pi $
Hence, the correct option is C.
21. The value of $\int\limits_{0}^{\dfrac{\pi }{2}}{\left( \dfrac{4+3\sin x}{4+3\cos x} \right)dx}$ is
$2$
$\dfrac{3}{4}$
$0$
$-2$
Ans: Let $I=\int\limits_{0}^{\dfrac{\pi }{2}}{\left( \dfrac{4+3\sin x}{4+3\cos x} \right)dx}$ …..(1)
Since,
$\int\limits_{0}^{a}{f\left( x \right)dx}=\int\limits_{0}^{a}{f\left( a-x \right)dx}$
Therefore,
$\Rightarrow I=\int\limits_{0}^{\dfrac{\pi }{2}}{\left( \dfrac{4+3\sin \left( \dfrac{\pi }{2}-x \right)}{4+3\cos \left( \dfrac{\pi }{2}-x \right)} \right)dx}$
$\Rightarrow I=\int\limits_{0}^{\dfrac{\pi }{2}}{\left( \dfrac{4+3\cos x}{4+3\sin x} \right)dx}$ …….(2)
On adding equation 1 and 2-
$2I=\int\limits_{0}^{\dfrac{\pi }{2}}{\log 1dx}$
$\Rightarrow 2I=\int\limits_{0}^{\dfrac{\pi }{2}}{0dx}$
$\Rightarrow I=0$
Hence, the correct option is C.
Formulas Used in Class 12 Chapter 7 Exercise 7.10
$\begin{array}{ll}\mathbf{P}_{0}: & \int_{a}^{b} f(x) d x=\int_{a}^{b} f(t) d t \\ \mathbf{P}_{1}: & \int_{a}^{b} f(x) d x=-\int_{b}^{a} f(x) d x . \text { In particular, } \int_{a}^{a} f(x) d x=0 \\ \mathbf{P}_{2}: & \int_{a}^{b} f(x) d x=\int_{a}^{c} f(x) d x+\int_{c}^{b} f(x) d x\end{array} $
$\begin{array}{*{20}{l}}
{{{\mathbf{P}}_3}:}&{\int_a^b f (x)dx = \int_a^b f (a + b - x)dx} \\
{{{\mathbf{P}}_4}:}&{\int_0^a f (x)dx = \int_0^a f (a - x)dx}
\end{array}$
${{\mathbf{P}}_5}:\quad \int_0^{2a} f (x)dx = \int_0^a f (x)dx + \int_0^a f (2a - x)dx$
${{\mathbf{P}}_6}:\quad \int_0^{2a} f (x)dx = 2\int_0^a f (x)dx$, if $f(2a - x) = f(x)$ and $0$ if $f(2a - x) = - f(x)$
${{\mathbf{P}}_7}:\quad $ (i) $\int_{ - a}^a f (x)dx = 2\int_0^a f (x)dx$, if $f$ is an even function, i.e., if $f( - x) = f(x)$.
(ii) $\int_{ - a}^a f (x)dx = 0$, if $f$ is an odd function, i.e., if $f( - x) = - f(x)$.
Conclusion
NCERT Solutions for Maths Exercise 7.10 in Class 12 Chapter 7 - Integrals offer a comprehensive exploration of the properties of definite integrals. With clear, step-by-step solutions provided by Vedantu, students can deepen their understanding of integral properties and enhance their problem-solving skills. This practice not only builds a solid foundation for tackling complex integrals but also boosts confidence for CBSE exams.
Class 12 Maths Chapter 7: Exercises Breakdown
S.No. | Chapter 7 - Integrals Exercises in PDF Format | |
1 | Class 12 Maths Chapter 7 Exercise 7.1 - 22 Questions & Solutions (21 Short Answers, 1 MCQs) | |
2 | Class 12 Maths Chapter 7 Exercise 7.2 - 39 Questions & Solutions (37 Short Answers, 2 MCQs) | |
3 | Class 12 Maths Chapter 7 Exercise 7.3 - 24 Questions & Solutions (22 Short Answers, 2 MCQs) | |
4 | Class 12 Maths Chapter 7 Exercise 7.4 - 25 Questions & Solutions (23 Short Answers, 2 MCQs) | |
5 | Class 12 Maths Chapter 7 Exercise 7.5 - 23 Questions & Solutions (21 Short Answers, 2 MCQs) | |
6 | Class 12 Maths Chapter 7 Exercise 7.6 - 24 Questions & Solutions (22 Short Answers, 2 MCQs) | |
7 | Class 12 Maths Chapter 7 Exercise 7.7 - 11 Questions & Solutions (9 Short Answers, 2 MCQs) | |
8 | Class 12 Maths Chapter 7 Exercise 7.8 - 6 Questions & Solutions (6 Short Answers) | |
9 | Class 12 Maths Chapter 7 Exercise 7.9 - 22 Questions & Solutions (20 Short Answers, 2 MCQs) | |
10 | Class 12 Maths Chapter 7 Miscellaneous Exercise - 40 Questions & Solutions |
CBSE Class 12 Maths Chapter 7 Other Study Materials
S.No. | Important Links for Chapter 7 Integrals |
1 | |
2 | |
3 | |
4 |
NCERT Solutions for Class 12 Maths | Chapter-wise List
Given below are the chapter-wise NCERT 12 Maths solutions PDF. Using these chapter-wise class 12th maths ncert solutions, you can get clear understanding of the concepts from all chapters.
S.No. | NCERT Solutions Class 12 Maths Chapter-wise List |
1 | |
2 | |
3 | |
4 | |
5 | |
6 | |
7 | |
8 | |
9 | |
10 | |
11 | |
12 | |
13 |
Related Links for NCERT Class 12 Maths in Hindi
Explore these essential links for NCERT Class 12 Maths in Hindi, providing detailed solutions, explanations, and study resources to help students excel in their mathematics exams.
S.No. | Related NCERT Solutions for Class 12 Maths |
1 | |
2 |
Important Related Links for NCERT Class 12 Maths
S.No | Important Resources Links for Class 12 Maths |
1 | |
2 | |
3 | |
4 | |
5 | |
6 | |
7 | |
8 | |
9 | |
10 |
FAQs on NCERT Solutions for Class 12 Maths Chapter 7 Integrals Ex 7.10
1. What does Exercise 7.10 of Class 12 Maths Chapter 7 focus on?
Exercise 7.10 focuses on "Some Properties of Definite Integrals," teaching key properties used in solving integrals.
2. How can NCERT Solutions for Exercise 7.10 help me?
They provide detailed, step-by-step solutions to help you understand and apply properties of definite integrals.
3. Where can I download the FREE PDF of NCERT Solutions for Exercise 7.10?
The FREE PDF can be downloaded from educational websites like Vedantu.
4. What kind of problems are included in this exercise?
The exercise includes problems that require applying various properties of definite integrals to solve.
5. How do these solutions help with exam preparation?
They offer practice and clear explanations, helping you master integral properties and improve your performance in exams.
6. Are the NCERT Solutions for Class 12 Maths Chapter 7: Integrals - Exercise 7.10 suitable for self-study?
Yes, the solutions are designed to be clear and easy to follow, making them ideal for self-study.
7. Can these NCERT Solutions for Class 12 Maths Chapter 7: Integrals - Exercise 7.10 help with understanding complex integral problems?
Yes, by mastering the properties covered, you'll be better equipped to tackle more complex integral problems.
8. How often should I use these NCERT Solutions for Class 12 Maths Chapter 7: Integrals - Exercise 7.10 for studying?
Regular practice with these solutions will help reinforce your understanding, so try to use them frequently.
9. What should I do if I find a problem challenging in the NCERT Solutions for Class 12 Maths Chapter 7: Integrals - Exercise 7.10?
Review the step-by-step solutions provided or seek additional help from teachers or online resources if needed.
10. Can I access the NCERT Solutions for Class 12 Maths Chapter 7: Integrals - Exercise 7.10 on my mobile device?
Yes, the FREE PDF can be downloaded and viewed on any device, including smartphones and tablets.